JPS58201375A - Field effect transistor - Google Patents
Field effect transistorInfo
- Publication number
- JPS58201375A JPS58201375A JP57085961A JP8596182A JPS58201375A JP S58201375 A JPS58201375 A JP S58201375A JP 57085961 A JP57085961 A JP 57085961A JP 8596182 A JP8596182 A JP 8596182A JP S58201375 A JPS58201375 A JP S58201375A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- electrode
- source
- electrodes
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/87—FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET]
- H10D30/873—FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET] having multiple gate electrodes
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、超高速論理回路に用いるショット午−パリア
ゲート型′1界効果トランジス、5(ME 8 W −
ET)に関し、特に関連の論理動作を可能とする多数の
ゲート電極を持つ多ゲー)Mg8FETに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Schott-pariah gate type '1 field effect transistor, 5 (ME 8 W -
ET), and in particular multi-gate Mg8FETs with multiple gate electrodes to enable associated logic operations.
ショットキーバリアゲート型電界効果トランジスタ(M
g8FET)に45いて、特に(jaAsを動作層とす
るGaAsM18FETは、従来の81を用いたバイポ
ーラトランジスタの性能限界を上回るものであり、今後
の超高速デジタル信号処理用の素子として注1されてい
る。Schottky barrier gate field effect transistor (M
In particular, the GaAsM18FET, which uses jaAs as the active layer, exceeds the performance limits of conventional bipolar transistors using 81, and is being considered as a device for future ultra-high-speed digital signal processing. .
GaAs Mg8FET の論理回路における基本的な
NAND回路では、第1図に示すように多数のゲート電
極を持った多ゲー)MgSFETが用いられる。A basic NAND circuit in a GaAs Mg8FET logic circuit uses a multi-gate MgSFET having a large number of gate electrodes, as shown in FIG.
第1図は2人力NAND回路であり、2つの入力4子(
ゲート電極)l、2をもつ双ゲートpg’r 3 と
負荷4により構成され、端子5から出力を取出す。Figure 1 shows a two-person NAND circuit with two input quadruplets (
It is composed of a twin gate pg'r 3 having gate electrodes) l and 2 and a load 4, and output is taken out from a terminal 5.
負荷2はデプレッション型(ノーマリオン型)FgT
のゲート電極をソース電極に接続した定電流特性の負荷
であるが、簡単なものとしては通常の定抵抗であっても
よい。Load 2 is depression type (normally on type) FgT
The load has a constant current characteristic in which the gate electrode is connected to the source electrode, but a simple constant resistor may be used.
因において、双ゲートFg’l’ 3 がエンハンス
メントII(ノーマリオフ型)であれば、出力端子5は
次段のゲート入力に直結することができる。一方、デプ
レッン、ンm(ノーマリオン型)での場合には、PET
の出力電位を入力電位に合せるために、第2図のように
電位を下げるレベルシフト回路が必要である。この回路
の伝達遅延時間tpdは、スゲ−) FFI:Tの相互
コンダクタンスをglllとし、次段の入力各音と配縁
容量からなる容量性負荷6をCJ!とすると、粗い近似
として、t
tpdニー ・・・・・・・・・・・・(1)−
と表わすことができる。Incidentally, if the twin gate Fg'l' 3 is an enhancement II (normally off type), the output terminal 5 can be directly connected to the gate input of the next stage. On the other hand, in the case of deplane, m (normally on type), PET
In order to match the output potential to the input potential, a level shift circuit is required to lower the potential as shown in FIG. The transmission delay time tpd of this circuit is amazing.) Let the mutual conductance of FFI:T be gllll, and the capacitive load 6 consisting of each input sound of the next stage and the wiring capacitance be CJ! Then, as a rough approximation, it can be expressed as t tpd knee (1)-.
ここで、第1図に示すNAND回路に用いられた従来の
スゲ−1−MESFETについて、その問題点を明らか
ζこする。Here, we will clearly discuss the problems with the conventional Suge-1-MESFET used in the NAND circuit shown in FIG.
従来の双ゲートFETの構造は、基本的には第3図(a
) 、 (b)に示すように半絶縁性GaAs基板の表
面にn形動外層領穢10があり、この上に同じ長さ“を
もった2本の線状のショットキーゲー)1111L極1
1゜12と、これをはさむようにソースおよびドレイン
のオーミック性電極13,14が形成されていた。また
、第4図(a) 、 (b)に示すように島状のオーミ
ック性電極15をケート電極11 、12の間に入れて
、2つの単ケートFET を直列に結んだような型もあ
った。The structure of a conventional twin-gate FET is basically shown in Figure 3 (a).
), As shown in (b), there is an n-type movable outer layer region 10 on the surface of the semi-insulating GaAs substrate, and on top of this there are two linear Schottky gates with the same length.
