[go: up one dir, main page]

JPS5823885B2 - Solid-gas multiphase fluid sampling device - Google Patents

Solid-gas multiphase fluid sampling device

Info

Publication number
JPS5823885B2
JPS5823885B2 JP8994280A JP8994280A JPS5823885B2 JP S5823885 B2 JPS5823885 B2 JP S5823885B2 JP 8994280 A JP8994280 A JP 8994280A JP 8994280 A JP8994280 A JP 8994280A JP S5823885 B2 JPS5823885 B2 JP S5823885B2
Authority
JP
Japan
Prior art keywords
solid
gas
phase fluid
sampling
gas mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8994280A
Other languages
Japanese (ja)
Other versions
JPS5716333A (en
Inventor
中村積
浜田高義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8994280A priority Critical patent/JPS5823885B2/en
Publication of JPS5716333A publication Critical patent/JPS5716333A/en
Publication of JPS5823885B2 publication Critical patent/JPS5823885B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2264Sampling from a flowing stream of gas with dilution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/227Sampling from a flowing stream of gas separating gas from solid, e.g. filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/381Diluting, dispersing or mixing samples by membrane diffusion; Permeation tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/383Diluting, dispersing or mixing samples collecting and diluting in a flow of liquid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 本発明はボイラ、焼却炉、窯業設備等の固気混相流体を
取シ扱うプラントの固気混相流体中の固体粒子計測をす
るためのサンプリング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sampling device for measuring solid particles in a solid-gas mixed-phase fluid in a plant that handles solid-gas mixed-phase fluid, such as a boiler, an incinerator, or a ceramic facility.

上記のような固気混相流体中の固体粒子の計測は環境保
持、研究改善、装置性能把握及び連続状態監視等の観点
から正確な濃度及び粒径分布の実体把握を行なう必要が
ある。
In order to measure solid particles in a solid-gas mixed phase fluid as described above, it is necessary to accurately grasp the actual concentration and particle size distribution from the viewpoints of environmental preservation, research improvement, understanding equipment performance, and continuous state monitoring.

高精度の濃度及び粒径分布の計測を期するには固体粒子
の状態を変化させることなく、固気混相流体本流から計
測器まで固気混相流体を取入れることが、サンプリング
の重要な操作の一つとなるが、粒子の特性としてブラウ
ン運動及び拡散による粒子間の凝集及び導入配管内壁へ
の沈着の現象が生じ、これが計測精度に大きく影響する
In order to measure the concentration and particle size distribution with high precision, it is important to introduce the solid-gas mixed-phase fluid from the solid-gas mixed-phase fluid main stream to the measuring instrument without changing the state of the solid particles. One of the characteristics of particles is that particles coagulate due to Brownian motion and diffusion and are deposited on the inner wall of the introduction pipe, which greatly affects measurement accuracy.

特に、セメントプラントの濃度は100100O’tま
た石炭焚きボイラ排ガスでは10 g/m’であり、こ
のような高濃度下においては上記粒子の凝集及び沈着現
象の影響は顕著となる。
In particular, the concentration in cement plants is 100,100 O't, and in the exhaust gas of coal-fired boilers it is 10 g/m', and under such high concentrations, the effects of the above-mentioned particle aggregation and deposition phenomena become significant.

また、固気混相流体中の固体粒子を自動的及び連続的に
計測する計測器としては、(1)通常前記のような高濃
度下では測定困難である。
Furthermore, as a measuring instrument that automatically and continuously measures solid particles in a solid-gas mixed phase fluid, (1) measurement is normally difficult under the high concentration conditions described above;

(11)また計測可能なサンプリングガス温度が大気温
度に近似していることが多いのでサンプリングガス温度
を低下させる必要がある。
(11) Furthermore, since the measurable sampling gas temperature is often close to the atmospheric temperature, it is necessary to lower the sampling gas temperature.

(iii)サンプリングガス中に水分、三酸化硫黄(S
Oa)ガスが含有されているときはガス温度だけを低下
すると固体粒子が凝集し、粒径分布及びその濃度に変化
が生ずる等の問題がある。
(iii) Moisture, sulfur trioxide (S) in the sampling gas
Oa) When a gas is contained, if only the gas temperature is lowered, the solid particles will aggregate, causing a problem such as changes in particle size distribution and concentration.

