[go: up one dir, main page]

JPS58200157A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS58200157A
JPS58200157A JP57083733A JP8373382A JPS58200157A JP S58200157 A JPS58200157 A JP S58200157A JP 57083733 A JP57083733 A JP 57083733A JP 8373382 A JP8373382 A JP 8373382A JP S58200157 A JPS58200157 A JP S58200157A
Authority
JP
Japan
Prior art keywords
electrode
oxygen
porous
sensor
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57083733A
Other languages
Japanese (ja)
Inventor
Toshiro Hirai
敏郎 平井
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57083733A priority Critical patent/JPS58200157A/en
Publication of JPS58200157A publication Critical patent/JPS58200157A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a high performance sensor which operates stably against changes in the O2 concentration with a large electromotive force and a high response speed by employing a porous conductor containing a polycyclo organic complex of transmission metal for a positive pole of an oxygen sensor. CONSTITUTION:To obtain a positive pole 4 of an oxygen sensor 1, transmission metal such as Ni, Co, Fe and Cu, a poriphin compound such as phthalocyanine and an aromatic polycyclo organic complex such as porphyrin are mixed into a teflon emulsion with carbon black, activated charcoal and the like and dried as a sheet. Then, this sheet 4b is joined under pressure on one side of a support collector 4a made of metal steel employing Ni, Ti or the like and heated to make a porous electrode 4. This electrode 4 is arranged on the side of a gas intake port 6 of a container 5 of a sensor 1 and an electrolytic layer 3 made of KOH, KC or the like between the electrode and a negative electrode 2 of Zn or the like to obtain a battery-operated oxygen sensor 1. This simplifies the measuring system usable without flowing of current thereby providing a sensor usable at the normal temperature free from heat generation of and deterioration in the element.

Description

【発明の詳細な説明】 本発明は、常温で環境中の酸素濃度の測定に使用される
酸素センナに関Tる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor used for measuring oxygen concentration in the environment at room temperature.

大気中の酸素濃度を検出し、警報装置その他の連動装置
に接続し、洞道内や地下道内の酸欠防止を図ることは、
地下作業の増加に伴って重要視されている。この酸素感
度検出に使用される酸素センナとしては、ガルバニ#I
i電池を形成して、多孔質電極の正極を被測定ガスに接
触させたり、あるいは11本電解質電池を形成して一方
の電極を基拳鹸素分圧(一般には、大気中の空気の酸素
分圧)に、他方の電極を被測定ガスに接触させて、これ
に生ずる起電力または、電流変化rtI11定する方式
、あるいは、酸素分圧により電気伝導度が変化する鹸化
物亭導*tMlい、電気抵抗変化ti1定する方式があ
る・會た、酸素分圧による螢光消光e利用したセン賃も
mii;されている・ セン管材料には、ガルバニ置電池式では、正極に白金、
銀等を含有した多孔質電極、負極にZn。
Detecting the oxygen concentration in the atmosphere and connecting it to alarm devices and other interlocking devices to prevent oxygen deficiency in caves and underground passages.
It is becoming more important as underground work increases. The oxygen sensor used for this oxygen sensitivity detection is galvanic #I
You can form an i-cell with the positive electrode of the porous electrode in contact with the gas to be measured, or form an 11-electrolyte cell with one electrode connected to the base metal partial pressure (generally, oxygen in the air in the atmosphere). partial pressure), the other electrode is brought into contact with the gas to be measured, and the resulting electromotive force or current change rtI11 is determined. There is a method to determine the change in electrical resistance (ti1).In addition, there is also a method that uses fluorescence quenching due to oxygen partial pressure.
Porous electrode containing silver etc., Zn for negative electrode.

MgQlt#いている。寥た、崩御電解質電池式におい
ては、ZrヘーC畠0.Th偽−Y怠O8等の多孔質伝
導体が白金、金等の多孔質金属と組合せて用はピレン−
シリコン展が使#111!れている@しかしながら、従
来技術におけるこれら材料のうち、白金、金、銀等の貴
金属は高価であり、一体電解寅は塞温では作動しない。
MgQlt# is there. However, in the case of a dying electrolyte battery type, Zr and C Hatake0. When a porous conductor such as O8 is combined with a porous metal such as platinum or gold, pyrene is used.
Silicon Exhibition #111! However, among these materials in the prior art, noble metals such as platinum, gold, and silver are expensive, and the monolithic electrolyte does not operate under occlusion.

酸化物半導体材料については、ベース導電率に9#する
導電率変化が小さくベース抵抗の変動の中に置没してし
まったり、復元が速やかでない欠点を有している・また
、螢光消光利用センtは、酸素分圧に対する応答が悪く
、さらに長期安定性に欠は実用性には掘遠い。
Oxide semiconductor materials have the disadvantage that the change in conductivity with respect to the base conductivity is small and that they are lost in the fluctuations of the base resistance, and that recovery is not quick. Sent has a poor response to oxygen partial pressure and lacks long-term stability, making it far from practical.

本発明は、このような現状に鑑みてなされたもので、j
lfIi金属有機鑵体【含4iTる多孔質導体を電極に
使用Tることにより、安価で、酸素濃度の変化に対する
起電力が大きく、かつ応答が早く長期安定である高性能
、高信頼性の醗素竜ン′rを提供することを目的とする
ものである。
The present invention was made in view of the current situation, and
By using a porous conductor containing 4iT as an electrode, it is inexpensive, has a large electromotive force against changes in oxygen concentration, has a fast response, and is stable over a long period of time, resulting in high performance and high reliability. The purpose is to provide basic information.

以下、本発明を図面を参照して詳しく説@Tる。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1g1llは本発明の酸素センtの−Hを示すもので
、図中符号lは本発明に係る鍛素七ンtである。
The 1st g1ll indicates -H of the oxygen center t of the present invention, and the symbol 1 in the figure is the forged steel 7 center t according to the present invention.