1.degree. 12, and source and drain ohmic electrodes 13 and 14 were formed to sandwich this. There is also a type in which an island-shaped ohmic electrode 15 is inserted between the gate electrodes 11 and 12, and two single gate FETs are connected in series, as shown in FIGS. 4(a) and 4(b). Ta.
ところで、FET ではゲートとソース間にソース直列
抵抗rsがある場合にはPI(T素子全体としての見か
けの相互コンダクタンスgm′は、真の相互コンダクタ
ンスをglとすると、
となり、FgT 全体としての相互コンダクタンスgm
′は真の相互コンダクタンスgsn’より小さくなる。By the way, in FET, when there is a source series resistance rs between the gate and the source, the apparent mutual conductance gm' of the PI (T element as a whole, where gl is the true mutual conductance, becomes), and the mutual conductance of the whole FgT gm
' becomes smaller than the true transconductance gsn'.
GaAs ME8FET におけるソース直列抵抗r
sは、ゲート電極とソース電極間の動作層抵抗と、ソー
ス電極とGaAs動作層とのコンタクト抵抗とによる。Source series resistance r in GaAs ME8FET
s depends on the active layer resistance between the gate electrode and the source electrode and the contact resistance between the source electrode and the GaAs active layer.
第3、第4図の双ゲートFETにおいては、ソースに近
い第1ゲートのソース直列抵抗は単ゲートFETとほば
則じく小さいが、第2ゲートについては第1ゲートの下
から第2ゲートまでの動作層の抵抗外が加わるために、
ソース直列抵抗は大きくなり、相互コンダクタンスgl
ntは小さくなる。In the dual-gate FETs shown in Figures 3 and 4, the source series resistance of the first gate near the source is almost as small as that of a single-gate FET, but the second gate is lower than the second gate from below the first gate. Due to the addition of the resistance of the operating layer up to
The source series resistance increases and the transconductance gl
nt becomes smaller.
従って(1)式より、第1ゲートに対するtpdと第2
ゲートに対するtpdに差が生じ、論理動作(NAND
動作)が不安定になることがあった。Therefore, from equation (1), tpd for the first gate and
A difference occurs in tpd for the gate, resulting in logic operation (NAND
operation) may become unstable.
本発明は、従来の多ゲートFITにおける上記のような
欠点にかんがみてなされたものであり、ゲート電極の位
置による伝達遅延時間の差を小さくするために、ゲー)
1極によるソース直列抵抗ra の差を各ゲート電極の
ゲート幅Wgを変えることにより補償し、各ゲート電極
の見かけの相互コンダクタンスgm′を同じにしようと
いうものである。The present invention has been made in view of the above-mentioned drawbacks of conventional multi-gate FITs.
The idea is to compensate for the difference in source series resistance ra due to one pole by changing the gate width Wg of each gate electrode, and to make the apparent mutual conductance gm' of each gate electrode the same.
次に本発明による多ゲートFETを実施例として双ゲー
トFB’l”を用いて説明する。Next, a multi-gate FET according to the present invention will be explained using a twin-gate FB'l'' as an example.
第4図は本発明のスゲ−)MESFETを示す。これは
、半絶縁性GaAs基板に例えばSiをイAン注入する
ことにより、キャリア濃度2.0 XIO”61+1
’、厚さ1000! のn形動作層領域10を図示のご
とくその幅がソース電極12側からドレイン電極13@
に向って広がった台形状に形成し、これの上底部にAu
()eN iよりなるソース電極13と下底部にドレ
イン電極14を設け、この間に並行に2本の線状なA1
シmットキーゲート電極として第1ゲート電極11およ
び第2ゲート電極12を設けたものである。ここで、ゲ
ート幅とは動作層領域上に接しているゲート電極の線長
であり、動作層領域が台形状のために第2ゲート電極1
2のほうが第1ゲート4極11よりも長くなっている。FIG. 4 shows the MESFET of the present invention. This can be achieved by implanting, for example, Si into a semi-insulating GaAs substrate to achieve a carrier concentration of 2.0 XIO"61+1
', 1000 thick! As shown in the figure, the width of the n-type active layer region 10 is from the source electrode 12 side to the drain electrode 13@
It is formed into a trapezoidal shape that expands toward
() A source electrode 13 made of eNi and a drain electrode 14 are provided at the bottom, and two linear A1 lines are connected in parallel between them.
A first gate electrode 11 and a second gate electrode 12 are provided as symmetry gate electrodes. Here, the gate width is the line length of the gate electrode in contact with the active layer region, and since the active layer region is trapezoidal, the second gate electrode 1
2 is longer than the first gate 4-pole 11.
