JPS58204926A - Helical intake port - Google Patents
Helical intake portInfo
- Publication number
- JPS58204926A JPS58204926A JP57087202A JP8720282A JPS58204926A JP S58204926 A JPS58204926 A JP S58204926A JP 57087202 A JP57087202 A JP 57087202A JP 8720282 A JP8720282 A JP 8720282A JP S58204926 A JPS58204926 A JP S58204926A
- Authority
- JP
- Japan
- Prior art keywords
- wall surface
- valve
- passage
- intake
- inlet passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005192 partition Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 description 20
- 239000000498 cooling water Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/42—Shape or arrangement of intake or exhaust channels in cylinder heads
- F02F1/4228—Helically-shaped channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/04—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
- F02B31/042—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.
ヘリカル型吸気?−Fは通常吸気弁周しに形成された渦
巻部と、この渦巻部に接線状に接続されかつほぼまっす
ぐに延びる入口通路部とにより構成される。このような
ヘリカル型吸気ポートを用いて吸入空気量の少ない機関
低速低負荷運転時に機関燃焼室内に強力な旋回流を発生
せしめようとすると吸気、Je−)形状が流れ抵抗の大
きな形状になってしまうので吸入空気量の多い機関高速
高負荷運転時に充填効率が低下するというという問題を
生ずる。このような問題を解決するためにヘリカル型吸
気ポート入口通路部から分岐されてヘリカル型吸気ポー
ト渦巻部の渦巻終端部に連通ずる分岐路をシリンダヘッ
ド内に形成し、分岐路内に開閉弁を設けて機関高速高負
荷運転時に開閉弁を開弁するようにしたヘリカル型吸気
ポートが本出願人によシ既に提案されている。このヘリ
カル型吸気ポートでは機関高速高負荷運転時にヘリカル
型吸気ポート入口通路部内に送υ込まれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部内に送
り込まれるために吸入空気の流路断面積が増大し、斯く
して充填効率を向上することができる。しかしながらこ
のヘリカル型吸気ポートでは分岐路が入口通路部から完
全に独立した筒状の通路として形成されているので分岐
路の流れ抵抗が比較的大きく、シかも分岐路を入口通路
部に隣接して形成しなければならないために入口通路部
の断面積が制限を受けるので十分に満足のいく高い充填
効率を得るのが困難となっている。更に、ヘリカル型吸
気ポートはそれ自体の形状が複雑であシ、シかも入口通
路部から完全に独立した分岐路を併設した場合には吸気
ポートの全体構造が極めて複雑となるのでこのような分
岐路を具えたヘリカル型吸気ポートをシリンダヘッド内
に形成するのはかなシ困難である。Helical intake? -F is usually constituted by a spiral portion formed around the intake valve and an inlet passage portion that is tangentially connected to the spiral portion and extends substantially straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the intake port will have a large flow resistance. This causes a problem in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of intake air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port volute via the branch path, so that the intake air is The cross-sectional area of the flow path is increased, thus making it possible to improve the filling efficiency. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and it may be difficult to connect the branch passage adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is difficult to form a helical intake port with a channel in a cylinder head.
本発明は機関高速高負荷運転ツに高い充填効率を得るこ
とができると共に製造の容易な新規形状を有するヘリカ
ル型吸気ポートを提供することにある。SUMMARY OF THE INVENTION The present invention provides a helical intake port which is capable of achieving high filling efficiency during high-speed, high-load engine operation and has a new shape that is easy to manufacture.