そこで、従来は、第1図に示すように、固体混相流体本
流01中を流れる固気混相流体を配管02を介して稀釈
容器03に導入臥稀釈容器03では配管04を経て送り
込まれる清浄な稀釈ガスにより稀釈し、これを計測器0
6の性能に応じた固体粒子数濃度に調整後、配管05を
経て計測器06に導入し、計測器06にて計測完了後は
これを吸引ポンプ07によシ系外へ排出する。
Therefore, conventionally, as shown in FIG. 1, the solid-gas multiphase fluid flowing in the solid multiphase fluid main stream 01 is introduced into the dilution container 03 through the piping 02. Dilute with gas and measure this with 0
After adjusting the number concentration of solid particles according to the performance of the sample 6, the solid particles are introduced into a measuring device 06 through a pipe 05, and after measurement is completed in the measuring device 06, they are discharged out of the system by a suction pump 07.

しかしながら、このような手段には下記のような欠点が
ある。
However, such means have the following drawbacks.

すなわち、(1)固体粒子数濃度が高い場合、配管02
内において、粒子間の凝集及び配管02内壁への沈着に
より固体粒子数濃度及び粒径分布に変化が生ずる。
That is, (1) when the solid particle number concentration is high, the pipe 02
Inside, the solid particle number concentration and particle size distribution change due to aggregation between particles and deposition on the inner wall of the pipe 02.

(2)稀釈容器03では、配管02に比べ断面積が増加
するので流速が低下し、これに伴い乱流度が低下するた
め、配管02を経て導入される固気混相流体と配管04
を経て導入される稀釈ガスの混合が十分性なわれず、計
測器06に送られる稀釈後の固気混相流体の濃度(稀釈
倍率を乗じた値)及び粒径分布に変化が生ずる。
(2) In the dilution container 03, the cross-sectional area increases compared to the pipe 02, so the flow velocity decreases, and the degree of turbulence decreases accordingly.
The dilution gas introduced through the dilution gas is not mixed sufficiently, and the concentration (value multiplied by the dilution magnification) and particle size distribution of the diluted solid-gas mixed phase fluid sent to the measuring device 06 change.

(3)上記(2)項の影響軽減のため稀釈容器03内で
の固気混相流体の滞留時間を長くして混合を行なう場合
、稀釈容器03の容量が増大する。
(3) In order to reduce the influence of the above item (2), when mixing is performed by increasing the residence time of the solid-gas multiphase fluid in the dilution container 03, the capacity of the dilution container 03 increases.

また稀釈容器03でのブラウン運動による粒子間の凝集
が生じ、固体粒子数濃度及び粒径分布に変化が生ずる。
In addition, aggregation of particles occurs due to Brownian motion in the dilution container 03, resulting in changes in the solid particle number concentration and particle size distribution.

本発明はこのような事情に鑑みて提案されたもので、凝
集、沈着を防止して固体粒子数濃度5粒径分布等の状態
を変化することなく粒子計測器に固気混相流体を導入す
る固気混相流体のサンプリング装置を提供することを目
的とし、長手方向に分布する複数の細孔を周壁に穿設し
てなり→端より固気混相流体を吸入しこれを他端に連通
ずる計測器に送給する固気混相流体サンプリング内管と
、上記固気混相流体サンプリング内管に同軸的に外挿さ
れ上記固気混相流体サンプリング内管との間の環状空間
に稀釈ガスを導入し これを上記細孔を経て上記固気混
相流体サンプリング内管中に送入する稀釈ガス外管との
2重管よシなることを特徴とする。
The present invention was proposed in view of these circumstances, and it introduces a solid-gas multiphase fluid into a particle measuring instrument without preventing agglomeration or deposition and changing the state of the solid particle number concentration, 5 particle size distribution, etc. The purpose of this device is to provide a sampling device for solid-gas mixed-phase fluids, and the measurement device consists of multiple pores distributed in the longitudinal direction drilled into the peripheral wall, which sucks in solid-gas mixed-phase fluid from one end and communicates it to the other end. A diluent gas is introduced into the annular space between the solid-gas mixed-phase fluid sampling inner pipe that is supplied to the solid-gas mixed-phase fluid sampling inner pipe and the solid-gas mixed-phase fluid sampling inner pipe that is coaxially inserted into the solid-gas mixed-phase fluid sampling inner pipe. It is characterized in that it is a double pipe with an outer pipe for introducing diluent gas into the solid-gas multiphase fluid sampling inner pipe through the pores.

