JPS5828512A - internal combustion engine - Google Patents
internal combustion engineInfo
- Publication number
- JPS5828512A JPS5828512A JP56112285A JP11228581A JPS5828512A JP S5828512 A JPS5828512 A JP S5828512A JP 56112285 A JP56112285 A JP 56112285A JP 11228581 A JP11228581 A JP 11228581A JP S5828512 A JPS5828512 A JP S5828512A
- Authority
- JP
- Japan
- Prior art keywords
- air
- valve
- negative pressure
- fuel ratio
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 22
- 239000000446 fuel Substances 0.000 claims description 64
- 230000007423 decrease Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 238000002347 injection Methods 0.000 description 23
- 239000007924 injection Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 241000862969 Stella Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/04—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
- F02B31/042—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発IPl紘内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for an internal combustion engine.
燃料消費率を向上する丸めの一つの方法として稀薄混合
気を用いる方法がある。しかしながら稀薄混合気は本来
火炎の伝播速度が遅く、従って燃焼速度が遅い丸めに安
定した燃焼を得るのが困難となりている0%に空燃比が
20以上の、いわゆる超種薄混合気を用い九場合には更
に燃焼速度が遅くなるために安定した燃焼を得るのが一
層困難となる。燃焼速度を速める方法として従来よシ燃
焼室内に旋回流を発仝せしめることが知られているが、
この旋回流は強すぎるとシリンメ内壁面から逃げる熱が
多くなるために熱効率が低下し、一方弱すぎると燃焼速
度を十分に速められないために良好な燃焼が得られず、
従って旋回流には機関の種類に応じた最適の旋回流の強
さが存在することが41明している。One way to improve fuel consumption is to use a lean mixture. However, with a lean mixture, the flame propagation speed is inherently slow, so it is difficult to obtain stable combustion due to the slow combustion rate. In some cases, the combustion rate becomes even slower, making it even more difficult to obtain stable combustion. It is conventionally known to generate a swirling flow within the combustion chamber as a method of increasing the combustion speed.
If this swirling flow is too strong, a large amount of heat escapes from the inner wall surface of the syringe, resulting in a decrease in thermal efficiency.On the other hand, if it is too weak, the combustion rate cannot be sufficiently increased, resulting in poor combustion.
Therefore, it is clear that there is an optimum swirl flow strength depending on the type of engine.
本発明は空燃比が20以上の越権薄混合気を安定して燃
焼させるのに適した強さの旋回流を燃焼室内に発生せし
めることのできる内燃機関の吸気装置を提供することに
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide an intake system for an internal combustion engine that can generate a swirling flow of strength suitable for stably burning a lean mixture having an air-fuel ratio of 20 or more in a combustion chamber.
以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダグ口、り1内で往復動するfストン、
3紘シリンメプDyり1上に固定されたシリン〆へψド
、4はピストン2とシリンダへ、ド3関く形成された燃
焼室、5は吸気弁、傷はシリンダヘッド3内に形成され
たヘリカル型吸気J−)、7は排気弁、8紘シリンダヘ
ツド3内に形成された排気/−トを夫々示す。なお、図
には示さないが燃焼室4内に点火役が配置される。Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a cylinder dog port, and an f-stone that reciprocates within the cylinder 1;
3 To the cylinder fixed on the cylinder head 1, 4 to the piston 2 and cylinder, 3 to the combustion chamber formed between them, 5 to the intake valve, and the scratch formed in the cylinder head 3. Helical type intake J-), 7 indicates an exhaust valve, and 8 indicates an exhaust port formed in the cylinder head 3, respectively. Although not shown in the figure, an igniter is arranged within the combustion chamber 4.
第3図から第5図に第2図のヘリカルima気−−FS
Oy#秋を図解的に示す、このヘリカル製吸気−一ト6
は第41iK示されるように流路軸11mがわずかに彎
−した入口通路部人と、吸気弁5の弁軸周シに形成され
九渦巻lIlとによシ構成され、入ロ通路部ム杜渦巻部
IKm線状に接続部れる。From Figure 3 to Figure 5, the helical ima air in Figure 2--FS
Oy#This helical air intake diagram shows autumn 6
As shown in No. 41iK, the flow path axis 11m is composed of a slightly curved inlet passage part and nine spirals formed around the valve axis of the intake valve 5, and the inlet passage part m The spiral part IKm is connected in a linear manner.
第sg、第4IQ並びに第7図に承部れるように入ロ通
路部ムO渦巻軸線bK近い側の側壁面90上方側壁WO
a状下方を向いえ傾斜衛に形成され、ζO傾斜i19
a O中線渦巻IIlに近づくに従って瓜くなシ、入口
通路部ムと渦巻部lとの接続部において拡第711に承
部れるように側壁面9の全体が下方に向い九傾斜@9m
に形成される。側11面9の上半公社吸気弁ガイド10
(第2図)周シの吸気4−ト上壁面上に形成された円筒
状突起11の周壁間に滑らかに接続され、−刃側壁面9
の下半分は渦巻部Bの渦り#終端部Cにおいて渦巻部B
の側壁面12に接続される。なお、渦巻部Bの上壁面1
3は渦巻終端部Cにおいて下向きの急傾斜壁DK接続さ
れる。sg, 4th IQ, and the upper side wall WO on the side closer to the spiral axis bK
Formed in an a-shaped slope facing downward, ζO slope i19
a As it approaches the midline spiral IIl, the entire side wall surface 9 faces downward so that it is received by the widening 711 at the connection between the inlet passage part M and the spiral part I, and the slope is 9 m.
is formed. Upper half public corporation intake valve guide 10 on side 11 surface 9
(Fig. 2) The peripheral wall of the cylindrical protrusion 11 formed on the upper wall surface of the intake 4-toe of the peripheral blade is connected smoothly between the peripheral walls of the blade-side wall surface 9.