以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダブロック1上に固締されたシリンダヘッド
、4はピストン2とシリンダヘッド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
たヘリカル型吸気ポート、7は排気弁、8はシリンダヘ
ッド3内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5&を案内す
るステムガイドを夫々示す。第1図並びに第2図に示さ
れるように吸気ポート6の土壁面ll上には下方に突出
する隔壁12が一体成形され、この隔壁12によって渦
巻部Bと、との渦巻部Bに接線状に接続された入口通路
部Aからなるヘリカル型吸気ポート6が形成される。こ
の隔壁12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで延びておシ、第2図かられかるように
、この隔壁12の根本部の巾りは入口通路部Aに近い側
が最も狭く、この最狭部からステムガイド10の近傍ま
ではほぼ一様であり、ステムガイド100周りで最も広
くなる。隔壁12は吸気ポート6の入口開口6aに最も
近い側に位置する先端部13を有し、更に隔壁12は第
2図においてこの先端部13から反時計回りに延びる第
1側壁面141と、先端部13から時計回りに延びる第
2側壁面14bとを有する。第1側壁面14aは先端部
13からステムガイド10の側方を通って渦巻部Bの側
壁面15の近傍まで延びて渦巻部側壁面15との間に狭
窄部16を形成する。一方、第2側壁面14bld先端
部13からステムガイドlOに向けて始めは第1側壁面
14mとの間隔が増大するように、次いで第1側壁面1
4mとの間隔がほぼ一様となるように延びる。次いでこ
の第2側壁面14bはステムガイド10の外周に沿って
延びて狭窄部16に達する。Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder head fixed on the cylinder block 1; 4 is a combustion chamber formed between the piston 2 and the cylinder head 3; 5 is an intake valve; 6 is a helical intake port formed within the cylinder head 3; 7 is an exhaust valve, 8 is an exhaust port formed in the cylinder head 3, 9 is an ignition plug arranged in the combustion chamber 4, and 10 is a stem guide for guiding the stem 5& of the intake valve 5, respectively. As shown in FIGS. 1 and 2, a partition wall 12 projecting downward is integrally molded on the soil wall surface ll of the intake port 6, and this partition wall 12 forms a tangent to the spiral portion B of the A helical intake port 6 consisting of an inlet passage section A connected to is formed. This partition wall 12 extends from inside the inlet passage part A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. It is narrowest at the side, is almost uniform from this narrowest part to the vicinity of the stem guide 10, and becomes widest around the stem guide 100. The partition 12 has a tip 13 located on the side closest to the inlet opening 6a of the intake port 6, and the partition 12 further has a first side wall surface 141 extending counterclockwise from the tip 13 in FIG. It has a second side wall surface 14b extending clockwise from the portion 13. The first side wall surface 14a extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 14a and the spiral portion side wall surface 15. On the other hand, from the tip 13 of the second side wall surface 14bld toward the stem guide IO, the distance between the first side wall surface 14m and the first side wall surface 14m increases, and then the first side wall surface 1
It extends so that the distance from 4m is almost uniform. This second side wall surface 14b then extends along the outer periphery of the stem guide 10 and reaches the narrowed portion 16.
第1図から第9図を参照すると、入口通路部人の一方の
側壁面17はほぼ垂直配置され、他方の側壁面18はわ
ずかげかシ傾斜した下向きの傾斜面から形成される。一
方、入口通路部人の上壁面19は渦巻部Bに向けて下降
し、渦巻部Bの上壁面20に滑らかに接続される。渦巻
部Bの土壁面20は渦巻部Bと入口通路部Aの接続部か
ら狭窄部16に向けて下降しつつ徐々に巾を狭め、次い
で狭窄部16を通過すると徐々に巾を広げる。一方、入
口通路部Aの側壁面17は渦巻部Bの側壁面15に滑ら
かに接続され、入口通路部Aの底壁面21は渦巻部Bに
向けて下降する。Referring to FIGS. 1-9, one side wall surface 17 of the inlet passageway is generally vertically disposed, and the other side wall surface 18 is formed from a slightly sloped downward slope. On the other hand, the upper wall surface 19 of the entrance passage member descends toward the spiral portion B and is smoothly connected to the upper wall surface 20 of the spiral portion B. The earth wall surface 20 of the spiral portion B gradually narrows in width while descending from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowed portion 16, and then gradually widens after passing through the narrowed portion 16. On the other hand, the side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the bottom wall surface 21 of the entrance passage section A descends toward the spiral section B.
一方、隔壁12の第1側壁面14&はわずかばかり傾斜
した下向きの傾斜面からなり、第2側壁面14bはほぼ
垂直をなす。隔壁12の底壁面22は、隔壁12の先端
部13からステムガイド10の近傍まで延びる第1底壁
面部分22亀と、ステムガイド10の周シに位置する第
2底壁面部分22bからなる。第1底壁面部分221は
土壁面19とほぼ平行をなして底壁面21の近くまで延
びる。一方、上壁面19から測った第2底壁面部分22
bの高さは第1底壁面部分22aの高さよりも低く、更
に槙2底壁面部分22bと上壁面19との間隔は狭窄部
16に向かって徐々に小さくなる。また、第2底壁面部
分22b上には第4図のハツチングで示す領域に下方に
突出するリプ23が形成され、このリプ23は第1底壁
面部分221から狭窄部16まで延びる。第8図に示さ
れるように第2底壁面部分22bはリプ23に向けて下
降する。On the other hand, the first side wall surface 14& of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. The bottom wall surface 22 of the partition wall 12 includes a first bottom wall surface portion 22 extending from the tip 13 of the partition wall 12 to the vicinity of the stem guide 10, and a second bottom wall surface portion 22b located on the circumference of the stem guide 10. The first bottom wall surface portion 221 is substantially parallel to the earth wall surface 19 and extends close to the bottom wall surface 21 . On the other hand, the second bottom wall surface portion 22 measured from the top wall surface 19
The height of b is lower than the height of the first bottom wall surface portion 22a, and furthermore, the distance between the second bottom wall surface portion 22b and the upper wall surface 19 gradually becomes smaller toward the narrowed portion 16. Further, a lip 23 projecting downward is formed on the second bottom wall surface portion 22b in a region indicated by hatching in FIG. 4, and this lip 23 extends from the first bottom wall surface portion 221 to the narrowed portion 16. As shown in FIG. 8, the second bottom wall surface portion 22b descends toward the lip 23.