本発明の実施例を図面について説明すると、第2図はそ
の原理を示す説明図、第3図は本装置の第1実施例を示
す部分縦断面図、第4図は第3図のIV−IVに沿った
横断面図、第5図は第2実施例を示す部分縦断面図、第
6図は第5図の■−■に沿った横断面図、第7図はサン
プリング管の長さ方向に沿った固体粒子数濃度分布を示
す線図、第8図は、固体粒子数の分布濃度と減少率との
関係を示す線図、第9図はサンプリング管の長さと減少
率との関係を示す線図である。
Embodiments of the present invention will be explained with reference to the drawings. FIG. 2 is an explanatory diagram showing the principle thereof, FIG. 3 is a partial vertical sectional view showing the first embodiment of the present device, and FIG. 5 is a partial vertical sectional view showing the second embodiment, 6 is a lateral sectional view taken along the line ■-■ in FIG. 5, and 7 is the length of the sampling tube. A diagram showing the solid particle number concentration distribution along the direction, Figure 8 is a diagram showing the relationship between the distribution concentration of the solid particle number and the reduction rate, and Figure 9 is a diagram showing the relationship between the length of the sampling tube and the reduction rate. FIG.

まず、第2〜4図において、8はプラントダクト8′中
を流れる固気混相流体本流、9はプラントダクト8′中
に位置する開口端より固気混相流体9′を吸込むサンプ
リング管、9′はサンプリング管9の下流より分岐し稀
釈後の固気混相流体の一部を排出する排出管、10は稀
釈ガス管10′より流入する稀釈ガスをサンプリング管
9中に導入する複数の稀釈ガス細流路、11はサンプリ
ング管9を経て流入する稀釈固気混相流体中の固体粒子
を計測する計測器、12は計測器11に固気混相流体を
導入するための吸引ポンプ、13は稀釈ガス管10′に
送入される稀釈ガスの圧力を調整する圧力調整器、16
はサンプリング内管15の周壁全面に長手方向に亘って
適宜間隔pで分布穿設された半径方向の複数の細孔、1
7はサンプリング内管15と後記する外管18との間の
環状□空間、18はサンプリング内管15に同軸的に外
挿された外管で、サンプリング内管15と協働して2重
管を構成し、その両端はサンプリング内管15の外周に
環状壁で封鎖されている。
First, in FIGS. 2 to 4, reference numeral 8 denotes the main stream of the solid-gas mixed phase fluid flowing through the plant duct 8', 9 denotes a sampling pipe that sucks the solid-gas mixed phase fluid 9' from an open end located in the plant duct 8', and 9' 10 is a discharge pipe that branches downstream of the sampling pipe 9 and discharges a portion of the solid-gas mixed phase fluid after dilution, and 10 is a plurality of dilution gas trickles that introduce the dilution gas flowing in from the dilution gas pipe 10' into the sampling pipe 9. 11 is a measuring device for measuring solid particles in the diluted solid-gas mixed-phase fluid flowing in through the sampling pipe 9; 12 is a suction pump for introducing the solid-gas mixed-phase fluid into the measuring device 11; 13 is a diluting gas pipe 10; a pressure regulator for adjusting the pressure of the diluent gas fed into the
1 is a plurality of radial pores drilled at appropriate intervals p over the entire circumferential wall of the sampling inner tube 15 in the longitudinal direction;
7 is an annular square space between the sampling inner tube 15 and an outer tube 18 to be described later, 18 is an outer tube coaxially inserted into the sampling inner tube 15, and cooperates with the sampling inner tube 15 to form a double tube. , and both ends thereof are sealed with an annular wall around the outer periphery of the sampling inner tube 15.

このような装置において、まず本発明の詳細な説明する
と、第2図に示すように、稀釈ガス管10′を経て、流
入する稀釈ガスをサンプリング管9の長手方向に分布す
る多数の稀釈ガス細流路10を通ってサンプリング管9
に流入することにより左端よりサンプリング管9中に流
入する固気混相流体9′を、固体粒子の凝集及び沈着を
生ずることなく、所定の稀釈倍率(固気混相流体流量/
稀釈ガス流量)に稀釈しようとするのである。
In such an apparatus, the present invention will first be described in detail. As shown in FIG. sampling tube 9 through channel 10
The solid-gas mixed-phase fluid 9' flowing into the sampling tube 9 from the left end is maintained at a predetermined dilution ratio (solid-gas mixed-phase fluid flow rate /
dilution gas flow rate).

