[go: up one dir, main page]

JPS58211630A - Apparatus for continuously measuring polished degree of grain - Google Patents

Apparatus for continuously measuring polished degree of grain

Info

Publication number
JPS58211630A
JPS58211630A JP9406382A JP9406382A JPS58211630A JP S58211630 A JPS58211630 A JP S58211630A JP 9406382 A JP9406382 A JP 9406382A JP 9406382 A JP9406382 A JP 9406382A JP S58211630 A JPS58211630 A JP S58211630A
Authority
JP
Japan
Prior art keywords
grain
sample
light
wall
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9406382A
Other languages
Japanese (ja)
Other versions
JPS6322543B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP9406382A priority Critical patent/JPS58211630A/en
Priority to US06/486,808 priority patent/US4540286A/en
Publication of JPS58211630A publication Critical patent/JPS58211630A/en
Publication of JPS6322543B2 publication Critical patent/JPS6322543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/10Starch-containing substances, e.g. dough
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To measure the polished degree of flowing grain continuously by flowing the grain at the optimum state for measuring by changing the angle of a sample path, and measuring the reflected light and transmitted light from the sample. CONSTITUTION:A wall 13' of a sample flow path 13 on the side of a light source device is inclined to an angle, so that the longitudinal direction of each grain is aligned with the advancing direction and the grain flows in this state. A wall 13'' of the sample flow path 13 on the opposite side of the light source device is constituted at an angle, so that the grain is compressed to the wall and flows without a gap between the wall and the grain. Meanwhile, light from the light source device, which comprises a light source lamp 7, a heat wave absorbing filter 8, a monochromatic filter 9, and a condenser lens 10, is irradiated on the sample path 13 through an integrating sphere 12. A transmitted light receiving element 14' and a reflected light receiving element 14 receive the transmitted light and reflected light from the sample, respectively. By the reflected quantity from an amplifier 5 and the transmitted quantity from an amplifier 5', an expression (polished degree-reflected quantity+K.transmitted quantity) is computed by an operating element 4, and the result is displayed by an indicator 1.

Description

【発明の詳細な説明】 この発明は、穀粒、土として米粒の精白lit連続して
測定する装置にriAするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an apparatus for continuously measuring the refined lit of rice grains as grains and soil.

一般に一1米粒は精米機で擁I11にとにより除糠され
白くなるが、従来からぞの白さの墳合をし−)”’CC
精精率なわら精白度として表示し″(いlこ、。
Generally, 11 rice grains are milled in a rice mill to remove the bran and become white.
It is displayed as the milling rate and the whiteness.

そして、従来の白変測定装置では鏡体よりなる柚−1− 分球下部に試料皿を置さ、イこに測定4る精米4載ヒ、
積分球上部から精米に、熱線吸収フィルター及び単色光
フィルターを透過し、集光レンズで集められた光を照射
し、精米からの反射光を積分球側部に設(Jた受九県了
に集め、増幅器で増幅して反射光を測定し、0鴎として
いる。
In the conventional white discoloration measuring device, a sample plate is placed at the bottom of the yuzu sphere, which is made of a mirror body.
Light that passes through a heat ray absorption filter and a monochromatic light filter and is collected by a condensing lens is irradiated onto the milled rice from the top of the integrating sphere, and the reflected light from the milled rice is placed on the side of the integrating sphere. The light is collected, amplified with an amplifier, and the reflected light is measured, giving it a value of 0.