一方、シリンダヘッド3内には渦巻部Bの渦巻終端部C
と入口通路部人とを連通する分岐路24が形成され、こ
の分岐路240入口部にロータリ弁25が配置される。On the other hand, inside the cylinder head 3, there is a spiral end portion C of the spiral portion B.
A branch passage 24 is formed that communicates with the inlet passage section and the inlet passage section, and a rotary valve 25 is disposed at the entrance of this branch passage 240.
この分岐路24は隔壁12によって入口通路部人から分
離されておシ、分岐路24の下側空間全体が入口通路部
Aに連通している。分岐路24の上壁面26はほぼ一様
な巾を有し、渦巻終端部Cに向けて下降して渦巻部Bの
上壁面20に滑らかに接続される。なお、第7図−1゜
に示されるように底壁面215”p測・九分岐路24の
上壁面26の高さHlは入口通路部Aの上壁面19の高
さ■鵞 よりも高くなっている。隔壁12の第2側壁面
14bに対面する分岐路24の側壁面27はほぼ垂直を
なし、また分岐路24下方の底壁面部分21aは隆起せ
しめられて傾斜面を形成する。この傾斜底壁面部分21
aは第1図に示すように吸気ポート6の入口開口6aの
近傍から渦巻部Bまで延びる。一方、第1図、第4図お
よび第8図かられかるように分岐路24の出口近傍の渦
巻部Bの側壁面部分151Lはわずかに傾斜した下向き
の傾斜面に形成され、隔壁12の第2側壁面14bはこ
の傾斜側壁面部分15aに向けて張り出している。従っ
て第2側壁面14bと傾斜側壁面部分15a間には第2
の狭窄部16&が形成される。This branch passage 24 is separated from the entrance passage section by the partition wall 12, and the entire space below the branch passage 24 communicates with the entrance passage section A. The upper wall surface 26 of the branch passage 24 has a substantially uniform width, descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral section B. In addition, as shown in FIG. 7-1, the height Hl of the top wall surface 26 of the bottom wall surface 215"p/nine branch passageway 24 is higher than the height of the upper wall surface 19 of the entrance passage section A. The side wall surface 27 of the branch channel 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical, and the bottom wall surface portion 21a below the branch channel 24 is raised to form an inclined surface. Bottom wall part 21
A extends from the vicinity of the inlet opening 6a of the intake port 6 to the spiral portion B, as shown in FIG. On the other hand, as can be seen from FIGS. 1, 4, and 8, the side wall surface portion 151L of the spiral portion B near the outlet of the branching path 24 is formed into a slightly inclined downward slope, and The second side wall surface 14b projects toward this inclined side wall surface portion 15a. Therefore, there is a second
A narrowed portion 16 & is formed.
第9図に示されるようにロータリ弁25けロータリ弁ホ
ルダ28と、ロータリ弁ホルダ28内において回転可能
に支持された弁軸29とにより構成され、このロータリ
弁ホルダ28はシリンダへi″。As shown in FIG. 9, it is composed of a rotary valve holder 28 for 25 rotary valves, and a valve shaft 29 rotatably supported within the rotary valve holder 28, and this rotary valve holder 28 is inserted into the cylinder i''.
・ド3に穿設され、乍ねじ孔30内に螺着される。- It is drilled into the door 3 and screwed into the screw hole 30.