この酸素竜ンサlは、金属等の導体よりなる負極Sと、
電解質層8と、遷移金属有機錯体な書ITる多孔質導体
よりなる正極4とをそれでれ層状に密着させて形成した
もので、これら負極2.電解質層8.正極番よりなる鹸
素竜ン11は容IIsに収容されている。そして容4!
16の正極8に臨む部分には、被測定Iスミs素七ンt
1の正極8に接触させるためのガス取入孔6.6・・・
が設けられている◎なお5WIJI111f′tフ、8
はそれfれ正極4および負極s&:m続ξれるリード纏
である。上記正ll14  *解質層魯および電極2は
一酸素センーt1tIIIIILTるとともに、酸素ガ
スの還元反応を利用した金属空気層電池なも構成Tる。
This oxygen sensor L has a negative electrode S made of a conductor such as metal,
An electrolyte layer 8 and a positive electrode 4 made of a porous conductor such as a transition metal organic complex are formed in close contact with each other in a layered manner. Electrolyte layer8. Kenso Ryuun 11, which consists of a positive pole number, is housed in Yong IIs. And Yong 4!
16 facing the positive electrode 8, there is a
Gas intake hole 6.6 for contacting the positive electrode 8 of 1.
is provided◎5WIJI111f't, 8
It is a lead wire consisting of a positive electrode 4 and a negative electrode s&:m. The above-mentioned correct 114 *The solute layer and the electrode 2 contain monooxygen, and also constitute a metal air layer battery that utilizes the reduction reaction of oxygen gas.

上記j1移金属鑵体を含有Tる多孔質導体よりなる正極
番は、岡えば第2図に示すように、エフナル。チタン、
銀などの金IIm綱よりなる支持集電体4暑と、この支
持集電体4aの一方の面に幽着ξれた遍移愈111,1
機錯体な含有する多孔質電極材c以下、多孔jl[′I
IIIi材と略称Tる。)4bとから構成され、多孔質
電極材4bが上記電解質層8に接触し、支持集電体6暑
が被測定ガスに接触するように配置されている0そして
、この多孔質導体は、炭素粉本、グラフアイシー活性炭
、アセチレンプランタ等の炭素11体にテフロン(商標
)などの朧水性バインダを加え、さらにこれに鉄、ニツ
ナル、コパル)、#、マンガンなどの遷移金属と7タロ
シアニンなどのポルフィン掴化合物やポリフィリンなど
の芳香族長lI4有機化合物との錯体、崗えは金属7タ
1シアニン、ジアノコバラミン、ヘモダ璽ピンなどの遷
移金属有機錯体を加えてシート状の多孔質電極材4bt
形成し、この多孔質電極材4bを上記支持集電体4mの
金属製網に圧着Tる方法や、上記炭素粉本に撥水性バイ
ンダを混合し、この粉末を金4111網とともに加圧し
てフィルム状とし、これに上記錯体を蒸着させる方法や
、炭素粉体重バインダおよび錯体とからなる混合粉末を
金属製網とともに加圧、一体化する方法、あるいは金属
製網の代りに多孔質金属板を用意し、これに炭素粉本お
よびテフロンを塗布し、さらにこれに錯体を蒸着させる
方法などによって製作することができる・ そして、上記炭素粉末、アセチレンブラック。
As shown in FIG. 2, the positive electrode number made of the porous conductor containing the j1 transfer metal iron body is, for example, the Fnal type. Titanium,
A support current collector 4 made of gold IIm steel such as silver, and a transmissive force 111,1 fixed on one surface of this support current collector 4a.
Below the porous electrode material c containing an organic complex, the porous jl['I
It is abbreviated as IIIi material. ) 4b, and is arranged so that the porous electrode material 4b is in contact with the electrolyte layer 8 and the support current collector 6 is in contact with the gas to be measured. A water-based binder such as Teflon (trademark) is added to 11 carbon bodies such as powdered carbon, graphic activated carbon, and acetylene planta, and to this, transition metals such as iron, nitsinal, copal), #, and manganese, and porphine such as 7-talocyanine are added. A complex with an aromatic long lI4 organic compound such as a gripping compound or porphyrin, and a transition metal organic complex such as a metal 7t1 cyanine, dianocobalamin, or hemodapin are added to form a sheet-shaped porous electrode material 4bt.
The porous electrode material 4b is bonded to the metal mesh of the supporting current collector 4m, or the carbon powder is mixed with a water-repellent binder and the powder is pressed together with the gold 4111 mesh to form a film. A method in which the above-mentioned complex is vapor-deposited on a metal mesh, a method in which a mixed powder consisting of a carbon powder heavy binder and a complex is pressurized and integrated with a metal mesh, or a porous metal plate is prepared in place of the metal mesh. It can be manufactured by coating this with carbon powder and Teflon, and further vapor-depositing a complex thereon.Then, the above-mentioned carbon powder and acetylene black.

ケッチェンブラック10等の炭素材料は、電極反応が起
こる反応点を多くシ、かつ活性化を囮るうえでの触媒の
含有が容易となるための多孔化を促進し、同時に反応に
伴う電子の移動を容易にTるための十分な導電率toy
るうえて有効である・多孔質金属も、また同様の城山で
多孔質導体の構成材料として有効であるが、この材料な
使#iTる際には、金属自身が電解液中に溶解して酸素
還元反応と異なった反応が起きるのを防止するため、多
孔質金属表面tjJ−ボンスプレー等を用いて保護する
必要がある。− なお、多孔質導体の細孔から電解液が漏出するのを防止
するために、これらの多孔質導体には、テフ霞ン粉末、
↑7Wンエマルジ曹ン等を加えたり、予7mシスプレー
等で表面を塗布したり、さらには、ガス憾に面した電極
の片面に多孔質テフロンシートを貼付Tる等の緻水剤t
l@いて防水処理な施している必要もある。!!た、多
孔質導体よりなる正極番の寿命を延ば丁ため、被測定ガ
スに接触fi1mに撥水性材料よりなる多孔性シートを
圧着したり、讃水剤な吹き付けたりしてもよい。
Carbon materials such as Ketjenblack 10 have many reaction points where electrode reactions occur, promote porosity to facilitate the inclusion of catalysts to suppress activation, and at the same time reduce the number of electrons accompanying reactions. Sufficient conductivity toy for easy movement
・Porous metals are also effective as constituent materials for porous conductors, but when using this material, the metal itself dissolves in the electrolyte. In order to prevent a reaction different from the oxygen reduction reaction from occurring, it is necessary to protect the porous metal surface using tjj-bon spray or the like. − In order to prevent the electrolyte from leaking from the pores of the porous conductors, these porous conductors are coated with Teff haze powder,
↑Add water-stiffening agents such as adding 7W emulsion carbonate, pre-coating the surface with 7m spray, etc., or pasting a porous Teflon sheet on one side of the electrode facing the gas stream.
It also needs to be waterproofed. ! ! In addition, in order to extend the life of the positive electrode made of a porous conductor, a porous sheet made of a water-repellent material may be crimped onto the fi1m in contact with the gas to be measured, or a water repellant may be sprayed onto the material.