そのために、本発明では、サンプリング管9及び稀釈ガ
ス管10′を第3〜4図に示すように、す・ンゾリング
内管15及び外管18の2重管構造として形成し、細孔
16をして稀釈ガス細流路100作用を行なわしめるよ
うにしたものである。
To this end, in the present invention, the sampling tube 9 and dilution gas tube 10' are formed as a double tube structure consisting of an inner tube 15 and an outer tube 18, as shown in FIGS. The dilution gas narrow flow path 100 function is performed by

細孔16の大きさ、形状2個数は稀釈倍率、混相流体中
の固体粒子数濃度等により異なるが、−・般には直径d
= 0.6〜2.0m+++の円孔で、その軸方向間
隔pは後記する稀釈ゾーンと保持ゾーンで若干具なるが
、p−5〜20rrrrILで、同一円周上に6〜10
個程度等間隔で分布する。
The size and shape of the pores 16 and the number of pores 16 vary depending on the dilution ratio, the concentration of solid particles in the multiphase fluid, etc., but generally the diameter d
= 0.6 to 2.0 m +++ circular hole, the axial distance p is slightly different between the dilution zone and the holding zone described later, but it is p-5 to 20rrrrIL, and there are 6 to 10 holes on the same circumference.
Distributed at equal intervals.

しかし、細孔16は、第5〜6図に示す第2実施例のよ
うに、サンプリング内管15中を流れる混相流体の流れ
方向の成分をもって稀釈ガスが流入するようにサンプリ
ング内管に対し傾斜して穿設してもよく、また、第6図
に示すように、円周方向に傾斜して穿設することによシ
稀釈ガスに節回流を与えるとともに固気混相流体とサン
プリング内管内周との間に稀釈ガスの薄膜を形成するよ
うにすることもできる。
However, as in the second embodiment shown in FIGS. 5 and 6, the pores 16 are inclined with respect to the sampling inner tube 15 so that the dilution gas flows in with a component in the flow direction of the multiphase fluid flowing in the sampling inner tube 15. Alternatively, as shown in Fig. 6, the holes may be formed obliquely in the circumferential direction to provide a joint flow to the diluent gas and to separate the solid-gas mixed phase fluid from the inner periphery of the sampling tube. It is also possible to form a thin film of diluent gas between the two.

細孔16の面積は、第7図に示す固体粒子数濃度とサン
プリング管の長さ方向の関係となるよううに、稀釈ガス
流量を決める。
The area of the pores 16 determines the dilution gas flow rate so that the relationship between the solid particle number concentration and the length direction of the sampling tube as shown in FIG. 7 is achieved.

つまり、サンプリング内管上流すなわち、固体粒子数濃
度の高い部分(以下稀釈ゾーンという)では、稀釈ガス
の流量を多くするために細孔16の面積を大きく賦急速
に固体粒子数濃度を低下させ、ブラウン運動拡散による
粒子間の凝集及びサンプリング内管内壁への付着を防止
する。
In other words, in the upstream part of the sampling inner tube, that is, in the area where the number concentration of solid particles is high (hereinafter referred to as the dilution zone), the area of the pores 16 is increased to increase the flow rate of the dilution gas, and the number concentration of solid particles is rapidly reduced. Prevents particles from agglomerating and adhering to the inner wall of the sampling tube due to Brownian motion diffusion.

ブラウン運動、拡散による粒子間の凝集が無視できる程
度に固体粒子数濃度が低下した部分(以下保持ゾーンと
いう)では、主にサンプリング内管内壁への沈着を防止
する目的でサンプリング内管内壁に稀釈ガスの薄膜が形
成される程度の稀釈ガス流量となるような細孔16の面
積とする。
In the area where the number concentration of solid particles has decreased to such an extent that aggregation between particles due to Brownian motion and diffusion can be ignored (hereinafter referred to as the retention zone), dilution is applied to the inner wall of the sampling tube mainly to prevent deposition on the inner wall of the sampling tube. The area of the pores 16 is set such that the dilution gas flow rate is large enough to form a thin gas film.