ところで、精米機にlJ 、研削式精米機と摩擦式精米
機があり、肉眼でIIJ察すると、研削式精米機のmu
’作用を増加さUた精白米に比較して、lI[wA式精
米機の搗精作用を増加させた精白米の方が、透明感、つ
や感が優れている。すなわら、研削式精米機では、研削
【1−ルと米粒との摺擦により胸積をljなうIこめ、
I!精米は表−面に研削1」−ルによる傷が多くついて
粗面となっているのに対しC1#諒式精米IICは、米
粒の相勾摩擦作用により搗精を(−丁ムうIこめ、搗精
米の表面は滑らかになっている1゜ 従来の自瓜組は、試料からの反射光を測定し−C白1!
iとケるため、滑らかb表面J:り粗い表面の方が光り
の乱に射が多く、白瓜は高い鎗を示す傾向−2− にあり、澗らかな表面の八は、反射する光に対して透過
する光の−が多いので0倹は低い値を小4鍮向にあった
。すなわち、反射光を白瓜とする測定法では、表面が滑
らかに搗精された精白米の場合は、光の反艶卑に比しI
透過率が人となる!こめ。
By the way, there are two types of rice polishing machines: grinding rice milling machines and friction rice milling machines.
Compared to polished rice with increased polishing action, polished rice with increased polishing action of the II[wA rice miller has better transparency and shine. In other words, in a grinding-type rice polishing machine, grinding [1-ru and rice grains are rubbed together to reduce the breast volume,
I! Milled rice has a rough surface with many scratches caused by grinding, whereas C1# type rice milling has a rough surface due to the phase gradient friction of the rice grains. The surface of the milled and polished rice is smooth 1° The conventional self-melon group measures the reflected light from the sample -C white 1!
Therefore, smooth b surface J: A rough surface has more irradiation due to the turbulence of light, and white melons tend to show a high spear. On the other hand, since there is a large amount of light transmitted, the value of 0 was low for small 4 brass. In other words, in the measurement method that uses reflected light as white melon, in the case of polished rice with a smooth surface, I
Transmittance becomes a person! Kome.

正確な値を測定することができなかった。It was not possible to measure the exact value.

これに対処して、本発明者は、精白度を試料の反射光だ
けで測定するのではなく、透過光も測定し、両者を合わ
せて精白度とすることにより、上り正確な精白度を得る
とともに、試料流路を設けて穀粒を流動させ、該流動す
る穀粒の精白度を刻々と連続して測定グることができる
連M1粒賄白度測定iii+tを提供した。
In order to deal with this, the present inventor has determined that the whiteness can be determined not only by the reflected light of the sample, but also by the transmitted light, and by combining the two to determine the whiteness, an accurate whiteness can be obtained. At the same time, we have provided a continuous M1 grain whiteness measurement III+T which is capable of continuously measuring the whiteness of the flowing grains by providing a sample flow path to make the grains flow.

しかし、この連続穀粒精白度測定装置は、試料流路が鉛
直に段重」られているため、試料流路イを伝って流動す
る穀粒の向きが乱雑になり、そのため、試料の反射光の
測定値にバラツキをqじ、IN確な精白度を得ることが
できない場合があった。
However, in this continuous grain whiteness measuring device, the sample flow path is stacked vertically, so the direction of the grains flowing through the sample flow path is disordered, and as a result, the reflected light of the sample In some cases, it was not possible to obtain accurate whiteness due to variations in the measured values.

この発明は、[記欠点を解消し、試料流路の角度を変え
て穀粒を測定に最適の状態で流・動さUることにより、
一層正確な精白度の測定輪を得ることができるよ・うに
した連続穀粒精白度測定装置をI!供するものである。
This invention solves the problem of writing by changing the angle of the sample flow path to flow and move grains in the optimal state for measurement.
I have developed a continuous grain whiteness measurement device that allows you to obtain a more accurate whiteness measurement ring! This is what we provide.

以下、図面を参照して、この発明の実施例を詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

12番よ内向を鏡とした積分球であり、右側部には試料
流路13が、その反対側には集光レンズ10が設けられ
ており、該微光レンズ10左方には、光源ランプ7、熱
線吸収フィルター8.単色光フィルター9が段【)られ
、光源ランプ7、熱線吸収フィルター8.141色光フ
イルタ−9及び集光レンズ10により光i!I装冒が形
成されでいる。
It is an integrating sphere with a mirror facing inward as number 12, and a sample flow path 13 is provided on the right side, a condensing lens 10 is provided on the opposite side, and a light source lamp is provided on the left side of the faint lens 10. 7. Heat ray absorption filter 8. A monochromatic light filter 9 is arranged in stages, and light i! The I-instrument is already formed.