The lower half of the spiral part B is the vortex at the terminal part C.
is connected to the side wall surface 12 of. In addition, the upper wall surface 1 of the spiral part B
3 is connected to the downward steeply inclined wall DK at the end C of the spiral.
一方、第1図から第5図に示されるようにシリンダへ、
ド3内には入口通路部Aから分枝されたほぼ一様断爾の
分岐路14が形成され、この分岐路14は渦巻終端部C
に接続される。分岐路14の入口開口!5は入口通路部
ムの入口開口近傍において側壁1[9上に形成され、分
岐路14の出口開口16は渦巻終端部Cにおいて側壁面
12の上端部に形成される。更に、シリンダへ、ド3内
には分岐路14を貫通して延びる開閉弁挿入孔17が穿
設され、この開閉弁挿入孔17内には夫々通路開閉弁の
作用をなすロータリ弁18が挿入される。このロータリ
弁18は分岐路14内に配置されかつ第9図に示すよう
に薄板状をなす弁体19と、弁体19と一体形成された
弁軸20とを具備し、この弁軸2(l開閉弁挿入孔17
内に嵌着された案内スリーブ21によシ圓転可能に支承
される。弁軸20は案内スリーブztol[ilから上
方に央出し、この央出端部にアーム22が固着される・
第1O図を参照すると、吸気I−トロは枝管23を介し
て共通のサージタンク24に接続され、更にサージタン
ク24はエアダクト25並びにエアクリーナ26を介し
て大気に連通する。第211並びKIIiloEを参照
すると各枝管23には吸気−一ト6内に向けて燃料を噴
射する丸めの燃料噴射弁27が取付けられ、またエアダ
クト25内にはアクセルペダルに連結されたスロv)ル
弁2Bが挿入される。一方、各気筒のロータリ弁18の
アーム220先端部は連結ロッド29によって互に連結
され、この連結ロッド29は負圧メイアフラ^装置30
のメイア7ツム31に固着され大制御−ツド32に連結
基れる。負圧メイアフラム装置30社〆イア7ラム31
によって大気から隔離された負圧室33を有し、との負
圧1i33内にダイアフラム押圧用圧縮ばね34が挿入
δれる。負圧室33Fi導管35を介して大気漣通制御
弁36の弁室37に連結される。弁室37は一方では弁
室37からサージタンク24内に向けてのみ流通可能な
逆止弁38を介してサージタンク24に連結され、他方
では大気連通ポート39並びにエアフィルタ40を介し
て大気に連通する。更に、大気遅過制御弁36は電磁弁
41を具備し、この電磁弁41紘大気連通yj!−)3
9の開閉制御をする弁体42と、弁体42に連結された
可動シランジャ43と、可動シランジャ吸引用のソレノ
イド44から構成される。電磁弁41のソレノイド44
社電子制御ユニy)50の出力端子に接続される。j!
に、スロットル弁2BにはIテンシ、メータ45が取付
けられる。このポテンショメータ45はスロットル弁2
8に連結されてスロットル弁28と共に回動する摺動子
45mと、固定抵抗415%からな)、摺動子45&に
はスay)ル弁28の開fK比例しえ出力電圧が発生す
る。On the other hand, as shown in FIGS. 1 to 5, to the cylinder,
A branch passage 14 of substantially uniform length is formed in the door 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C.
connected to. Entrance opening of branch road 14! 5 is formed on the side wall 1[9 near the inlet opening of the inlet passage section M, and the outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. Furthermore, an on-off valve insertion hole 17 is bored in the cylinder and in the door 3, and extends through the branch passage 14, and a rotary valve 18, which acts as a passage on-off valve, is inserted into each of the on-off valve insertion holes 17. be done. The rotary valve 18 is disposed within the branch passage 14 and includes a thin plate-shaped valve body 19 as shown in FIG. 9, and a valve stem 20 integrally formed with the valve body 19. l On-off valve insertion hole 17
It is rotatably supported by a guide sleeve 21 fitted therein. The valve stem 20 is centered upwardly from the guide sleeve ztol[il, and an arm 22 is fixed to the central protruding end of the valve stem 20. Referring to FIG. 24, and the surge tank 24 further communicates with the atmosphere via an air duct 25 and an air cleaner 26. Referring to the 211th row KIIIloE, each branch pipe 23 is equipped with a round fuel injection valve 27 that injects fuel into the intake port 6, and inside the air duct 25 is a slot valve connected to an accelerator pedal. ) Le valve 2B is inserted. On the other hand, the ends of the arms 220 of the rotary valves 18 of each cylinder are connected to each other by a connecting rod 29, and this connecting rod 29 is connected to the negative pressure mailer unit 30.
It is fixed to the main control rod 31 and connected to the large control rod 32. Negative pressure membrane equipment 30 companies〆ear 7 ram 31
It has a negative pressure chamber 33 isolated from the atmosphere by , and a diaphragm pressing compression spring 34 is inserted into the negative pressure 1i33. Negative pressure chamber 33 Fi is connected to a valve chamber 37 of an atmospheric ventilation control valve 36 via a conduit 35 . The valve chamber 37 is connected to the surge tank 24 on the one hand through a check valve 38 that allows flow only from the valve chamber 37 into the surge tank 24, and on the other hand is connected to the atmosphere through an atmosphere communication port 39 and an air filter 40. communicate. Further, the atmospheric delay control valve 36 is equipped with a solenoid valve 41, and this solenoid valve 41 is in communication with the atmosphere yj! -)3
9, a movable syringer 43 connected to the valve body 42, and a solenoid 44 for suction of the movable syringe. Solenoid 44 of solenoid valve 41
It is connected to the output terminal of the electronic control unit y) 50. j!