弁軸29の下端部には薄板状の弁体31が一体形成され
、第1図に示されるようにこの弁体31は分岐路24の
上壁面26から底壁面21まで延びる。一方、弁軸29
の上端部にはアーム32が固定される。また、弁軸29
の外周面上にはリング溝33が形成され、このリング溝
33内にはE字型位置決めリング34が嵌込まれる。更
にロータリ弁ホルダ28の上端部にはシール部材35が
嵌着され、このシール部材35によって弁軸29のシー
ル作用が行なわれる。一方、弁体31の下端部に対面す
る傾斜底壁面部分211上には円錐状の凹溝36が形成
され、この円錐状凹溝36内に弁体31の下端部が浸入
する。更に、第6図並びに第7図に示されるように吸気
ポート6の側壁面17および底壁面21、並びに分岐路
24の側壁面27は薄肉壁37を介して冷却水通路38
によって包囲される。この冷却水通路38内にはシリン
ダブロック1内の冷却水通路から第6図において矢印P
、Qで示すように冷却水が流入する。A thin plate-like valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 1, this valve body 31 extends from the top wall surface 26 of the branch passage 24 to the bottom wall surface 21. On the other hand, the valve stem 29
An arm 32 is fixed to the upper end of. In addition, the valve shaft 29
A ring groove 33 is formed on the outer peripheral surface of the ring groove 33, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Further, a seal member 35 is fitted to the upper end of the rotary valve holder 28, and the seal member 35 performs a sealing action on the valve shaft 29. On the other hand, a conical groove 36 is formed on the inclined bottom wall surface portion 211 facing the lower end of the valve body 31 , and the lower end of the valve body 31 enters into the conical groove 36 . Furthermore, as shown in FIG. 6 and FIG.
surrounded by. In this cooling water passage 38, from the cooling water passage in the cylinder block 1 to the arrow P in FIG.
, Q, the cooling water flows in.
第10図を参照すると、ロータリ弁25の上端部に固着
されたアーム32の先端部は負圧ダイアフラム装置40
のダイアフラム41に固着された制御ロッド42に連結
ロッド43を介して連結される。負圧ダイアフラム装置
40はダイアフラム41によって大気から隔離された負
圧室44を有し、との負圧室44内にダイアフラム押圧
用圧縮ばね45が挿入される。シリンダへラド3には1
次側気化器46mと2次側気化器46bからなるコンノ
臂つンド型気化器46を具えだ吸気マニホルド47が取
付けられ、負圧室44は負圧導管48を介して吸気マニ
ホルド47内に連結される。この負圧導管48内には負
圧室44から吸気マニホルド47内に向けてのみ流通可
能な逆止弁49が挿入される。更に、負圧室44は大気
導管50並びに大気開放制御弁51を介して大気に連通
ずる。Referring to FIG. 10, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected to a negative pressure diaphragm device 40.
It is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder rad 3
An intake manifold 47 is installed which includes a conno-branch type carburetor 46 consisting of a downstream carburetor 46m and a secondary carburetor 46b, and the negative pressure chamber 44 is connected to the intake manifold 47 via a negative pressure conduit 48. be done. A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51.
この大気開放制御弁51はダイアフラム52によって隔
成された負圧室53と大気圧室54とを有し、更に大気
圧室54に隣接して弁室55を有する。この弁室55は
一方では大気導管50を介して負圧室44内に連通し、
他方では弁ポート56並びにエアフィルタ57を介して
大気に連通する。This atmospheric release control valve 51 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates with the negative pressure chamber 44 via an atmospheric conduit 50 on the one hand;
On the other hand, it communicates with the atmosphere via a valve port 56 and an air filter 57.
弁室55内には弁ポート56の開閉制御をする弁体58
が設けられ、この弁体58は弁ロッド59を介してダイ
アフラム52に連結される。負圧室53内にはダイアフ
ラム押圧用圧縮ばね60が挿入され、更に負圧室53は
負圧導管61を介して1次側気化器46&のベンチュリ
部62に連結される。Inside the valve chamber 55 is a valve body 58 that controls opening and closing of the valve port 56.
The valve body 58 is connected to the diaphragm 52 via a valve rod 59. A compression spring 60 for pressing the diaphragm is inserted into the negative pressure chamber 53, and the negative pressure chamber 53 is further connected to a venturi portion 62 of the primary side carburetor 46& through a negative pressure conduit 61.