さらに上記負mst構成Tる材料として亜鉛。Furthermore, zinc is used as a material for the above-mentioned negative mst configuration.

アルt=ウム、マダ牟シウム、白金!たはこれらの合金
等が使#1され、電解質層8としてはdωH。
Alt-Um, Madamushium, Shirogane! or an alloy thereof is used, and the electrolyte layer 8 is dωH.

NaOHなどのアルカリ性電解質、NaCj、KeIな
どの中性電解質、リン酸などの酸性電解質やこれに腐食
防止剤、沈殿凝集剤を添加した液状、コロイド状の液体
電解質やプラスチックイオン導電体などの固体電解質等
が用いられる◎ このような本発明の酸素センt1にあっては、正lll
lA4の多孔質導体を構成Tる11移金属有機錯体が酸
素ガスの有効な還元触媒τtて曽き、Tぐれた特性を発
揮Tる◎すなわち、上記錯体は酸素ガスを吸着しや丁く
、錯体に含まれる中心金属が、回りの芳査lI4を慣数
有する有機化合物の配位子によって電子の授受が容易と
なり酸化迩元体への移行がスムーズであり、かつ、中心
金属の電子エネルギ一単位が酸素分子のエネルギ一単位
に近く相のため、鉄フタ■シアニン等においては、酸素
還元反応1最も効率の良い参・電子反応(@えば、ア・
1 ど に力Q を層液中”C’410. +JH!0 +4C
e−→4IOH−)ti1![択し、活性で敞素劇度変
托に対Tる電位変化の対応もすばやい。一方、コバルト
7タロシアエン、シアノコバラセン、ニラナルフタロシ
アニン峰においては、中間体を生成するλ電子反応(M
えば、アルカリ電解液中では0.+H!0+λC−→O
H”−+ HO*−)が優勢となるが、炭素粉本上のこ
れらの錯体は中間体の分解能が大となり、酸素濃度変化
に対Tる電位変化の値が大きくしかも対応も早くなる。
Alkaline electrolytes such as NaOH, neutral electrolytes such as NaCj, KeI, acidic electrolytes such as phosphoric acid, liquid and colloidal liquid electrolytes with addition of corrosion inhibitors and precipitating flocculants, and solid electrolytes such as plastic ionic conductors. etc. are used.◎ In such an oxygen center t1 of the present invention, positive lll
The 11-transfer metal organic complex constituting the porous conductor of lA4 acts as an effective reduction catalyst for oxygen gas and exhibits excellent properties.In other words, the above complex adsorbs oxygen gas easily, The central metal contained in the complex can easily transfer electrons to the oxidized element by the surrounding organic compound ligands having a constant of 1I4, and the electron energy of the central metal can be easily transferred. Because the unit is close to one unit of energy of an oxygen molecule, in iron lids, cyanine, etc., oxygen reduction reaction 1 is the most efficient oxygen-electron reaction (for example,
1 Doni force Q in the layer liquid "C'410. +JH!0 +4C
e-→4IOH-)ti1! [In addition, the response of the potential change to the change in activity is also quick. On the other hand, in cobalt-7thalocyanine, cyanocobalacene, and niranalphthalocyanine peaks, the λ-electron reaction (M
For example, in an alkaline electrolyte, 0. +H! 0+λC-→O
H''-+ HO*-) becomes dominant, but these complexes on the carbon powder have a high resolution of intermediates, and the value of the potential change relative to T with respect to the oxygen concentration change is large and the response is quick.

なお、本発明による酸素センtは、電流を流Tことなく
使用できるため、定電流源を必要としない等、測定系の
簡略化が−れるうえに、電流な流Tことによる素子の発
熱や劣化がなく長寿命である。また本発明における酸素
センサは開路電圧をそのまま測定Tるため、電解質に厳
しい条件rtlI丁ことなく使用可能で液状のみならず
、ゲル状及びw11体状の電解質をも用いることが可能
であるという大きな特徴t1fしている。
Furthermore, since the oxygen sensor according to the present invention can be used without passing current, the measurement system can be simplified, such as not requiring a constant current source, and heat generation of the element due to current flow can be avoided. It has a long life without deterioration. In addition, since the oxygen sensor of the present invention measures the open circuit voltage as it is, it can be used without harsh electrolyte conditions, and has the major advantage of being able to use not only liquid electrolytes but also gel and solid electrolytes. It has the characteristic t1f.

以下、実施例を示して本発明を異本的に説明Tるが、本
発明はこfLら実施列に何んら限定されるものではない
Hereinafter, the present invention will be explained in a non-conventional manner by showing examples, but the present invention is not limited to these embodiments in any way.

実施Hi 炭素粉末(200メツシュ通過)参り、ア竜チレンブラ
ックコV、ケッチェン/−ツク1OJfと鉄7タロシア
ニン2gを↑フa−ンエマルジ冒ン(テフ菅ン含有60
%) j7Fをよく混合し、菅−ルでシート状にする。
Implementation Hi Carbon powder (passed 200 meshes), Aryu Chiren Black Co V, Ketchen/-Tsuku 1 OJf and 2 g of iron 7 talocyanine were added to a fan emulsion (60% teflon-containing).
%) Mix well j7F and form into a sheet using a tube.