In addition, an I-tension and meter 45 are attached to the throttle valve 2B. This potentiometer 45 is the throttle valve 2
An output voltage proportional to the opening fK of the throttle valve 28 is generated in the slider 45& by a slider 45m connected to the throttle valve 8 and rotating together with the throttle valve 28, and a fixed resistance of 415%.
電子制御エニット50はディジタルコンビ、−タからな
シ、各種の演算処理を行なうiイクログ四セッt(MP
U)51、ランダムアクセスメモリ(RAM)52、制
御!ログラム、演算定数等が予め格納されているリード
オンリメモリ(ROM )53、入力/ −) 54並
びに出力ポート55が双方向性パスs6を介して互に!
!続されている。更に、電子制御具ニット50内には各
種のクロ、り信号を発生する夕o、り発生器57が設け
られる。The electronically controlled enit 50 is a digital combination, an i-eclog four set (MP) that performs various arithmetic processing.
U) 51, Random Access Memory (RAM) 52, Control! A read-only memory (ROM) 53 in which programs, calculation constants, etc. are stored in advance, an input/-) 54, and an output port 55 are connected to each other via a bidirectional path s6!
! It is continued. Further, within the electronic control device unit 50, there is provided a light generator 57 for generating various black and white signals.
入力/ −) 54にはサージタンク24内の負圧を検
出するための負圧センサ58がムD変換器59を介して
接続され、更に入力/−)54にはポテンショメータ4
5がムD変換器60を介して接続される。また、入力デ
−)R54には回転数センサ61が接続される。負圧セ
ンサ5sFiサージタンタ24内の負圧に比例した出力
電圧を発生し、この電圧がムD変換器60において対応
する2進数に変換されてこの2進数が入力1−)54並
びにパス56を介してMPU 51に入力される。II
I!テンシ、メータ45は前述したようにスロットル弁
28の開直に比例した出力電圧を発生し、この電圧がム
D変換器60において対応する2進数に変換されてこの
2進数が入力/ −) 54並びにパス56を介してM
PU 51に入力される。一方、回転数センサ61は機
関クランクシャフトが所定クランク角WIL回転する毎
にノぐパスを発生し、このIクルスが入力ポート54並
びにパス56を介してMPU51に入力される。A negative pressure sensor 58 for detecting negative pressure in the surge tank 24 is connected to the input/-) 54 via a mu D converter 59, and a potentiometer 4 is connected to the input/-) 54.
5 is connected via a mu-D converter 60. Further, a rotation speed sensor 61 is connected to the input data R54. The negative pressure sensor 5sFi generates an output voltage proportional to the negative pressure in the surge tanctor 24, and this voltage is converted into a corresponding binary number in the mu D converter 60, and this binary number is passed through the input 1-) 54 and the path 56. and is input to the MPU 51. II
I! As mentioned above, the tension meter 45 generates an output voltage proportional to the opening and closing of the throttle valve 28, and this voltage is converted into a corresponding binary number by the D converter 60, and this binary number is inputted. and M via path 56
It is input to PU 51. On the other hand, the rotation speed sensor 61 generates a negative pass every time the engine crankshaft rotates by a predetermined crank angle WIL, and this I-cruise is input to the MPU 51 via the input port 54 and the pass 56.
出力/−)55は燃料噴射弁27と電磁弁41とを作動
するためのデータを出力するために設けられておル、こ
の出力?−ト55には2進数のデータがMPU 51か
らパス56を介して書込まれる・出力/−)55の出力
端子は一方では電力増幅回路62を介して電磁弁41の
ソレノイド44に接続され、他方ではダウンカウンタ6
3の対応する入力端子に接続される。この〆つyカウン
タ63はMPU 51から書込まれた2進数のデータを
それに対応する時間の長さに変換するために設けられて
おシ、このダウンカウンタ63は出力ポート55カラ送
シ込まれたデータのダウンカウントをクロ、り発生器5
7のクロ、り信号によりて開始し、カウント値がOにな
るとカウントを完了して出力端子にカウント完了信号を
発生する。8−Rフリ。Output/-) 55 is provided to output data for operating the fuel injection valve 27 and the solenoid valve 41. -Binary data is written from the MPU 51 to the port 55 via a path 56.The output terminal of the output/-) 55 is connected to the solenoid 44 of the electromagnetic valve 41 via the power amplifier circuit 62 on the one hand; On the other hand, down counter 6
3 to the corresponding input terminals. This down counter 63 is provided to convert the binary data written from the MPU 51 into the corresponding time length, and this down counter 63 is provided to convert the binary data written from the MPU 51 into the corresponding time length. The generator 5 counts down the data.
It starts with the clock signal of 7, and when the count value reaches 0, the counting is completed and a count completion signal is generated at the output terminal. 8-R free.
f70.f・4のリセット入力端子翼はダウンカウンタ
63の出力端子に接続され、8−1ツリツグフ四ツブ6
40セツト入力端子8はクロ、り発生器57に接続され
る。このトlフリ、プ7I2.f64はりp、夕発生器
57のクロ、り信号によシメウンカウント開始と同時に
セットされ、ダウンカウント完了時に/ランカウンタ6
3のカウント完了信号によってリセットされる。従って
8−R7す、デフ0.f64の出力端子qはダウンカウ
ントが行なわれている間高レベルとなる。 s−iフリ
ップフO,f@4の出力端子Qは電力増幅回路65を介
して燃料噴射弁27に接続されておシ、従って燃料噴射
弁27はダウンカウンタ63がダウンカウントしている
関付勢されることがわかる。f70. The reset input terminal wing of f.4 is connected to the output terminal of the down counter 63, and the reset input terminal wing of f.