気化器46は通常用いられる気化器であって1次側スロ
ットル弁63が所定開度以上開弁したときに2次側スロ
ットル弁64が開弁し、1次側スロットル弁63が全開
すれば2次側スロットル弁64も全開する。1次側気化
器46aのベンキュリ部62に発生する負圧は機関シリ
ンダ内に供給される吸入空気量が増大するほど大きくな
シ、従ってベンチュリ部62に発生する負圧が所定負圧
よりも大きくなったときに、即ち機関高速高負荷運転時
に大気開放制御弁51のダイアフラム52が圧縮ばね6
0に抗して右方に移動し、その結果弁体58が弁ポート
56を開弁して負圧ダイアフラム装置40の負圧室44
を大鮪開放する。このときダイアフラム41は圧縮ばね
45のばね力により下方に移動し、その結果ロータリ弁
25が回転せしめられて分岐路24を全開する。一方1
次側スロットル弁63の開度が小さいときにはベンチュ
リ部62に発生する負圧が小さなために大気開放制御弁
51のダイアフラム52は圧縮ばね60のばね力によシ
左方に移動し、弁体58が弁ポート56を閉鎖する。更
にこのように1次側スロットル弁63の開度が小さいと
きには吸気アニホルド47内には大きな負圧が発生して
いる。逆止弁49は吸気マニホルド47内の負圧が負圧
ダイアフラム装置40の負圧室44内の負圧よシも大き
くなると開弁し、吸気マニホルド47内の負圧が負圧室
44内の負圧よシも小さくなると閉弁するので大気開放
制御弁51が閉弁している限り負圧室44内の負圧は吸
気マニホルド47内に発生した最大負圧に維持される。The carburetor 46 is a commonly used carburetor, and when the primary throttle valve 63 opens a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 opens. The next throttle valve 64 is also fully opened. The negative pressure generated in the venturi section 62 of the primary side carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases. Therefore, the negative pressure generated in the venturi section 62 becomes larger than a predetermined negative pressure. In other words, when the engine is operating at high speed and high load, the diaphragm 52 of the atmospheric release control valve 51 releases the compression spring 6.
0, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40.
Release large tuna. At this time, the diaphragm 41 is moved downward by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand 1
When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the venturi section 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 58 closes valve port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake anifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure in the intake manifold 47 becomes larger than that in the negative pressure chamber 44. Since the valve closes when the negative pressure decreases, the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric release control valve 51 is closed.
負圧室44内に負圧が加わるとダイアフラム41は圧縮
ばね45に抗して上昇し、その結果ロータリ弁25が回
動せ′11゜
しめられて分岐路24が閉鎖される。従って機関低速低
負荷運転時にはロータリ弁25によって分岐路24が閉
鎖されることになる。なお、高負荷運転時であっても機
関回転数が低い場合、並びに機関回転数が高くても低負
荷運転が行なわれている場合にはベンチュリ部62に発
生する負圧が小さなために大気開放遮断弁51は閉鎖さ
れ続けている。従ってこのような低速高負荷運転時並び
に高速低負荷運転時には負圧室44内の負圧が前述の最
大負圧に維持されているのでロータリ弁25によって分
岐路24が閉鎖されている。When negative pressure is applied to the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated 11 degrees and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the rotary valve 25 closes the branch passage 24. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the venturi section 62 is small, so it is not released to the atmosphere. Shutoff valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so the branch passage 24 is closed by the rotary valve 25.
上述したように吸入空気量が少ない機関低速低負荷運転
時にはロータリ弁25が分岐路24を閉鎖してい石。こ
のとき、入口通路部A内に送)込まれた混合気の一部は
上壁面19.20に沿って進み、残シの混合気のうちの
一部の混合気はロータリ弁25に衝突して入口通路部A
の側壁面17の方へ向きを変えた後に渦巻部Bの側壁面
15に沿って進む。またこのとき入口通路部Aの底壁面
21に沿ってロータリ弁25に向けて流れる混合気流は
傾斜側壁面部分21aが設けられているために入口通路
部Aの側壁面17に向けて押しやられ、斯くしてこの混
合気はロータリ弁25後流の分岐路24内に巻き込まれ
ることなく渦巻部B内に流入する。もし、混合気流が分
岐路24内に流入するとこの混合気は旋回流の発生に寄
与しないばかシでなく、分岐路24内に乱れを発生させ
てこの乱れによシ旋回流を減衰させてしまうので渦巻部
Bに発生する旋回流が弱められてしまう。従って本発明
では混合気がロータリ弁25後流の分岐路24内に流入
しないように分岐路24の下方に傾斜側壁面部分21a
を設けるようにしている。As mentioned above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage section A advances along the upper wall surface 19.20, and part of the remaining air-fuel mixture collides with the rotary valve 25. Inlet passage section A
After changing its direction toward the side wall surface 17 of the spiral portion B, it proceeds along the side wall surface 15 of the spiral portion B. Further, at this time, the air mixture flowing toward the rotary valve 25 along the bottom wall surface 21 of the inlet passage section A is forced toward the side wall surface 17 of the inlet passage section A because of the inclined side wall section 21a. In this way, this air-fuel mixture flows into the swirl portion B without being drawn into the branch passage 24 downstream of the rotary valve 25. If the mixture flow flows into the branch passage 24, this mixture will not only not contribute to the generation of the swirling flow, but will also generate turbulence within the branch passage 24, and this turbulence will attenuate the swirling flow. Therefore, the swirling flow generated in the swirl portion B is weakened. Therefore, in the present invention, in order to prevent the air-fuel mixture from flowing into the branch passage 24 downstream of the rotary valve 25, the inclined side wall portion 21a is provided below the branch passage 24.