11はシ1Fツタ−Cある。11 is located on the 1st floor of the building.

前記試料流路13の光i1装置の反対側には、試料から
の透過光を捕える透過光受光素子14′を段重ノて、該
透過光受光&fl 4’を増幅器5′に接続する。また
、前記光IIj!装置と透過光受光素子14′とを帖ぶ
翰を横切る内向の積分球12部分には、試料からの反1
1光を捕える反射光受光素子14を段重ノ、該陵射光受
光素子14を増幅器5に接続する。
On the opposite side of the sample channel 13 from the optical i1 device, a transmitted light receiving element 14' for capturing transmitted light from the sample is arranged in stages, and the transmitted light receiving element &fl4' is connected to an amplifier 5'. Also, the light IIj! The inwardly directed integrating sphere 12 that crosses the canopy that encloses the device and the transmitted light receiving element 14' has an anti-reflection beam from the sample.
A reflected light receiving element 14 that captures one light beam is connected to the amplifier 5.

的記試料流路13の上部に試料投入口15を設けた試料
供給樋16を設け、試料流路端部に振動板17を間隔を
おいて配殺し、該kitl&17を!ζイブレーター1
8に接続する。19は電磁石(゛ルノる。バイブレータ
−18の振動数を変化さUるごとによって、振動板17
の振動数を変化させ、試料流路13内の穀粒の゛流動を
調節するように4る。
A sample supply gutter 16 with a sample inlet 15 is provided at the top of the sample channel 13, and diaphragms 17 are arranged at intervals at the end of the sample channel. ζibrator 1
Connect to 8. Reference numeral 19 indicates an electromagnet (vibrator).By changing the frequency of the vibrator 18, the diaphragm 17
The frequency of the vibration is changed to adjust the flow of grains in the sample flow path 13.

試料流路13の光′ftA装置調装置13′もよ、穀粒
の流れ角より大きく鉛直よりは小さい角19.’l(c
わら、穀粒が進行方向に向かって長手り向に1ムJさを
揃えて並んだ状態で流れる角度に傾斜し、先りに行くに
したがって、幅狭のホッパー状1こHuら。
The light 'ftA device adjustment device 13' of the sample flow path 13 is also set at an angle 19 that is greater than the flow angle of the grain and smaller than the vertical. 'l(c
The straw and grains are lined up lengthwise in the direction of travel, slanted at an angle that allows them to flow, and as they move forward, they form a narrow hopper.

れている。また、試料流路13の光源装置と反対側の透
過光受光素子14′を設けた1113”(よ、穀粒が該
壁に圧着しC壁との間に隙間がなく、流れる角度に構成
されている。
It is. In addition, a transmitted light receiving element 14' is provided on the opposite side of the light source device of the sample flow path 13. ing.

モして、lvi記両増幅器5.5′は演枠装置となる演
算素子4に接続し、さらに精白廉デジタル表示組1に連
結4る。図中、2は、増幅15’ 4こ接続された透過
度デジタル表小tr1.3は、増幅器5に接続された反
射度デジタル表1JiBj、6Gよ定11Nf独冒であ
る。
Furthermore, the LVI amplifiers 5 and 5' are connected to an arithmetic element 4 serving as a performance frame device, and are further connected to a digital display set 1. In the figure, 2 is an amplification 15', 4 connected transmittance digital tables tr1.3 is a reflectance digital table 1JiBj, 6G, and 11Nf connected to an amplifier 5.

このようにして、積分球12と反射光受光素子14と増
幅器5とによって反射光測定装置が、また、透過光受光
素子14′と増幅Sa!5’ とによつ(透過光測定装
置が構成される。
In this way, the integrating sphere 12, the reflected light receiving element 14, and the amplifier 5 form a reflected light measuring device, and the transmitted light receiving element 14' and the amplified Sa! 5' (The transmitted light measurement device is configured.