シー)なJO分間穆度空気中で乾燥させた後、片側にニ
ッケル製網CjOメツシュ)を置きコso℃、100に
/IIの圧で30分間ホットプレスする。空気中で冷却
し〜直WkJO謔の円形に切り出して被測定ガス側にi
lfる多孔質導体よりなる正極を作製した・ 電解質としてlatomを用い、負極に亜鉛な用いて電
池式酸素センサを構成し、異なる03濃度のN、−0,
混合ガス下で電極電位(1,対飽和カロメル電極)の酸
素分圧依存性を調べた。結果を第3図に示T。
After drying in air for a few minutes, a nickel net (CJO mesh) was placed on one side and hot-pressed at a pressure of 100°/II for 30 minutes. Cool it in the air, cut it into a circular shape, and attach it to the gas to be measured side.
A battery-type oxygen sensor was constructed using latom as the electrolyte and zinc as the negative electrode.
The oxygen partial pressure dependence of the electrode potential (1, vs. saturated calomel electrode) was investigated under mixed gas. The results are shown in Figure 3.

すなわち、83図は、本実施Hにおける酸素センサの被
測定ガス側に配した多孔質導体よりなる正極の電−電位
の酸素分圧依存性を示したグツ7であり、ム°は電流を
通じない場合、1.0はそれ−eれat″/d、 1.
CK)・〜−の電流を通じた場合の電極電位変化を示し
ている。
In other words, Figure 83 shows the dependence of the electrode potential on the oxygen partial pressure of the positive electrode made of a porous conductor placed on the gas-to-be-measured side of the oxygen sensor in this implementation H. If 1.0 is -e at''/d, 1.
It shows the change in electrode potential when currents of CK) and -- are passed through.

jlJWJによれば、酸素ガス分圧の変化による電極電
位の変化は、通電しない状態では、01がI囁からto
osまで分圧変化を、起こTと−aOダ7マC対飽和カ
ロメル電極以下同じ)から−〇024IVまで変化し、
逆に190%から/襲まで酸素ガス濃度を変化させると
、−aOコ参Vから−aO6ダVまで変化し若干のヒス
テリシスを生じるが、al諷輸、/’S−過電の時は、
酸素濃度がl襲〜lの≦の変化に対し、それfれ−ai
o’iv 5−aotsv。
According to JWJ, changes in electrode potential due to changes in oxygen gas partial pressure vary from 01 to I whisper when no current is applied.
The partial pressure changes up to os, the same below the saturated calomel electrode with T and -aO da 7mC) to -0024IV,
On the other hand, when the oxygen gas concentration is changed from 190% to /'S, it changes from -aO to -aO6, causing some hysteresis.
For changes in oxygen concentration between l and l, it is
o'iv 5-aotsv.

−atatv〜−QO9tVと変化の方向によらず電位
変化の大金ざは変わらず安定であり、しかも変化に対T
る応答はTばやい。11た、この場合、電位の時間的な
変化はなく、長時間安定であった◎実−例コ 炭素粉*#す、ケッチェンブラック10419及びエツ
ナ゛ル7タ田シアニンJut濃硫醗中にて混合し、10
分後に約21の純水に落とす0−過し、水洗、乾燥する
。この混合物にテフロンエマルジ習ンCテアWン含有6
0%) j79をよく混合し、実II#A列Iと同様に
して多孔質導体よりなる正−を作製した。
-atatv~-QO9tV, the large potential change remains stable regardless of the direction of change, and
The response is quick. 11 In addition, in this case, there was no temporal change in potential and it was stable for a long time. and mix, 10
After about 21 minutes, it is filtered with 0-filtered water, washed with water, and dried. This mixture contains Teflon emulsion.
0%) j79 was thoroughly mixed and a positive conductor made of a porous conductor was prepared in the same manner as in Example II#A row I.

さらに実IIh列lと同様な方法で電極電位(―。Furthermore, the electrode potential (-) is set in the same manner as in the real IIh column 1.

対飽和カロメル電極)の酸素分圧依存性を調べた。The oxygen partial pressure dependence of the saturated calomel electrode was investigated.

結果を第参図に示T。すなわち、lI#図は1本実施例
における酸素セン賃の被測定ガス側に配した正極の電極
電位の酸素分圧依存性を示しでグラフでありSX+は電
流rt通じない場合、鴬、νはそれfn QOOI”7
6d、 QOl”Vol(D微小電流な通じた場合の電
極電位の変化を示している。
The results are shown in Figure 3. That is, the lI# diagram is a graph showing the oxygen partial pressure dependence of the electrode potential of the positive electrode placed on the measured gas side of the oxygen concentration in this example. That fn QOOI”7
6d, QOl''Vol (D shows the change in electrode potential when a small current is passed.