The 40 set input terminal 8 is connected to a black and red generator 57. This trifle, Pu7I2. f64 is set at the same time as the start of countdown by the clock signal of the evening generator 57, and when the downcount is completed, the /run counter 6 is set.
It is reset by the count completion signal of 3. Therefore, 8-R7, differential 0. The output terminal q of f64 is at a high level while the down count is being performed. The output terminal Q of the s-i flip flop O, f@4 is connected to the fuel injection valve 27 via the power amplification circuit 65, and therefore the fuel injection valve 27 is energized by the down counter 63 counting down. I know it will happen.
一方、前述したように出力ポート55の出力端子は電磁
弁41に接続される。電磁弁41のソレノイY44−!
fi付勢されると弁体42は大気連通/−)39を開口
する。その結果、負圧室33内は大気圧となるのでメイ
ア72ム31は圧縮ばね34のばね力によシ下方に移動
し、斯くしてロータリ弁18が回動せしめられて分岐路
14を全開する。一方、電磁弁41のソレノイド44が
消勢されると弁体42が大気連通/−)39を閉鎖する
。仁のとき逆止弁38拡吸気マ三ホルト23内の負圧が
負圧メイアフラム装置30の負圧室33内の負圧よりも
大きくなると開弁じ、吸気マニホルド2s内の負圧が負
圧室33内の負圧よシも小さくなると閉弁するので弁体
42が閉弁している限〉負圧室33内の負圧は吸気!ニ
ホルド25内に発生した最大負圧に一持される。負圧室
33内に負圧が加わるとダイアフラム31は圧縮ばね3
4に抗して上昇し、その結果ロータリ弁18が回動せし
められて分岐路14が閉鎖される。On the other hand, as described above, the output terminal of the output port 55 is connected to the solenoid valve 41. Solenoid Y44- of solenoid valve 41!
When fi is energized, the valve body 42 opens the atmosphere communication /-) 39. As a result, the inside of the negative pressure chamber 33 becomes atmospheric pressure, so the Meir 72m 31 is moved downward by the spring force of the compression spring 34, and the rotary valve 18 is thus rotated to fully open the branch passage 14. do. On the other hand, when the solenoid 44 of the electromagnetic valve 41 is deenergized, the valve body 42 closes the atmospheric communication /-) 39. When the negative pressure in the check valve 38 and the intake manifold 23 becomes larger than the negative pressure in the negative pressure chamber 33 of the negative pressure membrane device 30, the valve opens, and the negative pressure in the intake manifold 2s increases to the negative pressure chamber. When the negative pressure in the negative pressure chamber 33 also decreases, the valve closes, so as long as the valve body 42 is closed, the negative pressure in the negative pressure chamber 33 is suction! The maximum negative pressure generated within the Nifold 25 is maintained for a while. When negative pressure is applied inside the negative pressure chamber 33, the diaphragm 31 releases the compression spring 3.
As a result, the rotary valve 18 is rotated and the branch passage 14 is closed.
第11図はサージタリク24内の負圧P(−一&)と機
関回転11kN (rpm ) K対する空燃比〜乍を
示している。第11図において図中に記載された数値は
空燃比を示しているが実際には第11図は図中Kle載
され大空燃比となるような燃料噴射時間が書込まれた!
、fとなっている。従って機関回転数Nと負圧デが定壕
ると第11図から燃料噴射時間が定まル、そのと自機間
シリンダ内に供給されゐ空燃比dll11図中に記載さ
れ九数値のようktkゐ・第1111に示す燃料噴射時
間のマツfFi予めROM5S内に記憶されている。第
11WAかられかるように燃料噴射量は機関回転数Nか
はぼ14001%からfiff3200rpmo間でか
っ負圧デが#を埋3!!Osm−よシ亀小畜なときに空
燃比が2雪となるように設定されている。更に、機関回
転数)lがPlば600 rpmからほば1400rシ
ーの間で唸橡関−転数Nが低くなるKつれて空燃比が1
0Orνm轟)12器〜2.75づつ小さくなるように
設定されている。これ拡機関圏転数Nが小さくなう九場
合に空燃比が大きいとトルク変動を生じ、このトルク変
動を抑制するために機関回転黴買が小さくなるにつれて
空燃比を小さくするようにしている・一方、負圧Pが一
350swzHgよ〕も大暑なときには負圧Pが大きく
なるにつれて空燃比が100■Hg!!kj)1〜2づ
つ小さくなるように設定されている。これ祉負圧Pが大
きくなった場合に空燃比が大暑いとトルク変動を生じ、
このトルク変動を抑制するために負圧Pが大きくなるに
つれて空燃比を小さくするようにしている。また、機関
回転数Nがは)!’3200rpm以上では空燃比は1
00 rpm尚シ0.5〜1.5づつ小さくなるように
設定され、それによって機関回転数Nが高いときに藁出
力が得られるようにしている。FIG. 11 shows the negative pressure P(-1&) in the surge tank 24 and the air-fuel ratio to the engine rotation of 11 kN (rpm) K. In Fig. 11, the numerical values written in the figure indicate the air-fuel ratio, but in reality, Fig. 11 is written on Kle in the figure, and the fuel injection time that results in a large air-fuel ratio is written!