以上の構成において、増幅器5からの反射層と増幅器5
′からの透過−とによって計算される演詩素了4のit
s値、寸なわら精白j鉦は、次の式により表わされる。
In the above configuration, the reflection layer from the amplifier 5 and the amplifier 5
It of the rhyme element Ryo 4 calculated by the transmission from ′ and
The s value and the j value are expressed by the following formula.

精白1!1=反射量−會K・透過婦、 なお、Kは、透過度を0度の単位に換篩づるための係数
(実験的に求めた数愉を用いる)である。
Whitening 1!1=reflection amount−K/transmission factor, where K is a coefficient (using an experimentally determined numerical value) for converting the transmittance into units of 0 degrees.

以−[、に述べたように、本発明によると、精白度が光
の反射層と透過1鎚の和としく表わされるから、表向が
澗らかにmli!された精白米の場合もその精白度をよ
り正確に測定することができる。しかも、試料流路壁が
、光源側e 4.L M粒が進行方向に向h1つ−(長
手方向に並んだ状態で流れる角度に傾斜して設けられて
いる!こめ、該試料流路壁を伝−)て流動する穀粒の向
きが一定となり、より正確な反射光測定値を得ることが
でき、また、九瞭と反対側の試料流路壁は、穀粒が圧着
してwIA間なく流れる角度に構成されているので、よ
りJ)確な透過光測定値を得ることができる。したがっ
て、流動する穀粒の精白痕を朗々と正確に測定すること
が(゛さる。
As described above, according to the present invention, the polishing degree is expressed as the sum of the light reflection layer and the light transmission, so that the surface is smooth and mli! The degree of polishing of polished rice can also be measured more accurately. Moreover, the sample channel wall is on the light source side e4. The direction of the flowing grains is constant as the L M grains are arranged at an angle in the direction of movement (they are arranged in the longitudinal direction and are inclined at the flow angle!), and the grains flow along the sample channel wall. This makes it possible to obtain more accurate reflected light measurements, and since the sample channel wall on the opposite side of the wall is configured at an angle where the grains are pressed together and flow through without any wIA, it is possible to obtain a more accurate reflected light measurement value. Accurate transmitted light measurements can be obtained. Therefore, it is necessary to clearly and accurately measure the milling marks on flowing grains.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例を示す説明図である。 1・・・精白廉rジタル表示31.2・・・透過II 
j’ジタル表示81.3・・・反制度デジタル表示fi
、4・・・演幹素子、5.5′・・・増幅器、6・・・
定′IIi几S4画、7・・・光源ランプ、8・・・熱
線吸収フィルター、9・・・単色光フィルター、10・
・・集光レンズ、11・・・シャッター、12・・・積
分球、13・・・試料流路、13′・・・試料流路の光
源鋏1Wll!lの壁、13″・・・試料流路の透過光
測定装置側の壁、14.14’ ・・・受光素子、15
・・・試料投入L1.16・・・試料供給樋、17・・
・振動板、18・・・バイブレータ−119・・・電磁
石。 特許出願人 株式会?l 仏 竹 製 作 所
The drawings are explanatory diagrams showing embodiments of the present invention. 1... Refined digital display 31.2... Transmission II
j' Digital display 81.3...Anti-system digital display fi
, 4... Stem element, 5.5'... Amplifier, 6...
7. Light source lamp, 8. Heat ray absorption filter, 9. Monochromatic light filter, 10.
... Converging lens, 11... Shutter, 12... Integrating sphere, 13... Sample channel, 13'... Light source scissors for sample channel 1Wll! l wall, 13''...Wall on the transmitted light measurement device side of the sample flow path, 14.14'...Photodetector, 15
...Sample input L1.16...Sample supply gutter, 17...
- Vibration plate, 18... vibrator - 119... electromagnet. Patent applicant stock company? l Buddha Bamboo Manufacturer

Claims (1)