また、95図に示すように、渠1ヶ−1−11と第2ゲ
ート12の間に島状のオーミック性1極15を入れて、
あたかもゲート幅が異なる2−〕のkETが直列になっ
たものでもよい。ここで、1!!I状のオーミック性−
極15は、AuGeNiなどの金属に限ったことはなく
1.動作層が厚いものやキャリア濃度を嵩(シたもので
あってもよい。In addition, as shown in Fig. 95, an island-shaped ohmic pole 15 is inserted between the conduit 1-1-11 and the second gate 12,
It may be as if two kETs with different gate widths are connected in series. Here, 1! ! I-shaped ohmic property-
The electrode 15 is not limited to metal such as AuGeNi, but can be made of 1. The active layer may be thick or the carrier concentration may be high.
fs4図、第5図のどと(第1ゲート、第2ケートのゲ
ート幅が異なる双ゲートFbi”において、第2ゲート
の相互コンダクタンスを補正するために、第2ゲートの
ゲート幅を例えば30μmから40μmlc約30チ増
大させることにより、第1ゲートのglは1.8mS、
第2ゲートのgm @は1.75m5とほぼ尋しくなっ
た。すなわち、両デートのゲート幅比は1:1.3程度
が適当であった。fs4 figure, figure 5 throat (in a twin gate Fbi'' where the gate widths of the first gate and the second gate are different, the gate width of the second gate is changed from 30 μm to 40 μm lc in order to correct the mutual conductance of the second gate. By increasing about 30 inches, the gl of the first gate becomes 1.8 mS,
The gm @ of the second gate was almost 1.75m5. That is, the appropriate gate width ratio for both dates was about 1:1.3.
また、第2図のNAND回路6個を用いたエツジトリガ
型%周波数分周期回路を試作したところ、従来の第4m
のようなゲート幅が同じ双ゲートPET を用いた場合
、取高動作周波数は2.8 GHzであったが、本発明
の第6図のようなゲート幅比が1 : 1.3のもので
は、最高動作周波数は3.9αIzで約40%高くなり
、分周波形の過渡特性もよくなった。このよう(こ、多
ゲートF肝(スゲ−1−NET)においてソース電極か
ら遠くのゲート幅を大きくして各ゲート電極の相互コン
ダクタンスを等しくするこ止により、最高動作周波数は
^(、動作も安定することからも本発明の効果は明らか
である。In addition, when we prototyped an edge-trigger type % frequency divider circuit using six NAND circuits as shown in Figure 2, we found that
When using a dual-gate PET with the same gate width, the operating frequency was 2.8 GHz, but with the gate width ratio of 1:1.3 as shown in FIG. The maximum operating frequency was 3.9αIz, approximately 40% higher, and the transient characteristics of the frequency-divided waveform were also improved. In this way, in a multi-gate F-Net (Suge-1-NET), by increasing the width of the gate far from the source electrode and making the mutual conductance of each gate electrode equal, the maximum operating frequency can be increased. The effect of the present invention is clear from the fact that it is stable.
第1図はスゲ−1−FETを用いた基本的なNA−ND
回路、第、2図はレベルシフト回路を備えたNANDM
路、第3図と第4図は従来の双ゲートFET 、第5図
と槁6図は本発明の一実施例を示−リー双ゲー1−Fg
Tである。10は動作層領域、llは第1ケート電極、
区は縞2ゲート電極、13はソースlll極、14はド
レイン電極、15は島状のオーミック性1tiiである
。
キ1 図 字2 図
(a) (α)(b)
(b)亨 5 図Figure 1 shows a basic NA-ND using Suge-1-FET.
Circuit, Figure 2 is a NANDM with a level shift circuit
Figures 3 and 4 show a conventional twin-gate FET, and Figures 5 and 6 show an embodiment of the present invention.