I am trying to set it up.
一方、前述したように上壁面19,20の巾は狭窄部1
6に近づくに従って次第に狭くなるだめに上壁面19.
20に沿って流れる混合気の流路は次第に狭ばまシ、斯
くして上壁面19.20に沿う混合気流は次第に増速さ
れる。更に、前述したように隔壁12の第1側壁面14
mは渦巻部Bの側壁面15の近傍まで延びているので上
壁面19゜20に沿って進む混合気流は渦巻部Bの側壁
面15上に押しやられ、次いで側壁面15に沿って進む
だめに渦巻部B内には強力な旋回流が発生せしめられる
。次いで混合気は旋回しつつ吸気弁5とその弁座間に形
成される間隙を通って燃焼室4内に流入して燃焼室4内
に強力な旋回流を発生せしめる。On the other hand, as mentioned above, the width of the upper wall surfaces 19 and 20 is
The upper wall surface 19. becomes narrower as it approaches 6.
The flow path of the mixture flowing along 20 becomes progressively narrower, and thus the speed of the mixture flow along the upper wall surface 19, 20 is gradually increased. Furthermore, as described above, the first side wall surface 14 of the partition wall 12
Since m extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surface 19.degree. A strong swirling flow is generated within the swirl portion B. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4.
一方、吸入空気量が多い機関高速高負荷運転時にはロー
タリ弁25が開弁するので入口通路部A内に送り込まれ
た混合気は大別すると3コの流れに分流される。即ち、
第1の流れは隔壁12の第1側壁面14mと入口通路部
Aの側壁面17間に流入し、次いで渦巻部Aの土壁面2
0に沿って旋回しつつ流れる混合気流であり、第2の流
れは分岐路24を介して渦巻部B内に流入する混合気流
であシ、第3の流れは入口通路部内の底壁面21に沿っ
て渦巻部B内に流入する混合気流である。On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 is opened, so that the air-fuel mixture sent into the inlet passage A is roughly divided into three streams. That is,
The first flow flows between the first side wall surface 14m of the partition wall 12 and the side wall surface 17 of the inlet passage section A, and then flows into the soil wall surface 2 of the spiral section A.
0, the second flow is a mixed air flow that flows into the swirl part B via the branch passage 24, and the third flow is a mixed air flow that flows into the bottom wall surface 21 in the inlet passage part. This is a mixed air flow that flows into the swirl portion B along the line.
分岐路24の流れ抵抗は第1側壁面14mと側壁面17
間の流れ抵抗に比べて小さく、従って第2の混合気流の
方が第1の混合気蝉よシも多くなる。The flow resistance of the branch path 24 is between the first side wall surface 14m and the side wall surface 17.
Therefore, the flow resistance of the second mixture flow is smaller than that of the first mixture flow.
更に、分岐路24の出口には第2.狭窄部16aが形成
されているために分岐路2J□IN、’f’ 、ら流入
した第2混合気流は第2狭窄部16aを通過する際に流
速を速められ、次いでこの第2混合気流は渦巻部Bの側
壁面15に沿って旋回する第1混合気流の上側に斜めに
衝突して第1混合気流の流れ方向を下向きに偏向せしめ
る。このように流れ抵抗の小さな分岐路24から多量の
混合気が供給され、更に第1混合気流の流れ方向が下向
きに偏向されるので高い充填効率が得られることになる
。Furthermore, at the exit of the branch road 24, there is a second. Since the narrowed part 16a is formed, the second mixed airflow flowing from the branch path 2J□IN, 'f' has a faster flow rate when passing through the second narrowed part 16a, and then this second mixed airflow It obliquely collides with the upper side of the first mixed air flow swirling along the side wall surface 15 of the swirl portion B, thereby deflecting the flow direction of the first mixed air flow downward. In this way, a large amount of air mixture is supplied from the branch passage 24 with low flow resistance, and the flow direction of the first air mixture flow is deflected downward, so that high filling efficiency can be obtained.