従って細孔16の面積は上記理由により固気混相流体の
上流よシ下流に沿って順次小さくする。
Therefore, for the above-mentioned reason, the area of the pores 16 is made smaller sequentially from upstream to downstream of the solid-gas mixed phase fluid.

稀釈ガスの圧力は固気混相流体9′の圧力より若干大(
数100 MA q程度)となるように圧力調整器13
で調整し、細孔16から固気混相流体9′中に噴出され
る稀釈ガスの噴出流速が数m/s程度となるようにする
The pressure of the diluent gas is slightly higher than the pressure of the solid-gas multiphase fluid 9' (
Pressure regulator 13 so that the pressure is about several 100 MAq)
The flow rate of the diluent gas ejected from the pores 16 into the solid-gas mixed phase fluid 9' is adjusted to be approximately several m/s.

稀釈倍率は細孔16の個数又は稀釈ゾーンの長さを変化
させることにより制御することができる。
The dilution factor can be controlled by varying the number of pores 16 or the length of the dilution zone.

ブラウン運動、拡散による粒子間の凝集及び管内壁への
沈着についてはフィック(F i dc )の法則によ
シ理論的解として求めることができる。
Brownian motion, aggregation of particles due to diffusion, and deposition on the inner wall of a pipe can be determined as theoretical solutions based on Fick's law.

例えば、粒子間の凝集は(1)式より、配管内壁への沈
着は(2)式よりそれぞれ計算できる。
For example, aggregation between particles can be calculated using equation (1), and deposition on the inner wall of a pipe can be calculated using equation (2).

たソし、 no:最初の状態における粒子数濃度(個/crrl′
)n:を秒後の 〃、 (個Zcrl)
k:定数 (cnfA固Bec )
L:経過時間 (SeC)n
−η ・・・・・・・・・・・・(2)−−=
e n。
No: particle number concentration in the initial state (particles/crrl'
) n: seconds after 〃, (pieces Zcrl)
k: constant (cnfA Bec)
L: Elapsed time (SeC)n
-η ・・・・・・・・・・・・(2)−−=
en.

たソし、 no:最初の状態における粒子数濃度(個/−)n:を
秒後の (個/cITl′)〃 η:定数 (−)(1)及
び(2)式により、ブラウン運動、拡散による影響が太
きいと考えられる粒子(粒径0.1μ)についての減少
率の計算結果を第8図及び第9図に示す。
Then, no: particle number concentration in the initial state (particles/-) n: after seconds (particles/cITl')〃 η: constant (-) From equations (1) and (2), Brownian motion, Figures 8 and 9 show the calculation results of the reduction rate for particles (particle size 0.1μ) that are considered to be largely influenced by diffusion.

たソし、計算にあたっては従来の計測の諸条件を考慮し
、 0 固気混相流体本流から稀釈容器の間の配管内径を8
m++z O固気混相流体本流から稀釈容器の間の配管長さを57
H、10yl 。
When calculating, considering the various conditions of conventional measurement, the inner diameter of the pipe between the main flow of the solid-gas mixed phase fluid and the dilution container was set to 8.
m++z O The piping length between the main stream of the solid-gas mixed phase fluid and the dilution container is 57
H, 10yl.

0 固気混相流体流量1i/m1n(20℃)とじ島第
8図により粒子間の凝集は、例えば、固体粒子数濃度が
107個/cni’ (10mg/m” )のとき減少
率n/noは配管長さが5m、10mでそれぞれ91%
、84%(換言すれば固体粒子数濃度が9チ及び16%
減少)となり、これに伴い、粒径分布にも変化が生ずる
0 Solid-gas mixed phase fluid flow rate 1i/m1n (20°C) Tojishima According to Fig. 8, the agglomeration between particles is, for example, when the solid particle number concentration is 107 particles/cni' (10 mg/m''), the reduction rate n/no is 91% for pipe lengths of 5 m and 10 m, respectively.
, 84% (in other words, the solid particle number concentration is 9 and 16%)
), and the particle size distribution also changes accordingly.

また、第9図により配管内壁への沈着は、配管長さが5
m及び10mで減少率n/n□はそれぞれ97%及び9
5.5%(換言すれば固体粒子数濃度が3%及び4.5
%減少)となシ、これに伴い粒径分布にも変化が生ずる
In addition, as shown in Figure 9, the deposition on the inner wall of the pipe is 5.
The reduction rate n/n□ at m and 10 m is 97% and 9, respectively.
5.5% (in other words, the solid particle number concentration is 3% and 4.5
% decrease), and the particle size distribution also changes accordingly.