第参図によれば、電機電位は、0.濃度が1%からlO
O襲まで、次に100−からl−亥で変化したとき可逆
的に変化し、fi電しない場合で、−Q/6ダV(fi
飽飽和カロメル−1以下同様)から−Q/ / Jv、
 QOO/ m、y ノと@−Q2112Vか6−Q/
参7V * Q O/■シ―通電のとき−axisマか
ら一0210Vの範囲の値をとる。電位の一素分圧変化
に対応する変化はTばやく、シかも電位の時間的な変化
はみられず長期間安定であった◎ 実1sH7 炭素粉末(−〇〇メツシュ通過>109.アセチレンブ
ラック209及びf70ン粉、ili!(j(>メツシ
ュ通過)を混合し、これを円板成躯金置内にニラナル綱
とともに入れ、参〇〇IIV、Iの圧でプレスし、その
ll参OO℃の炉内で30分間加熱処理し、この電極材
料に鉄7タ曹シアニンまたはコバルト7#ロシアニンを
蒸着して含有させて正極を形成し、被測定ガス側に配置
し酸素セン賃を作製した・そして、実施日lと同様にし
て電極電位(V、対飽和カロメル電極)の岐素分圧依存
性を調べた・ 第j図は、上記実施列Jの被測定ガス側に接した電−の
無通電時の電位の酸素分圧依存性を示したグラフであり
、曲m1leは鉄フタ璽シアニンを蒸着した多孔質電極
、―纏翼はコバルト7タロシアニンを義理した多孔質電
極の電位変化を示している・酸素濃度がtSから10O
−まで変化し、次に1oosから1%盲で変化した時の
電位変化はフパルトフ#田シアニンの場合、それぞれ−
Ql!JV(対飽和力誼メル電m、以下同じ)から−a
io4Iv、−aiopから−ai参7vと変化した・
わずかなヒステリシスを生じているが、酸素分圧変化に
よる電位変化の大きさに比べてかなり小さい値であり、
問題はない。一方、鉄フ#■シアニンの場合は、いずれ
も−〇〇〇JV〜−QOI/Vの間の電位R化となり、
ヒステリシスを生じない◎鉄、コバルト崗7タロシアニ
ンの場合とも酸素分圧変化に対する電極電位の対応はT
ばやく、かつ、電極電位の時間的変化はみもれず長期安
定であった。
According to the reference figure, the electric potential is 0. Concentrations from 1% to lO
It changes reversibly when it changes from 100- to
saturated calomel -1 or less) to -Q//Jv,
QOO/ m, y ノ and @-Q2112V or 6-Q/
7V *Q O/■ Sea - When energized, it takes a value in the range of -axis to 10210V. The change in potential corresponding to the change in single-element partial pressure was T quick, but the potential did not change over time and was stable for a long period of time ◎ Actual 1sH7 carbon powder (-〇〇 mesh passage > 109. Acetylene black Mix 209 and f70 flour, ili! Heat treatment was performed in a furnace at ℃ for 30 minutes, and this electrode material was vapor-deposited to contain iron 7#cyanine or cobalt 7#cyanine to form a positive electrode, and placed on the side of the gas to be measured to create an oxygen concentration.・Then, the dependence of the electrode potential (V, vs. saturated calomel electrode) on the partial pressure of the element was investigated in the same manner as on implementation day 1. This is a graph showing the dependence of the potential on the oxygen partial pressure when no current is applied. The curve m1le shows the potential change of the porous electrode on which cyanine is deposited on the iron cap, and the porous electrode on which cobalt-7 talocyanine is deposited. It shows: Oxygen concentration is 10O from tS
-, and then from 1oos to 1% blindness, the potential changes are respectively -
Ql! From JV (versus saturation force, the same applies hereinafter) -a
io4Iv, changed from -aiop to -ai reference 7v.
Although a slight hysteresis occurs, this value is quite small compared to the magnitude of the potential change due to oxygen partial pressure change.
No problem. On the other hand, in the case of iron fluoride #■cyanine, the potential becomes R between -〇〇〇JV and -QOI/V,
Does not cause hysteresis ◎ In both cases of iron and cobalt granite 7 talocyanine, the response of the electrode potential to changes in oxygen partial pressure is T
It was quick and stable over a long period of time, with no visible changes in electrode potential over time.

実施日参 炭素粉末(λOOメツシュ通過)よ09.↑70ン1k
kl(jtOメツシュ通過)109及びt/7/コバラ
ミンQコgを混合し、これを円板成掴金蓋内にニラナル
網とともに入れ、参ooI%′cIIの圧でプレスし、
その後参〇〇℃の炉内で30分間加熱処理して多孔質電
極を作成し、酸素センtを構成した。そして、実施M/
と同様にして電極電位(V、対飽和2Iロメル電極)の
酸素分圧依存性を関べた。
Implemented ginseng carbon powder (passed through λOO mesh) 09. ↑70n 1k
Mix 109 g of kl (passed through the jtO mesh) and t/7/g of cobalamin Q, place this in a disc-forming grip lid together with a Niranal mesh, and press with a pressure of 30I%'cII.
Thereafter, a porous electrode was prepared by heat treatment in a furnace at 300°C for 30 minutes, and an oxygen center was formed. And implementation M/
The dependence of the electrode potential (V, vs. saturated 2I Romel electrode) on oxygen partial pressure was investigated in the same manner.

第6図に、上記実施例ダの被測定ガスに接した正極の無
通電時における電極電位の酸素分圧依存性を示した。
FIG. 6 shows the oxygen partial pressure dependence of the electrode potential of the positive electrode in contact with the gas to be measured in the above-mentioned example when no current is applied.

第6図によると、酸素分圧が/−から100≦まで、次
に1oosから71まで変化した場合の電極電位の変化
は、それfれ−Q/j6V(対飽和カロメル電極、以下
同じ)から−QIIダv、 −aiiダVから−Ql!
t7Vと、はぼ可逆的である。酸素分圧変化に対応して
電極の変化はTばやく、また電−電位の時間的変化はみ
られず長期安定性を示した・ 実施Mj 炭素粉末(−〇〇メツシュ通過> *g、+ツチェンブ
ラックsang、ヘモグロビン2g及びテフ璽ンエマル
ジ曹ン(テアwン含有to%)33gをよく混合し、ホ
ットプレスの時間を10分間とする以外は実WaH/と
同様な方法によって被測定ガス側に!!する多孔質導体
よりなる正極を作製した。そして、実施H7と同様にし
て酸素セン管を組上げ、電極電位(V、対飽和カロメル
電極)の酸素分圧依存性を調べた。
According to Figure 6, when the oxygen partial pressure changes from /- to 100≦ and then from 1oos to 71, the change in electrode potential is from -Q/j6V (vs. saturated calomel electrode, the same applies hereinafter). -QII da v, -aii da V to -Ql!
At t7V, it is almost reversible. The electrode changed quickly in response to changes in oxygen partial pressure, and no temporal changes in electric potential were observed, indicating long-term stability. Implementation Mj Carbon powder (passed through -〇〇 mesh > *g, + The measured gas side was prepared in the same manner as the actual WaH/, except that 33 g of Tchen Black Sang, 2 g of hemoglobin, and 33 g of Teflon emulsion carbonate (containing 1% of Teflon) were mixed well, and the hot pressing time was 10 minutes. A positive electrode made of a porous conductor was fabricated.Then, an oxygen-containing tube was assembled in the same manner as in Example H7, and the dependence of the electrode potential (V, vs. saturated calomel electrode) on oxygen partial pressure was investigated.