一方、本発明では第1図および第6図に示されるように
傾斜側壁面部分21a上に形成された凹溝36内にロー
タリ弁25の弁体31の下端部を挿入することによりロ
ータリ弁25が閉弁したときに弁体31の下端部から混
合気が漏洩しないようにしている。しかしながらこのよ
うな凹溝36を設けると凹溝36内に燃料が溜まってし
まうという問題を生ずる。しかしながら本発明では凹溝
36に近接して冷却水通路38が形成されているので凹
溝36内に溜った燃料の気化を促進することができる。On the other hand, in the present invention, as shown in FIGS. 1 and 6, the rotary valve 25 is This prevents air-fuel mixture from leaking from the lower end of the valve body 31 when the valve is closed. However, if such a groove 36 is provided, a problem arises in that fuel accumulates in the groove 36. However, in the present invention, since the cooling water passage 38 is formed adjacent to the groove 36, vaporization of the fuel accumulated in the groove 36 can be promoted.
また、前述したように冷却水通路381には第。。21
番い、矢印21.ア示されるように冷却水が流入するが
本発明では傾斜側壁面部分21mが設けられているため
に矢印Qのように流れる冷却水流は吸気?−トロと排気
I−ト8間の冷却水通路38内に流入しゃすくなシ、斯
くして排気ポート8回りの冷却水の流れが良好となるた
めに排気ポート8の冷却作用を向上することができる。Further, as described above, the cooling water passage 381 has a number of holes. . 21
Number, arrow 21. As shown in the figure, cooling water flows in, but in the present invention, since the inclined side wall surface portion 21m is provided, the cooling water flow flowing in the direction of arrow Q is an intake air? - The cooling water does not flow easily into the cooling water passage 38 between the exhaust port 8 and the exhaust port 8, and thus the cooling water flow around the exhaust port 8 is improved, so that the cooling effect of the exhaust port 8 can be improved. can.
まだ、本発明によるヘリカル型吸気ポートは吸気ポート
6の上壁面上に隔壁12を一体成形すればよいのでヘリ
カル型吸気ポートを容易に製造することができる。Still, the helical type intake port according to the present invention can be easily manufactured because the partition wall 12 can be integrally formed on the upper wall surface of the intake port 6.
以上述べたように本発明によれば分岐路下方の底壁面を
傾斜させることによって機関低速低負荷運転時に入口通
路部内に送り込まれた混合気の大部分が旋回流の発生に
寄与するので強力な旋回流を燃焼室内に発生せしめるこ
とができる。一方、機関高速高負荷運転時には分岐路を
開口することにより多量の混合気が流れ抵抗の小さな分
岐路を介して渦巻部内に送り込まれ、更に旋回する混合
気の流れ方向が分岐路から流入する混合気流によって下
向きに偏向せしめられるので高い充填効率を得ることが
できる。また、分岐路下方の底壁面を傾斜させることに
よって排気ポート周りの冷却水の流れを良好にすること
ができるという利点もある。As described above, according to the present invention, by sloping the bottom wall surface below the branch passage, most of the air-fuel mixture sent into the inlet passage during low-speed, low-load engine operation contributes to the generation of a swirling flow. A swirling flow can be generated within the combustion chamber. On the other hand, during engine high-speed, high-load operation, by opening the branch passage, a large amount of air-fuel mixture flows into the volute through the branch passage with low resistance, and the flow direction of the swirling mixture flows into the swirling part from the branch passage. Since it is deflected downward by the airflow, high filling efficiency can be obtained. Another advantage is that by sloping the bottom wall surface below the branch passage, it is possible to improve the flow of cooling water around the exhaust port.
第1図は第2図の1−1線に沿ってみた本発明に係る内
燃機関の側面断面図、第2図は第1図の■−■線に沿っ
てみた平面断面図、第3図は本発明によるヘリカル型吸
気ポートの形状を図解的に示す側面図、第4図はヘリカ
ル型吸気ポートの形状を図解的に示す平面図、第5図は
第3図の■−■線に沿ってみた断面図、第6図は第3図
のVt−■線に沿ってみた断面図、第7図は第3図の■
−■線に沿ってみた断面図、第8図は第3図の■−■線
に沿ってみた断面図、第9図はロータリ弁の側面断面図
、第10図はロータリ弁の岨動制御装置を示す図である
。
4・・・燃焼室、6・・・ヘリカル型吸気ポート、12
・・・隔壁、21・・・底壁面、21a・・・傾斜底壁
面部分、24・・・分岐路、25・・・ロータリ弁。
第 5図
第8図
020
166 3
ISa 22b 23第6図
第9図1 is a side sectional view of an internal combustion engine according to the present invention taken along line 1-1 in FIG. 2, FIG. 2 is a sectional plan view taken along line 1--1 in FIG. 4 is a side view schematically showing the shape of the helical intake port according to the present invention, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 5 is a view taken along the line ■-■ in FIG. Figure 6 is a cross-sectional view taken along the Vt-■ line in Figure 3, and Figure 7 is a cross-sectional view taken along the line ■ in Figure 3.