因みに、このような現象は第1図中の配管02.稀釈容
器03及び配管05内でも生起している。
Incidentally, this phenomenon occurs in piping 02. in Figure 1. This also occurs within the dilution container 03 and piping 05.

最後に、第1図に示した従来の計測及び第2〜6図に示
した、本装置を用いた計測によシ試験用燃焼炉排ガス中
のばいじんの粒子数濃度を計測した結果を示す。
Finally, the results of measuring the particle number concentration of soot and dust in the test combustion furnace exhaust gas by the conventional measurement shown in FIG. 1 and the measurement using the present device shown in FIGS. 2 to 6 are shown.

第1図において、サンプリングガス量を51/min、
配管05の内径を4閣、長さを10m。
In Fig. 1, the sampling gas amount is 51/min,
The inner diameter of pipe 05 is 4 mm, and the length is 10 m.

稀釈ガス量を1000 l/m in(稀釈倍率200
倍)。
The dilution gas amount is 1000 l/min (dilution magnification 200
times).

吸引ポンプの容量を1//minとし、また、第2図に
おいて、サンプリングガス量を57’/minシサンプ
リング内管15の内管を8叫、外管の内径を20rIr
!rL、稀釈ガス圧力(正)を500rrarLAq。
The capacity of the suction pump is 1/min, and in FIG.
! rL, dilution gas pressure (positive) 500rrarLAq.

細孔の直径dを稀釈ゾーンで1.5 rrm 、その軸
方向間隔pを10wrL2円周方向に8個、保持ゾーン
ではd=0.7mt p=20mm、円周方向に6個と
獣合計、稀釈ガス量を1000 / /min+吸引ポ
ンプ容量を1137m1nとして、それぞれ両者による
固体粒子数濃度を計測した結果第1図の従来手段では8
.2 X 106(個AT! ) 9本装置では9.8
X106(個/cIT1′)を得た。
The diameter d of the pores is 1.5 rrm in the dilution zone, the axial spacing p is 10wrL2, 8 in the circumferential direction, and in the retention zone d = 0.7 mt p = 20 mm, 6 in the circumferential direction, total. When the dilution gas amount was set to 1000 / /min + the suction pump capacity was 1137 m1n, the solid particle number concentration was measured by both, and the result was 8 with the conventional method shown in Figure 1.
.. 2 x 106 (pcs AT!) 9.8 for 9 devices
X106 (pieces/cIT1') were obtained.

両者の計測結果の差(9,8X 106−8.2 Xl
06=16X106個/cni’)は、粒子間の凝集又
は導入配管内壁への付着によるものであシ、このように
して、本装置による効果が実計測によって実証された。
Difference between both measurement results (9.8X 106-8.2 Xl
06 = 16 x 106 pieces/cni') is due to agglomeration between particles or adhesion to the inner wall of the introduction pipe.In this way, the effect of this device was verified by actual measurements.

以上は本発明サンプリング装置をサンプリング内管15
に適用した例について説明したが、本発明は内管寸法を
拡大して稀釈容器03に適用することも可能である。
The above describes the sampling device of the present invention with the sampling inner tube 15.
Although an example has been described in which the present invention is applied to the dilution container 03, the present invention can also be applied to the dilution container 03 by enlarging the inner tube size.

稀釈容器内で固気混相流体と稀釈ガスを混合する場合に
は、混合に必要な所定の滞留時間を維持できる稀釈容器
03の内容積としまたその構造、稀釈ガスを噴出する細
孔の位置、大きさ、数及び稀釈ガス流量等の操作条件に
ついては第3〜6図に基づいて例示説明したサンプリン
グ内管15と同様に決定する。
When mixing solid-gas mixed phase fluid and diluting gas in a diluting container, the internal volume and structure of the diluting container 03 that can maintain a predetermined residence time necessary for mixing, the position of the pores that eject the diluting gas, The operating conditions such as the size, number, and dilution gas flow rate are determined in the same manner as for the sampling inner tube 15 illustrated and explained based on FIGS. 3 to 6.