, f. Therefore, when the engine speed N and the negative pressure are set at a constant level, the fuel injection time is determined from Figure 11, and the air-fuel ratio dll11, which is supplied to the cylinders of the own machine, is ktk as shown in Figure 9. 2. The fuel injection time fFi shown in No. 1111 is stored in the ROM 5S in advance. As you can see from the 11th WA, the fuel injection amount is between the engine speed N or about 14001% to fiff3200rpm, and the negative pressure is filling #3! ! Osm-The air-fuel ratio is set to 2 when the engine is in full operation. Furthermore, when the engine speed (Pl) is between 600 rpm and approximately 1,400 rpm, the air-fuel ratio decreases to 1 as the rotation speed N decreases.
It is set to decrease in increments of 12 to 2.75. If the air-fuel ratio is large when the engine rotation speed N becomes small, torque fluctuations occur, and in order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the engine speed decreases. On the other hand, when the negative pressure P is 1350 swzHg and it is very hot, the air-fuel ratio increases to 100■Hg as the negative pressure P increases! ! kj) is set to decrease by 1 to 2. This will cause torque fluctuations if the air-fuel ratio becomes very hot when the negative pressure P increases.
In order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the negative pressure P becomes larger. Also, the engine speed N!)! 'At 3200rpm and above, the air-fuel ratio is 1
00 rpm is set to decrease in increments of 0.5 to 1.5, thereby making it possible to obtain a straw output when the engine speed N is high.
第11図の”Yyグによる燃料噴射量の制御はスロット
ル弁28の開度が第12図の4よシも小さいときに行な
われ、スロットル弁28の開度が第12図の4よ〉も大
きいときにはスロットル弁280開度によりて燃料噴射
量の制御が行なわれる。The control of the fuel injection amount by "Yy" in FIG. 11 is performed when the opening degree of the throttle valve 28 is smaller than 4 in FIG. 12; When the amount is large, the fuel injection amount is controlled by the opening degree of the throttle valve 280.
なお、第12図において縦軸4はスロt )ル弁2Bの
開度−を示しておシ、スロットル開度so@a全開状態
を示している。第12図かられかるように一度一・紘機
関回転数Nが100 Orpmのとき30’〜40・で
あ〉、機関回転数Nが4000 rpr*のと@SO・
〜6枦である。この開lL#・に対応する負圧Pが第1
1Eにおいて破線Tで示される。従りて第11図O破−
テよシも負圧Pが小さなとき、即ち第12rIAO開度
4よりもスロットル弁28の開度−が大きなときに祉ス
ロ、トル弁280一度にようて燃料噴射量が制御されゐ
、第11図O破線テよ〕も負圧Pが小さなときに紘高出
力を得るために負圧デが小さくなるに従って空燃比が急
1kK減少せしめられ、従って負圧Pかわずかげか〕変
化すると空燃比が大きく変化するので空燃比を負圧デに
応じて炭化させると細か々制御が難かしくなる。斯くし
て第111図の破線〒よシも負圧Pが小さなときにはス
ロットル弁28の開度−によって燃料噴射量の制御が行
なわれる。なお、第1211において実線4で示される
機関回転数Xとスロットル弁開度−の関係は予めROM
53内に記憶されている。In FIG. 12, the vertical axis 4 indicates the opening degree of the throttle valve 2B, and indicates the throttle opening degree so@a in a fully open state. As shown in Fig. 12, when the engine speed N is 100 orpm, it is 30' to 40, and when the engine speed N is 4000 rpr*, @SO
〜6 枦. The negative pressure P corresponding to this opening lL# is the first
Indicated by a dashed line T in 1E. Therefore, Figure 11 O-break
Also, when the negative pressure P is small, that is, when the opening degree of the throttle valve 28 is larger than the opening degree 4 of the 12th rIAO, the fuel injection amount is controlled according to the throttle valve 280 at once. The broken line in Figure O] also shows that when the negative pressure P is small, the air-fuel ratio is suddenly reduced by 1 kK as the negative pressure D decreases in order to obtain high output. Since the air-fuel ratio changes greatly, if the air-fuel ratio is carbonized in accordance with the negative pressure, fine control becomes difficult. Thus, when the negative pressure P is small as shown by the broken line in FIG. 111, the fuel injection amount is controlled by the opening degree of the throttle valve 28. In addition, in No. 1211, the relationship between the engine speed
53.
第13図紘スpットル弁28のl1f1に−と機関回転
数NK対する空燃比〜乍を示している。第13図におい
て図中に記載され良数値は空燃比を示しているが実際に
は第13図は図中に記載され大空燃比となるような燃料
噴射時間が書込まれたマ。FIG. 13 shows the air-fuel ratio to l1f1 of the throttle valve 28 and the engine rotational speed NK. In FIG. 13, the good value written in the figure indicates the air-fuel ratio, but in reality, FIG.
ゾとなりている。従って機関回転数Nとスロットル弁開
度−が定まると第13図から燃料噴射時間が定マシ、そ
のとき機関シリンダ内に供給される空燃比は第13図中
に記載された数値のようになる。第13図に示す燃料噴
射時間のマ、′fは予めROM 53内に記憶されてい
る。第13図かられかるように燃料噴射量はスロットル
弁開度θが大きくなるにつれて空燃比が小さくなるよう
に設定されておシ、スロットル弁28が全開したときに
は空燃比は12.5程度となる。It has become zo. Therefore, when the engine speed N and the throttle valve opening are determined, the fuel injection time becomes constant as shown in Figure 13, and the air-fuel ratio supplied to the engine cylinder at that time becomes the numerical value shown in Figure 13. . The fuel injection times m and 'f shown in FIG. 13 are stored in the ROM 53 in advance. As can be seen from FIG. 13, the fuel injection amount is set so that the air-fuel ratio decreases as the throttle valve opening θ increases, and when the throttle valve 28 is fully opened, the air-fuel ratio is approximately 12.5. .