Figure 8 is a cross-sectional view taken along the line ■-■ in Figure 3, Figure 9 is a side cross-sectional view of the rotary valve, and Figure 10 is rotary valve movement control. It is a figure showing an apparatus. 4... Combustion chamber, 6... Helical intake port, 12
... Partition wall, 21 ... Bottom wall surface, 21a ... Inclined bottom wall surface portion, 24 ... Branch path, 25 ... Rotary valve. Figure 5 Figure 8 020 166 3 ISa 22b 23 Figure 6 Figure 9
Claims (1)
接続されかつほぼまっすぐに延びる入口通路部とによ多
構成されたヘリカル型吸気ポートにおいて、上記入口通
路部から分岐されて上記渦巻部の渦巻終端部に連通ずる
分岐路を上記入口通路部に併設し、吸気ポート上壁面か
ら下方に突出しかつ入口通路部から吸気弁ステム周シま
で延びる隔壁によって該分岐路が入口通路部から分離さ
れ、該分岐路の下側空間全体が横断面内において上記入
口通路部に連通ずると共に該入口通路部と分岐路との通
路壁を一体的に連結形成し、該分岐路内に開閉弁を設け
て該開閉弁によシ分岐路内を流れる吸入空気流を制御し
、更に上記開閉弁周シの分岐路下壁面を入口通路部に向
けて下降する傾斜面に形成したヘリカル型吸気ポート。In a helical intake port, the helical type intake port is configured with a spiral part formed in the intake valve barrel and an inlet passage part connected tangentially to the spiral part and extending almost straight. A branch passage communicating with the spiral terminal end of the spiral part is provided in the inlet passage, and the branch passage is connected to the inlet passage by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage to the periphery of the intake valve stem. The entire lower space of the branch passage communicates with the inlet passage part in the cross section, and the passage walls of the inlet passage part and the branch passage are integrally connected, and an opening/closing part is provided in the branch passage. A helical intake air intake system is provided with a valve, the on-off valve controls the flow of intake air flowing through the branch passage, and the lower wall surface of the branch passage around the on-off valve is formed into an inclined surface that descends toward the inlet passage. port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57087202A JPS58204926A (en) | 1982-05-25 | 1982-05-25 | Helical intake port |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57087202A JPS58204926A (en) | 1982-05-25 | 1982-05-25 | Helical intake port |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58204926A true JPS58204926A (en) | 1983-11-29 |
JPS6239670B2 JPS6239670B2 (en) | 1987-08-24 |
Family
ID=13908382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57087202A Granted JPS58204926A (en) | 1982-05-25 | 1982-05-25 | Helical intake port |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204926A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748950A (en) * | 1986-02-25 | 1988-06-07 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine siamese port type intake system construction with internal ridge structure partially separating helical port and bypass passage |
-
1982
- 1982-05-25 JP JP57087202A patent/JPS58204926A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748950A (en) * | 1986-02-25 | 1988-06-07 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine siamese port type intake system construction with internal ridge structure partially separating helical port and bypass passage |
Also Published As
Publication number | Publication date |
---|---|
JPS6239670B2 (en) | 1987-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58204924A (en) | Helical intake port | |
JPS6238537B2 (en) | ||
JPS58204926A (en) | Helical intake port | |
JPS58195016A (en) | Helical intake port | |
JPS6229623Y2 (en) | ||
JPS6231619Y2 (en) | ||
JPS58204927A (en) | Helical intake port | |
JPS6229624Y2 (en) | ||
JPS6335166Y2 (en) | ||
JPS6238529B2 (en) | ||
JPS5939928A (en) | Helical type suction port | |
JPS58204930A (en) | Helical intake port | |
JPS6238534B2 (en) | ||
JPS58204934A (en) | Helical intake port | |
JPS58200030A (en) | Helical suction port | |
JPS5970854A (en) | Internal-combustion engine | |
JPS58204931A (en) | Helical intake port | |
JPS58222917A (en) | Intake port of helical type | |
JPS6238528B2 (en) | ||
JPS6021470Y2 (en) | Helical intake port | |
JPS6236138B2 (en) | ||
JPS6236136B2 (en) | ||
JPS6238538B2 (en) | ||
JPS6246842Y2 (en) | ||
JPS6238532B2 (en) |