要するに、本発明によれば、長手方向に分布する複数の
細孔を周壁に穿設してなり一端より固気混相流体を吸入
しこれを他端に連通ずる計測器に送給する固気混相流体
サンプリング内管と、上記固気混相流体サンプリング内
管に同軸的に外挿され上記固気混相流体サンプリング内
管との間の環状空間に稀釈ガスを導入し、これを上記細
孔を経て上記固気混相流体サンプリング内管中に送入す
る稀釈ガス外管との2重管よりなることによシ、計測精
度の高い、固気混相流体のサンプリング装置を得るから
、本発明は産業上極めて有益なものである。
In short, according to the present invention, a plurality of pores distributed in the longitudinal direction are bored in the peripheral wall, and a solid-gas mixed phase fluid is sucked in from one end and fed to a measuring device communicating with the other end. Dilution gas is introduced into the annular space between the fluid sampling inner tube and the solid-gas mixed-phase fluid sampling inner tube that is coaxially extrapolated to the solid-gas mixed-phase fluid sampling inner tube, and is introduced through the pores into the solid-gas mixed-phase fluid sampling inner tube. The present invention is industrially extremely useful because it provides a solid-gas mixed-phase fluid sampling device with high measurement accuracy by forming a double pipe with an outer pipe for feeding dilution gas into the solid-gas mixed-phase fluid sampling inner pipe. It is beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の固気混相流体のサンプリング要領を示す
説明図、第2図は本発明の原理を示す説明図、第3図は
本装置の第1実施例を示す部分縦断面図、第4図は第3
図のIV−IVに沿った横断面図、第5図は第2実施例
を示す部分縦断面図、第6図は第5図の■−■に沿った
横断面図、第7図はサンプリング管の長さ方向に沿った
固体粒子数濃度分布を示す線図、第8図は固体粒子数の
分布濃度と減少率との関係を示す線図、第9図はサンプ
リング管の長さと減少率との関係を示す線図である。 8・・・・・・固気混相流体本流、8′・・・・・・プ
ラントダクト、9・・・・・・サンプリング管、9′・
・・・・・固気混相流体、9′・・・・・・排出管、1
0・・・・・・稀釈ガス細流路、10′・・・・・・稀
釈ガス管、11・・・・・・計測器、12・・・吸引ポ
ンプ、13・・・・・・圧力調整器、15・・・・・・
サンプリング内管、16・・・・・・細孔、17・・・
・・・環状空間、18・・・・・・外管。
Fig. 1 is an explanatory diagram showing a known sampling procedure for a solid-gas mixed phase fluid, Fig. 2 is an explanatory diagram showing the principle of the present invention, and Fig. 3 is a partial longitudinal sectional view showing a first embodiment of the present device. Figure 4 is the third
Fig. 5 is a partial vertical sectional view showing the second embodiment; Fig. 6 is a transverse sectional view taken along ■-■ in Fig. 5; Fig. 7 is a sampling A diagram showing the solid particle number concentration distribution along the length of the tube, Figure 8 is a diagram showing the relationship between the distribution concentration of the number of solid particles and the reduction rate, and Figure 9 shows the length of the sampling tube and the reduction rate. FIG. 8... Solid-gas mixed phase fluid main flow, 8'... Plant duct, 9... Sampling pipe, 9'...
...Solid-gas mixed phase fluid, 9'...Discharge pipe, 1
0... Dilution gas narrow channel, 10'... Dilution gas pipe, 11... Measuring instrument, 12... Suction pump, 13... Pressure adjustment. Vessel, 15...
Sampling inner tube, 16... Pore, 17...
... annular space, 18 ... outer tube.

Claims (1)

【特許請求の範囲】[Claims] 1 長手方向に分布する複数の細孔を周壁に穿設してな
り一端よシ固気混相流体を吸入しこれを他端に連通ずる
計測器に送給する固気混相流体サンプリング内管と、上
記固気混相流体サンプリング内管に同軸的に外挿され上
記固気混相流体サンプリング内管との間の環状空間に稀
釈ガスを導入し、これを上記細孔を経て上記固気混相流
体サンプリング内管中に送入する稀釈ガス外管との2重
管よりなることを特徴とする固気混相流体のサンプリン
グ装置。
1. A solid-gas mixed-phase fluid sampling inner tube having a plurality of longitudinally distributed pores bored in the peripheral wall and sucking solid-gas mixed-phase fluid into one end and feeding it to a measuring device communicating with the other end; A diluent gas is coaxially extrapolated to the solid-gas mixed-phase fluid sampling inner tube and introduced into the annular space between the solid-gas mixed-phase fluid sampling inner tube, and is introduced into the solid-gas mixed-phase fluid sampling through the pores. A solid-gas mixed phase fluid sampling device characterized by comprising a double tube with an outer tube for diluting gas to be introduced into the tube.
JP8994280A 1980-07-03 1980-07-03 Solid-gas multiphase fluid sampling device Expired JPS5823885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8994280A JPS5823885B2 (en) 1980-07-03 1980-07-03 Solid-gas multiphase fluid sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8994280A JPS5823885B2 (en) 1980-07-03 1980-07-03 Solid-gas multiphase fluid sampling device