次いで第15図を参照して燃料噴射制御について説明す
る。第15図を参照すると、まず始めにステップフOに
おいて回転数センサ61の出力信号がMPU 51に入
力されて機関回転数Nが計算される。次いでステラ7”
71においてスロットル弁開度−を表わすIテンシ、メ
ータ45の出力信号が野υ51に入力され、次いでステ
、グア2において負圧Pを聚わす負圧センサ58の出力
信号がMPo 51 K入力される0次いでステ、プ7
3においてス賞、トル開度−と機関回転数NとKよシ定
まる第12Eの点Q (N)が菖12図の開度4よシも
大きいか否かが判別される。ステ、f73においてe
(N)が開J[aoよシも大きくないと判別されたとき
祉ステ、f74に進んで第11wJK示すマツダから燃
料噴射時間丁が計算され、次い、でステ、f75KII
iむ、一方、ステツブ73においテQ(N)が開度0o
よシも大きいと判別されたときはステ、f76に進んで
館13図に示すマ、fから燃料噴射時間〒が計算され、
次いでステ、f75に進む、ステ、プ75ではステ、f
74或いはステ9f’16において求められた燃料噴射
時間テに対応する駆動データを出力4− ト55に書込
み1この燃料噴射時間〒だけ燃料噴射弁27から燃料が
噴射される。従って機関シリンダ内には第11図或いは
第13図に示すような空燃比の混合気が供給逼れる。Next, fuel injection control will be explained with reference to FIG. Referring to FIG. 15, first, in step O, the output signal of the rotation speed sensor 61 is input to the MPU 51, and the engine rotation speed N is calculated. Next is Stella 7”
At 71, the output signal of the tension meter 45 representing the throttle valve opening is inputted to the field υ51, and then the output signal of the negative pressure sensor 58 that generates a negative pressure P at the stage 2 is inputted to the MPo51K. 0 then step, 7
In step 3, it is determined whether the point Q (N) of the 12th E, which is determined by the torque opening degree - and the engine speed N and K, is larger than the opening degree 4 in the iris diagram 12. Ste, e in f73
When it is determined that (N) is not large enough to open J[ao, the fuel injection time is calculated from Mazda by proceeding to f74 and showing the 11th wJK.
On the other hand, the opening degree of step 73 is 0o.
When it is determined that the height is also large, proceed to step f76 and the fuel injection time 〒 is calculated from M and f shown in Figure 13.
Next, proceed to step f75. In step step 75, step f
The drive data corresponding to the fuel injection time te determined in step 74 or step 9f'16 is written to the output 4-55, and fuel is injected from the fuel injection valve 27 for this fuel injection time 〒. Therefore, an air-fuel mixture having an air-fuel ratio as shown in FIG. 11 or 13 is supplied into the engine cylinder.
第14図は電磁弁41を作動すべき機関回転数N (r
pm )とサージタンク24内の負圧p(−smI[g
)との関係を示してお)、この関係鉱予めROM 53
内に記憶されている。電磁弁41は1814図の実線W
よりも上方゛のハツチングで示される領域で付勢される
。第14図の実1IilWはほぼ吸入空気量が一定のと
ころを示しており、従って吸入空気量が所定量以上にな
るとソレノイド44を付勢すべきデータが出力−一部5
5に書込まれてソレノイド44が付勢される。ソレノイ
l’44が付勢されるとロータリ弁18が分岐路14を
全開する。FIG. 14 shows the engine speed N (r
pm ) and negative pressure p(-smI[g
), this related mineral pre-ROM 53
stored within. The solenoid valve 41 is indicated by the solid line W in Figure 1814.
It is energized in the region shown by the hatching above the Actual 1IilW in FIG. 14 shows a state where the amount of intake air is almost constant. Therefore, when the amount of intake air exceeds a predetermined amount, the data to energize the solenoid 44 is output - part 5.
5 and the solenoid 44 is energized. When the solenoid l'44 is energized, the rotary valve 18 fully opens the branch passage 14.
従うて吸入空気量が多いときにはロータリ弁18が分岐
路14を全開し、一方吸入空気量が少ないとIKはロー
タリ弁18が分岐路14を閉鎖することがわかる。Therefore, it can be seen that when the intake air amount is large, the rotary valve 18 fully opens the branch passage 14, whereas when the intake air quantity is small, the rotary valve 18 closes the branch passage 14.
上述した、ように吸入9気量の少ない機関低速低負荷運
転時にはロータリ弁18が分岐路14を鐘断している。As mentioned above, when the engine is operating at low speed and low load with a small intake air volume, the rotary valve 18 closes off the branch passage 14.
とのとき入口通路部A内に送シ込まれた吸入空気は渦巻
部BO上壁面13に沿って旋回しりつ渦巻部B内を下降
し、次いで旋回しつつ燃焼室4内に流入するので燃焼室
4内には強力な旋回流が発生せしめられる。第16図は
スワール比g(クランク角f360度娼シの燃焼室内に
おける旋回流の旋回数)と燃料消費率Qとの関係を示す
・第16図かられかるように空燃比が22のよ5な超種
薄混合気を用いた場合にはスワール比がほぼ1.5から
3の範囲て燃料消費率qが低く、ヒれ以上スワール比8
が大きくなっても小さくなっても燃料消費率が悪化する
0本発明に係るヘリカルm吸気/−)では1.5から3
の範囲のスワール比が得られ、斯くして超種薄混合気で
も安定した燃焼を得ることができる。At this time, the intake air sent into the inlet passage A swirls along the upper wall surface 13 of the spiral part BO, descends inside the spiral part B, and then flows into the combustion chamber 4 while swirling, resulting in combustion. A strong swirling flow is generated within the chamber 4. Figure 16 shows the relationship between the swirl ratio g (the number of turns of the swirling flow in the combustion chamber at a crank angle of 360 degrees) and the fuel consumption rate Q.As can be seen from Figure 16, the air-fuel ratio is When using a very lean mixture, the fuel consumption rate q is low when the swirl ratio is in the range of approximately 1.5 to 3, and the swirl ratio is 8 or higher.