第7図に、上記実施Mjの被測定ガス側に接した正極の
無通電時における電極電位の酸素分圧依存性を示した。
FIG. 7 shows the dependence of the electrode potential on the oxygen partial pressure when the positive electrode in contact with the gas to be measured is not energized in the above-described implementation Mj.

#17図によると、酸素分圧が7−から1oosまで、
次に、100%からl襲まで変化した場合、電極電位は
−ai61v(対飽和力菅メル電極、以下同様)から−
aioovまでの範囲で可逆的に変化する。酸素分圧の
変化に対応する電極電位の変化は丁ばやく、また電極電
位の時間的変化はみもれず、長期的に安定であった。
#17 According to diagram, the oxygen partial pressure is from 7- to 1oos,
Next, when changing from 100% to 1, the electrode potential changes from -ai61v (versus saturation force mel electrode, the same applies hereafter) to -
It changes reversibly in the range up to aioov. The electrode potential changed quickly in response to changes in oxygen partial pressure, and the electrode potential did not change over time and was stable over a long period of time.

実施M6 炭素粉末(200メツシュ通過)ダリ、ケッチェンブラ
ック1104c及び銅7り■シアニンもしくはマンガン
7タロシアニンλgを濃硫酸中に入れ30分間混合する
。約λノの純水に落とした後、濾過し、水洗いして乾燥
する。この混合物に↑70ンエマルジ冒ン(テyvx5
60%を有)47gをよく混合し、実kH/と同様にし
て多孔質導体よりなる正極を作製した・ さらに実施IM/と同様にして酸素セン′tを組上上げ
、電極電位(1,対飽和力璽メル電極)の酸素分圧依存
性を調べた・ 第1図に本実施■における酸素センサの被測定lス備に
配し2多孔質正極の電極電位の酸素分圧依存性を示した
グラブであり、工はマンガンフタ曹シアニンを含有した
場合であり、Jは銅7#ロシアニンを含有した場合を示
している。
Implementation M6 Carbon powder (passed through 200 meshes) Dali, Ketjenblack 1104c and copper 7-cyanine or manganese-7 talocyanine λg were placed in concentrated sulfuric acid and mixed for 30 minutes. After dropping it into pure water of approximately λ, it is filtered, washed with water, and dried. Add ↑70 ml of emulsion to this mixture.
A positive electrode made of a porous conductor was prepared in the same manner as in the actual kHz/.Furthermore, the oxygen sensor was assembled and raised in the same manner as in the actual IM/, and the electrode potential (1, Figure 1 shows the oxygen partial pressure dependence of the electrode potential of the two porous positive electrodes placed in the oxygen sensor to be measured in this implementation. In the glove shown in FIG. 1, "A" indicates the case where manganese phthalate cyanine is contained, and "J" indicates the case where copper 7# cyanine is contained.

In2図によれば、電−電位は、0諺分圧を7%からt
oos、逆に、lOO%tpbi’s;:、蛮*ると、
マンガン7#ロシア品ン、銅フタロシアニンさもに可逆
的に、かつ酸素分圧の変化に丁ばやく対応して変化Tる
・上記の酸素分圧の変化に対し、マンIン7#ロシアエ
ン含有の場合で−aoii vC対飽和カロメル電極、
以下同様)から+aoosV、銅7り■シアニン含有の
場合では一〇llコVから−QO71V(/J@−で変
化する。これらの電極電位は鍛嵩分圧が=定のときは時
間的に変化せず長期間安定であった・        
           1実m剥7 多孔gIL品ツナル板(比表−槍7700’/、/)に
炭素微粉末とテフロンを交互にスプレーして両者の重量
比で5=3になるように欧付ける。ある程度乾燥したら
軽くプレスして電極の厚8を調整し、その後アルゴン雰
囲気中、100℃で30分間熱処理する。冷却後、取出
して直径JO閤の円形に切出して多孔質エツクル電極を
作製した。
According to the In2 diagram, the electric potential changes from 7% to t
oos, conversely, lOO%tpbi's;:, barbaric*,
Manganese 7#Russian and copper phthalocyanine also change reversibly and in response to changes in oxygen partial pressure.In response to the above changes in oxygen partial pressure, manganese 7#Russian contains copper phthalocyanine. In the case - aoii vC vs. saturated calomel electrode,
The same applies below) to +aoosV, and in the case of copper cyanine content, it changes from 10llcoV to -QO71V (/J@-).These electrode potentials change over time when the forging volume partial pressure is constant. It remained stable for a long time without changing.
Carbon fine powder and Teflon were alternately sprayed on a 1-meter peeled 7-hole porous GIL product tuna board (specification table - Yari 7700'/, /) so that the weight ratio of the two was 5=3. After it has dried to some extent, it is pressed lightly to adjust the electrode thickness 8, and then heat treated at 100° C. for 30 minutes in an argon atmosphere. After cooling, it was taken out and cut into a circular shape with a diameter of JO to produce a porous electrode.

この多孔質ニラナル電極の片面に鉄フタロシアニンモジ
くはコバルトフタロシアニンを薄膜となるよう注意して
蒸着して、正極を形成し蒸着fIt電解液側11面とす
る。
Iron phthalocyanine module or cobalt phthalocyanine is carefully deposited on one side of this porous niranal electrode to form a thin film to form a positive electrode, which is the 11th side facing the deposited fIt electrolyte.

こうして作製した正極を実施Hiのように酸素センヤに
組上げ、電極電位c対飽和力菅メル電極)の酸素分圧依
存性を調べた。
The thus prepared positive electrode was assembled into an oxygen sensor as in Example 1, and the dependence of the electrode potential c vs. saturation power (conductor electrode) on oxygen partial pressure was investigated.

第9図は、実施v47における酸素センナの被測定ガス
備゛に配した正極の電極電位の酸素分圧依存性を示した
グラフであり、!は鉄フタロシアニンflA着した正−
の電極電位の変化、Lはコバルトフタロシアニンを蒸着
した正極の電位変化な示している。
FIG. 9 is a graph showing the oxygen partial pressure dependence of the electrode potential of the positive electrode disposed in the gas-to-be-measured preparation of the oxygen sensor in implementation v47. is the iron phthalocyanine flA deposited positive.
, and L indicates the potential change of the positive electrode on which cobalt phthalocyanine is deposited.