Publications (2)

Publication Number Publication Date
JPS5716333A JPS5716333A (en) 1982-01-27
JPS5823885B2 true JPS5823885B2 (en) 1983-05-18

Family

ID=13984749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8994280A Expired JPS5823885B2 (en) 1980-07-03 1980-07-03 Solid-gas multiphase fluid sampling device

Country Status (1)

Country Link
JP (1) JPS5823885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115296U (en) * 1984-06-29 1986-01-29 株式会社タダノ Relief jib hoisting device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058440A (en) * 1990-09-04 1991-10-22 Caterpillar Inc. Gas sampling device and dilution tunnel used therewith
US7044009B2 (en) 2002-05-20 2006-05-16 Caterpillar Inc. Dilution tunnel
CN100567939C (en) 2003-10-30 2009-12-09 Avl北美公司 The location of avoiding and popping one's head in of particle deposition
KR100726207B1 (en) * 2005-02-24 2007-06-11 한국기계연구원 Wall Inlet Compact Mini Tunnel Dilutor
FI119450B (en) * 2006-01-13 2008-11-14 Valtion Teknillinen Dilute sampler and method for collecting and diluting a gaseous sample
WO2011125610A1 (en) * 2010-03-31 2011-10-13 日本たばこ産業株式会社 Aerosol particle sampling device
CN105181222B (en) * 2015-10-12 2016-12-14 东北石油大学 A kind of multimode measures the device of carbon dioxide minimum miscibility pressure
CN105258840B (en) * 2015-11-12 2016-11-09 东北石油大学 A method for determining the optimal miscible pressure and miscible area of carbon dioxide between injection and production wells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115296U (en) * 1984-06-29 1986-01-29 株式会社タダノ Relief jib hoisting device

Also Published As

Publication number Publication date
JPS5716333A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
CN101180527B (en) Wide range continuous diluter
JPS5823885B2 (en) Solid-gas multiphase fluid sampling device
EP1291638A3 (en) Method and apparatus for measuring concentrations of components of fluid
US4736618A (en) Sensor probe
US4060001A (en) Sampling probe and method of use
JP2000028499A (en) Apparatus for collecting mixed material in exhaust gas
CN109781495A (en) A flue gas dilution sampling control system and method
CN1330958C (en) Device for collecting and monitoring particles of solid source discharged gas
Sehmel Particle sampling bias introduced by anisokinetic sampling and deposition within the sampling line
CN107036853A (en) Exhaustion dilution device and use its exhaust measuring system
CN110243658A (en) Calibration method of a combined aerosol diluter
JPH07104233B2 (en) Gas sampling device
CN205562227U (en) Components of smoke measuring device of nonuniform flow field
CN111397678A (en) A multi-stage rectifier MEMS gas flow meter
KR20160116672A (en) Gas dilution apparatus
JPS6047535B2 (en) How to measure the flow rate of powder and granular materials
JP2000329661A (en) Exhaust gas dilution apparatus
JP2004205253A (en) Exhaust gas diluter
FR2939890A3 (en) Device for sampling aerosol or gas e.g. exhaust gas, from internal combustion engine of car, has zone including duct opening in another duct that connects outlet of diluter and evacuation conduit, where surfaces of ducts form specific angle
JPS586903B2 (en) Sampling method
US5038608A (en) Method for measuring the flow rate of exhaust gas
JP2580749B2 (en) Exhaust gas analysis method for exhaust gas introduction device
JP2002519663A (en) Mixing system
CN215727530U (en) Calibration device and calibration system of light scattering type dust tester
JPS6210685B2 (en)