The fuel consumption rate worsens no matter how large or small the helical m intake according to the present invention is from 1.5 to 3.
Swirl ratios in the range of can be obtained, and thus stable combustion can be obtained even with ultra-lean mixtures.
一方、吸入空気量が多い機関高速高負荷運転時にはp−
タリク18が開弁するので入ロ通路部ム内に送ル込まれ
た吸入空気の一部が流れ抵抗の小さな分岐路14を介し
て渦巻部B内に送シ込まれ石0分岐路14から渦巻部す
内に流入した吸入空気は入口通路部Aから渦巻部B内に
流入して旋回しつつ流れる吸入空気流を減速させる作用
をなすので旋回流が弱められる。このように機関高速高
負荷運転時にはロータリ弁18が開弁することによりて
全体の流路面積が増大するばかシでなく旋回流が弱めら
れるので高い充填効率を確保でき、斯くして高出力を得
ることができる。また、入口通路部ムに傾斜側壁部9a
を設けることによって入ロ通路部ム内に送シ込まれ九吸
入空気の一部は下向きの力を与えられ、その結果この吸
入空気は旋回するととなく入口通路部ムの下壁面に沿っ
て渦巻部B内に流入するために流入抵抗は小さくなシ、
斯くして高速高負荷運転時における充填効率を更に高め
ることができる。On the other hand, during engine high-speed, high-load operation with a large amount of intake air, p-
Since the tariq 18 opens, a part of the intake air sent into the inlet passage part M is sent into the spiral part B via the branch passage 14 with low flow resistance and is then sent from the stone 0 branch passage 14. The intake air that has flowed into the swirl portion B flows from the inlet passage portion A into the swirl portion B and has the effect of decelerating the intake air flow flowing while swirling, so that the swirl flow is weakened. In this way, when the engine is operated at high speed and under high load, the rotary valve 18 opens, which does not increase the overall flow path area, but instead weakens the swirling flow, ensuring high filling efficiency and thus achieving high output. Obtainable. In addition, an inclined side wall portion 9a is provided at the entrance passage portion.
By providing this, a part of the intake air that is sent into the inlet passage is given a downward force, and as a result, this intake air swirls along the lower wall surface of the inlet passage. Since it flows into part B, the flow resistance is small.
In this way, the filling efficiency during high-speed, high-load operation can be further improved.
以上述べたように本発明によれば燃焼室内にスワール比
が1.5から3の最適な旋回流が発生せしめられるので
空燃比が22程度の超檜薄混合気を用いても安定した燃
焼を得ることができる。更に機関回転数が低いとき、並
びに吸気通路内負圧が大きいときKは空燃比が減少せし
められるのでトルク変動を抑制でき、良好な運転性を確
保することができる。また、機関高速高負荷運転時には
空燃比が減少せしめられるので高出力を得ることができ
、更にロータリ弁が開弁することによって充填効率が高
くなるので機関出力を一層高めることができる。As described above, according to the present invention, an optimal swirl flow with a swirl ratio of 1.5 to 3 is generated in the combustion chamber, so that stable combustion can be achieved even when using a super-lean mixture with an air-fuel ratio of about 22. Obtainable. Furthermore, when the engine speed is low and when the negative pressure in the intake passage is large, the air-fuel ratio of K is reduced, so torque fluctuations can be suppressed and good drivability can be ensured. Further, when the engine is operated at high speed and under high load, the air-fuel ratio is reduced, so high output can be obtained, and the rotary valve opens, which increases the charging efficiency, so that the engine output can be further increased.
第1図は本発明に係る内燃機関の平面図、第2図は第1
図の1−1線に沿ってみた断面図、第3図はヘリカル置
吸気−−トの形状をす斜視図、第4mは第3@(1)平
面図、第5図唸第3図の分岐路に沿りて切断し九個面断
面図、第6図は第4図のVl−11111に沿ってみえ
断面図、第7図は第4図の■−■線に沿りてみた断面図
、第8図は第4図の■−■−に沿りてみ九断藺図、第9
図はロータリ弁O斜視図、第10図は吸気装置の全体図
、第11図はサージタンク内の負圧と機関回転数によっ
て定まる空燃比を示す図、第12図はスロヂトル弁開度
制御に切換わるスswy)ル開度を示す図、第1$1i
はスロートル弁開度と機関回転数によって定ま為空燃比
を示す図、第145!lは開閉弁O開弁領域を示す図、
第15図線燃料噴射制御の作動を示す7−−チヤート、
第16図は燃料消費率とスワール比とO関係を示すグラ
フである。
6−ヘリカル臘吸気4−ト、24−・サージタンク、2
7−・燃料噴射弁、28・・・スロットル弁、58・・
・負圧センサ、61−・・回転数センサ。
特許出願人
ト目夕自動車工業株式会社
特許出原代理人
弁理士 青 木 朗
弁理士 西;舘 和 之
弁理士 ★ 1)正 行
弁理士 山 口 昭 之
第1回
η1
第4回
第5回
第60 第7回
第81!l 第9回
第120
N(r、p、m)
第13yJ
第14回
第15T:fJ
−一一一一」
第16回
1 2 5 sFIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
3 is a perspective view showing the shape of a helical air intake, 4th m is a plan view of 3@(1), and 5th is a sectional view taken along line 1-1 in the figure. Figure 6 is a cross-sectional view taken along the branch road, taken along line Vl-11111 in Figure 4, Figure 7 is a cross-sectional view taken along line ■-■ in Figure 4. Figure 8 is a nine-section map taken along the lines ■-■- in Figure 4, and Figure 9.