第9図によると、酸素分圧の変化による電極の平衡電位
の変化は、コバルト7#ロシアニンを蒸着した場合、0
.濃度が1%からlOO≦まで変化した時、逆に、10
0−からlsまで変化した時、−(1/Il”l(対飽
和力■ノル電極。以下i4m)から−02ダ参v!!で
の範囲で着干のヒステリシスを有している・このヒステ
リシスは皺素竜ンサ用電極としての実用1何ら一蕾はな
い。一方、鉄7#ロシアエンを蒸着した場合は、一様の
0.濃度変化に対して一〇16りVから一0222N 
までヒステリシスrt4!1.するこ七なく可逆的に電
位変化Tる。
According to Figure 9, the change in the equilibrium potential of the electrode due to the change in oxygen partial pressure is 0 when cobalt 7#cyanine is deposited.
.. Conversely, when the concentration changes from 1% to lOO≦, 10
When changing from 0- to ls, it has a drying hysteresis in the range from -(1/Il"l (versus saturation force ■ Nor electrode, hereinafter referred to as i4m) to -02 das v!!. There is no hysteresis at all in practical use as an electrode for corrugated iron sensors.On the other hand, in the case of evaporating iron 7# russian, the temperature ranges from 1016 V to 10222 N for a uniform 0.0 concentration change.
Hysteresis up to rt4!1. The potential changes T reversibly without any interruption.

両者とも酸素分圧変化に対応した電位変化はすばや(、
かつ、同−酸素濃度における電位の時間的な変化はみら
れず長期間安定であった。
In both cases, the potential changes in response to changes in oxygen partial pressure are rapid (,
Moreover, no temporal change in potential was observed at the same oxygen concentration, and the potential was stable for a long period of time.

実施[1 炭素粉*(λOOメツシ:L迩過)参り、アセチレンブ
ラックコリ、ナツチェンブラック1029及び鉄フタロ
シアニンatぶり【濃硫酸に入れ30分閾攪件Tる◎そ
の後、約2Iの純水に落とし、−過、水洗いの後、乾燥
Tる。得られた混合粉体とシアノコバラ攬ンaOダ2と
tjO−の水中で攪拌し、これを約/、jtlのアセト
ン中に落とす。
Implementation [1 Carbon powder * (λOO mesh: L passing), acetylene black coli, Natsuchen black 1029 and iron phthalocyanine at the same time [Pour in concentrated sulfuric acid and stir for 30 minutes ◎ Then, add to about 2I pure water After removing, washing with water, dry. The obtained mixed powder and cyanobacterium aOda 2 and tjO- were stirred in water, and this was dropped into about 1,000 liters of acetone.

1遍し、乾燥して得た混合粉体と↑7菅ンエ!ルジ璽ン
(’F70ン60%含有)33gと管よ(混合し、ロー
ルでシート状にTる。このシートから実施M/と同様に
して多孔質導体よりなる正極な件部する〇 こうして件部しt正極を実111M/のように酸素セン
管に組上げ、電極電位(対、飽和カロメル電m)の酸素
分圧依存性を調べた。結果を第1oIIi!!lに示す
Mixed powder obtained by drying once and ↑7 Kan-e! Mix 33g of luzi (containing 60% F70) with a tube and roll it into a sheet. From this sheet, make a positive electrode made of porous conductor in the same manner as in M/. The positive electrode was assembled into an oxygen-containing tube as shown in Example 111M/, and the dependence of the electrode potential (vs. saturated calomel charge m) on oxygen partial pressure was investigated.The results are shown in Part 1oIIi!!l.

第10図によると、酸素分圧の変化による電極の平衡電
位の変化はρ、がl襲から100%の濃度まで、次にt
oosから7%まで変化した場合、−003V(対飽和
カロメル電極、以下同様)から−QO7JV の範囲で
あった・若干のヒステリシスを生じるが酸素センナ用電
極として何ら障簀はない・まセ峻素分圧の変化に対する
電位の対応は早く、かつ同一酸素分圧における電極電位
の時間的変化は見られず、高感度、長期安定な優れた酸
素センサ用電極の特性を示した。
According to Figure 10, the change in the equilibrium potential of the electrode due to the change in oxygen partial pressure is ρ, from l to 100% concentration, then t
When changing from oos to 7%, it was in the range of -003V (against saturated calomel electrode, the same applies hereinafter) to -QO7JV ・Some hysteresis occurs, but there is no problem as an electrode for oxygen senna ・Mase JV The potential responds quickly to changes in partial pressure, and no temporal changes in electrode potential were observed at the same oxygen partial pressure, demonstrating the excellent characteristics of a highly sensitive, long-term stable electrode for an oxygen sensor.

以上説明しtように、本発明の酸素センサは、被測定ガ
スに接触する正極に遷移金属の金属7り1シアニン、ジ
アノコバラミン、ヘモグロビンなどの遥参金属多lIi
機錯体を含有する多孔質導体を用いたものである◎した
がって、本発明の酸素セン管によれば、上記多孔質導体
よりなる正極は、酸素ガス1度の変化に対応してTばや
く、かつ充分利用できる電位変化の大きざな与え、かつ
長期安定性を有し優れ′F:特性を発揮し、このため、
この酸素センナは被測定ガス中の酸素濃度の変化を迅速
にかつ、確実に測定し、長期間安定な極めて信叡性の大
きい、高い実用価値を盲するものとなるO
As explained above, the oxygen sensor of the present invention has a positive electrode in contact with a gas to be measured containing various metals such as transition metals, cyanine, dianocobalamin, and hemoglobin.
◎Therefore, according to the oxygen-sensing tube of the present invention, the positive electrode made of the porous conductor can quickly respond to a 1 degree change in oxygen gas by T. It also provides a large potential change that can be used sufficiently, has long-term stability, and exhibits excellent 'F: characteristics.
This oxygen sensor quickly and reliably measures changes in the oxygen concentration in the gas being measured, is stable over a long period of time, has great reliability, and has high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