【特許請求の範囲】 光a1装置と、試$31流路と、反射光測定装置と、透
過光測定装置とを4し、前記反射光測定装置と透過光測
定装置とは演vl装画を介して精白lJ¥h1こ連絡し
、前記試*1流路の光゛源装置側の壁は、穀粒が進行方
向に向かつC長手方向に並んだ状態〔−流れる角瓜に、
また、試料流路の透過光測定装置側の壁は、穀粒が該壁
との間に隙間なく流れる角1嶽に構成したことを特徴と
する連続穀粒精白億測定装置。
[Scope of Claims] A light a1 device, a sample flow path, a reflected light measuring device, and a transmitted light measuring device are configured as 4, and the reflected light measuring device and the transmitted light measuring device are connected to each other through a virtual design. The wall of the light source device side of the test *1 flow path is in a state where the grains are aligned in the direction of movement and in the longitudinal direction [-into the flowing corn gourd,
Further, the continuous grain milling measurement device is characterized in that the wall on the side of the transmitted light measurement device of the sample flow path is configured in a corner shape through which the grains can flow without any gap between the wall and the wall.
JP9406382A 1982-06-03 1982-06-03 Apparatus for continuously measuring polished degree of grain Granted JPS58211630A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9406382A JPS58211630A (en) 1982-06-03 1982-06-03 Apparatus for continuously measuring polished degree of grain
US06/486,808 US4540286A (en) 1982-06-03 1983-04-19 Apparatus for continuously measuring the degree of milling of grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9406382A JPS58211630A (en) 1982-06-03 1982-06-03 Apparatus for continuously measuring polished degree of grain

Publications (2)

Publication Number Publication Date
JPS58211630A true JPS58211630A (en) 1983-12-09
JPS6322543B2 JPS6322543B2 (en) 1988-05-12

Family

ID=14100061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9406382A Granted JPS58211630A (en) 1982-06-03 1982-06-03 Apparatus for continuously measuring polished degree of grain

Country Status (1)

Country Link
JP (1) JPS58211630A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106447U (en) * 1991-02-27 1992-09-14 三菱電機株式会社 Ventilation fan for duct
JP5247435B2 (en) 2005-05-26 2013-07-24 フォーレシア・アンテリュール・アンドゥストリ Ventilation means that can be oriented and flow adjusted by rotating the profile body

Also Published As

Publication number Publication date
JPS6322543B2 (en) 1988-05-12

Similar Documents

Publication Publication Date Title
US3830569A (en) Process and apparatus for counting biological particles
US3704951A (en) S light cell for increasing the intensity level of raman light emission from a sample
US4274740A (en) Optical process and apparatus for determining particle size of colloidal solution
CN202305367U (en) Backscattering device for measuring high-concentration nanoparticles
CN103175611B (en) Free-form optical device used for correcting astigmatism and coma aberration in spectrograph
CN104374750A (en) Water turbidity measuring device, system and method
JPS58211630A (en) Apparatus for continuously measuring polished degree of grain
Féry A prism with curved faces, for spectrograph or spectroscope
US5517032A (en) Thin film thickness measuring system
JPH06213658A (en) Method and equipment for distance measurement
CN101271067A (en) Method for Measuring Dispersive Refractive Index and Absorption Coefficient of Liquids
CN110514411A (en) Lens index detection device and method
US3381135A (en) Density measuring system having optical wedge to vary length of light path
US11841357B2 (en) Measurement apparatus and method of paper web
CN212844874U (en) Liquid measurement system based on optical cavity enhancement
JPS6322539B2 (en)
JPS6323496B2 (en)
JPS6331047B2 (en)
RU206033U1 (en) DEVICE FOR DETERMINING THE NUMBER OF PARTICLES AND DISTRIBUTING THEM AT VELOCITY IN LIQUID BIOLOGICAL MEDIA
CN111537414A (en) Liquid optical cavity enhancement measuring system
JPH01142441A (en) Apparatus for measuring polishing degree of grain of rice
RU2071056C1 (en) Device for assaying milk and dairy products for content of fat and protein
JPS63292039A (en) Particulate particle detection device in liquid
JPS5918647B2 (en) How do you know how to use light and light?
RU1805347C (en) Photometer-fluorimeter-nephelometer