It is T. 10 is an active layer region, 11 is a first gate electrode,
1 is a striped gate electrode, 13 is a source Ill electrode, 14 is a drain electrode, and 15 is an island-like ohmic electrode. Key 1 Diagram 2 Diagram (a) (α) (b)
(b) Toru 5 figure
Claims (1)
ト電極を備え、かつ該ゲート電極のゲート幅がソース電
極からドレイン電極に近いほど広く設定されていること
を特徴とするショットキーバリアゲート型電界効果トラ
ンジスタ。1. A Schottky barrier gate type characterized in that two or more gate electrodes are provided between a source electrode and a drain electrode, and the gate width of the gate electrode is set to be wider as it approaches the source electrode and the drain electrode. Field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57085961A JPS58201375A (en) | 1982-05-20 | 1982-05-20 | Field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57085961A JPS58201375A (en) | 1982-05-20 | 1982-05-20 | Field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58201375A true JPS58201375A (en) | 1983-11-24 |
Family
ID=13873333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57085961A Pending JPS58201375A (en) | 1982-05-20 | 1982-05-20 | Field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58201375A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61263249A (en) * | 1985-05-17 | 1986-11-21 | Nec Corp | semiconductor equipment |
US4962410A (en) * | 1989-08-04 | 1990-10-09 | Arizona Board Of Regents | QUADFET-A novel field effect transistor |
EP0585942A1 (en) * | 1992-09-03 | 1994-03-09 | Sumitomo Electric Industries, Ltd. | Dual gate MESFET |
EP0610564A3 (en) * | 1993-01-26 | 1995-01-25 | Sumitomo Electric Industries | Double gate FET and circuit using this FET. |
US5461244A (en) * | 1994-01-03 | 1995-10-24 | Honeywell Inc. | FET having minimized parasitic gate capacitance |
US5602501A (en) * | 1992-09-03 | 1997-02-11 | Sumitomo Electric Industries, Ltd. | Mixer circuit using a dual gate field effect transistor |
GB2444159A (en) * | 2006-11-22 | 2008-05-28 | Filtronic Compound Semiconduct | Multigate Schottky diode |
DE112005000358B4 (en) * | 2004-02-12 | 2020-11-05 | Infineon Technologies Americas Corp. | Bidirectional III-nitride switch |
-
1982
- 1982-05-20 JP JP57085961A patent/JPS58201375A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61263249A (en) * | 1985-05-17 | 1986-11-21 | Nec Corp | semiconductor equipment |
US4962410A (en) * | 1989-08-04 | 1990-10-09 | Arizona Board Of Regents | QUADFET-A novel field effect transistor |
EP0585942A1 (en) * | 1992-09-03 | 1994-03-09 | Sumitomo Electric Industries, Ltd. | Dual gate MESFET |
US5389807A (en) * | 1992-09-03 | 1995-02-14 | Sumitomo Electric Industries, Ltd. | Field effect transistor |
US5602501A (en) * | 1992-09-03 | 1997-02-11 | Sumitomo Electric Industries, Ltd. | Mixer circuit using a dual gate field effect transistor |
EP0610564A3 (en) * | 1993-01-26 | 1995-01-25 | Sumitomo Electric Industries | Double gate FET and circuit using this FET. |
US5461244A (en) * | 1994-01-03 | 1995-10-24 | Honeywell Inc. | FET having minimized parasitic gate capacitance |
DE112005000358B4 (en) * | 2004-02-12 | 2020-11-05 | Infineon Technologies Americas Corp. | Bidirectional III-nitride switch |
GB2444159A (en) * | 2006-11-22 | 2008-05-28 | Filtronic Compound Semiconduct | Multigate Schottky diode |
US7851830B2 (en) | 2006-11-22 | 2010-12-14 | Rfmd (Uk) Limited | Multigate Schottky diode |
GB2444159B (en) * | 2006-11-22 | 2011-04-20 | Filtronic Compound Semiconductors Ltd | A multigate schottky diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7443437B2 (en) | Improved drain and/or gate interconnects and finger structures | |
US3700981A (en) | Semiconductor integrated circuit composed of cascade connection of inverter circuits | |
US5006816A (en) | Semiconductor integrated circuit including differential transistor circuit having a pair of FETs | |
KR101152342B1 (en) | Field effect transistor | |
JPS5918870B2 (en) | semiconductor integrated circuit | |
US4178605A (en) | Complementary MOS inverter structure | |
US4921814A (en) | Method of producing an MMIC | |
JPS58201375A (en) | Field effect transistor | |
US4709251A (en) | Double Schottky-gate field effect transistor | |
US4380022A (en) | Monolithic fully integrated class B push-pull microwave GaAs MESFET with differential inputs and outputs with reduced Miller effect | |
US4020365A (en) | Integrated field-effect transistor switch | |
JP2001284367A (en) | High frequency field effect transistor | |
US3745426A (en) | Insulated gate field-effect transistor with variable gain | |
EP0481113B1 (en) | Digitally controlled field effect attenuator devices | |
US4104673A (en) | Field effect pentode transistor | |
US4786881A (en) | Amplifier with integrated feedback network | |
JP2000031708A (en) | Monolithic microwave integrated circuit | |
HK1007361B (en) | Digitally controlled field effect attenuator devices | |
JPS5856270B2 (en) | Insulated gate electrostatic induction field effect transistor | |
JP2737874B2 (en) | Semiconductor line converter | |
JPH0196966A (en) | Field effect transistor | |
JPS60137071A (en) | Schottky gate field effect transistor | |
JPS6137799B2 (en) | ||
JPH01120066A (en) | Field effect semiconductor device with auxiliary electrode | |
JPH05102840A (en) | Semiconductor logic device |