117図は本発明の酸素セン管の一列を示T嶺略断FI
IJ図、第2図は本発明の酸素センサの正極に用いられ
る多孔質導体を示T114略断m図、第3図な穫 いし總1OaI!lはいずれもこの鍾嵩センサの酸素分
圧と電極電位との関係を示Tグラフである。 l・・・・・・酸素センサ、8・・・・・・負極、8・
・・・・・電解質層、番・・・・・・正極、b・・・・
・・容醤、6・・・・・・ガス取入孔。 出−人 日本電信電話公社 第1図 第3図 第4図 第5図 0*Ra   (’4) 第6図 第7図 第8図 第9図 第11O図
Figure 117 shows a row of oxygen-sensing tubes of the present invention.
The IJ diagram and Figure 2 show the porous conductor used in the positive electrode of the oxygen sensor of the present invention. 1 is a T graph showing the relationship between the oxygen partial pressure and the electrode potential of this Jongdake sensor. l...Oxygen sensor, 8...Negative electrode, 8.
... Electrolyte layer, number ... Positive electrode, b...
... Soy sauce, 6... Gas intake hole. Source Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 3 Figure 4 Figure 5 0*Ra ('4) Figure 6 Figure 7 Figure 8 Figure 9 Figure 11O Figure

Claims (1)

【特許請求の範囲】[Claims] 負極と、酸素を含有する被測定ガスに接触する正極と、
これら両極間に設けられた電解質層とな有し、両極間の
起電力を測定して被測定ガス中の酸素濃度を検出Tる酸
素センナにおいて、正極に遷移金層多壌有機錯本を含T
iする多孔質導体t#1い七ことを特許とTる鍍索七ン
1゜
a negative electrode; a positive electrode in contact with a gas to be measured containing oxygen;
In the oxygen sensor, which has an electrolyte layer provided between these two electrodes and detects the oxygen concentration in the gas to be measured by measuring the electromotive force between the two electrodes, the positive electrode contains a transition gold layer-rich organic complex. T
Porous conductor t#1 patented and tethered 7-pin 1゜
JP57083733A 1982-05-18 1982-05-18 Oxygen sensor Pending JPS58200157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083733A JPS58200157A (en) 1982-05-18 1982-05-18 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083733A JPS58200157A (en) 1982-05-18 1982-05-18 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS58200157A true JPS58200157A (en) 1983-11-21

Family

ID=13810719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083733A Pending JPS58200157A (en) 1982-05-18 1982-05-18 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS58200157A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235016A2 (en) * 1986-02-04 1987-09-02 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Oxygen sensor
FR2640382A1 (en) * 1988-12-10 1990-06-15 Draegerwerk Ag ELECTROCHEMICAL SENSOR WITH MICROSTRUCTURED CAPILLARY OPENINGS IN THE MEASURING ELECTRODE
US5156728A (en) * 1987-02-12 1992-10-20 Terumo Kabushiki Kaisha Ion sensor
US5186808A (en) * 1988-01-29 1993-02-16 Terumo Kabushiki Kaisha Film-coated sensor
US5603820A (en) * 1992-04-21 1997-02-18 The United States Of America As Represented By The Department Of Health And Human Services Nitric oxide sensor
US6099707A (en) * 1996-03-22 2000-08-08 Doxs Technology Systems, Inc Apparatus for sensing oxygen concentration
US6758962B1 (en) 1999-09-23 2004-07-06 Doxs Technology Systems, Inc. Oxygen sensing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235016A2 (en) * 1986-02-04 1987-09-02 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Oxygen sensor
US4861454A (en) * 1986-02-04 1989-08-29 Terumo Kabushiki Kaisha Oxygen sensor
US5156728A (en) * 1987-02-12 1992-10-20 Terumo Kabushiki Kaisha Ion sensor
US5186808A (en) * 1988-01-29 1993-02-16 Terumo Kabushiki Kaisha Film-coated sensor
FR2640382A1 (en) * 1988-12-10 1990-06-15 Draegerwerk Ag ELECTROCHEMICAL SENSOR WITH MICROSTRUCTURED CAPILLARY OPENINGS IN THE MEASURING ELECTRODE
US5603820A (en) * 1992-04-21 1997-02-18 The United States Of America As Represented By The Department Of Health And Human Services Nitric oxide sensor
US6099707A (en) * 1996-03-22 2000-08-08 Doxs Technology Systems, Inc Apparatus for sensing oxygen concentration
US6758962B1 (en) 1999-09-23 2004-07-06 Doxs Technology Systems, Inc. Oxygen sensing

Similar Documents

Publication Publication Date Title
CA2150833C (en) Nanostructured electrode membranes
US5582935A (en) Composite electrode for a lithium battery
McBreen Voltammetric studies of electrodes in contact with ionomeric membranes
US4028479A (en) Flat battery
EP0044427B1 (en) Solid state electric double layer capacitor
JP2000502206A (en) Flexible thin-layer open electrochemical cell
JPH11512562A (en) Battery condition tester
JPS58200157A (en) Oxygen sensor
JP3259751B2 (en) Temperature difference battery
US3923627A (en) Miniature probe containing multifunctional electrochemical sensing electrodes
Kumar et al. Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNi5
CA1113802A (en) Mixed oxide oxygen electrode
Ghiurcan et al. Development and characterization of a thick-film printed zinc-alkaline battery
JPS6036947A (en) Method of measuring humidity and humidity sensitive element
JP3449642B2 (en) Carbon monoxide sensor
JPS63231258A (en) Sensor
Miyazaki et al. A new potential‐type humidity sensor using EMD‐based manganese oxides as a solid electrolyte
JPH01232657A (en) laminated battery
JPH05166554A (en) Storage type temperature difference battery
JPS6017867A (en) Solid electrolyte secondary battery
JPH037263B2 (en)
JPH01137066U (en)
Zhang Iron-Based Electrochemical Energy Conversion and Storage
JPS59138942A (en) Oxygen sensor
Rollino et al. Free energies of formation measurements on solid-state electrochemical cells