The figure is a perspective view of the rotary valve O, Figure 10 is an overall view of the intake system, Figure 11 is a diagram showing the air-fuel ratio determined by the negative pressure in the surge tank and the engine speed, and Figure 12 is a diagram showing the throttle valve opening control. Diagram showing the opening degree of the switching valve, 1st $1i
is a diagram showing the air-fuel ratio determined by the throttle valve opening and the engine speed, No. 145! l is a diagram showing the opening area of the on-off valve O,
Figure 15 - Chart 7--Chart showing the operation of fuel injection control;
FIG. 16 is a graph showing the relationship between fuel consumption rate, swirl ratio, and O. 6-helical intake 4-t, 24-・surge tank, 2
7-Fuel injection valve, 28... Throttle valve, 58...
- Negative pressure sensor, 61-... rotation speed sensor. Patent applicant Tome Yu Jidosha Kogyo Co., Ltd. Patent attorney Akira Aoki Patent attorney Nishi; Kazuyuki Tate Patent attorney ★ 1) Tadashi Patent attorney Akira Yamaguchi 1st η1 4th 5th 60th 7th 81st! l 9th 120 N (r, p, m) 13th yJ 14th 15th T: fJ -1111” 16th 1 2 5 s
Claims (1)
回転数がほぼ1400 rpm以上でかつ吸気通路内負
圧’l)’a#′!1′−50m11gかbFtj’!
I’−350mugのときに一定空燃比の稀薄混合気を
形成し、機関−転数がほぼ140Orpm以下のときに
は機関1転数が減少するにつれて、混合気の空燃□比を
小さくシ、吸気通路内負圧がは埋−50mHgよシ亀小
さなときKFi吸気通路内員圧が小さくなるにつれて混
合気O空燃比を小さくするようKした燃料供給装置を具
備し、更に吸気/−)をヘリカル型に形成した内燃機関
の吸気装置。41g1 In response to engine speed and negative pressure in the intake passage, the engine speed is approximately 1400 rpm or more and the negative pressure in the intake passage 'l)'a#'! 1'-50m11g or bFtj'!
When I'-350mug, a lean mixture with a constant air-fuel ratio is formed, and when the engine speed is approximately 140 rpm or less, as the engine speed decreases, the air-fuel ratio of the mixture is reduced and the intake passage is Equipped with a fuel supply device designed to reduce the air-fuel ratio of the air-fuel mixture as the internal pressure of the KFi intake passage decreases when the internal negative pressure is as low as -50 mHg, and the intake air (/-) is helical type. Formed internal combustion engine intake system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112285A JPS5828512A (en) | 1981-07-20 | 1981-07-20 | internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112285A JPS5828512A (en) | 1981-07-20 | 1981-07-20 | internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5828512A true JPS5828512A (en) | 1983-02-19 |
JPH0238776B2 JPH0238776B2 (en) | 1990-08-31 |
Family
ID=14582859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56112285A Granted JPS5828512A (en) | 1981-07-20 | 1981-07-20 | internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5828512A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3500774A1 (en) * | 1984-08-20 | 1986-02-27 | Toyota Jidosha K.K., Toyota, Aichi | METHOD AND DEVICE FOR CONTROLLING AN AIR FUEL SUCTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE |
-
1981
- 1981-07-20 JP JP56112285A patent/JPS5828512A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3500774A1 (en) * | 1984-08-20 | 1986-02-27 | Toyota Jidosha K.K., Toyota, Aichi | METHOD AND DEVICE FOR CONTROLLING AN AIR FUEL SUCTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE |
Also Published As
Publication number | Publication date |
---|---|
JPH0238776B2 (en) | 1990-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0382063A1 (en) | 2-Cycle multi-cylinder engine | |
JPS5823224A (en) | Helical type suction port | |
JPS6035539B2 (en) | Flow path control device for helical intake port | |
JPS5828525A (en) | Flow-passage controller for helical-type intake port | |
JPS6026185Y2 (en) | Internal combustion engine intake system | |
US5090363A (en) | Two-cycle engine with pneumatic fuel injection and flow restriction in at least one transfer passageway | |
JPS5828512A (en) | internal combustion engine | |
JPS5828558A (en) | Intake device for internal combustion engine | |
JPS5932647B2 (en) | Helical intake port for internal combustion engines | |
JPS647227Y2 (en) | ||
JPS6029815B2 (en) | Flow path control device for helical intake port | |
JPH021967B2 (en) | ||
JPS6242100Y2 (en) | ||
JPS5828529A (en) | Flow path control device for helical intake port | |
JPH021966B2 (en) | ||
JP2887979B2 (en) | In-cylinder internal combustion engine | |
JPH034732B2 (en) | ||
JPS5828526A (en) | Flow path control device for helical intake port | |
JPH0245474Y2 (en) | ||
JPS5830417A (en) | Intake device of internal combustion engine | |
JPS5828519A (en) | Passage control device of helical suction port | |
JPS6341539Y2 (en) | ||
JPS58204926A (en) | Helical intake port | |
JPS5848714A (en) | Flow path control device for helical intake port | |
JPS5918530B2 (en) | Internal combustion engine intake system |