JPS5819638B2 - Silicon gallium - Google Patents
Silicon galliumInfo
- Publication number
- JPS5819638B2 JPS5819638B2 JP49090992A JP9099274A JPS5819638B2 JP S5819638 B2 JPS5819638 B2 JP S5819638B2 JP 49090992 A JP49090992 A JP 49090992A JP 9099274 A JP9099274 A JP 9099274A JP S5819638 B2 JPS5819638 B2 JP S5819638B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- temperature
- boat
- heating section
- gallium arsenide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 31
- 229910052710 silicon Inorganic materials 0.000 title claims description 31
- 239000010703 silicon Substances 0.000 title claims description 31
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title description 4
- 229910052733 gallium Inorganic materials 0.000 title description 4
- 239000013078 crystal Substances 0.000 claims description 65
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 38
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052785 arsenic Inorganic materials 0.000 claims description 18
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 18
- 239000010453 quartz Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 12
- 239000011651 chromium Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
本発明はボート成長法によるひ化ガリウム単結晶の製造
方法に関するもので、シリコン以外のドープすべき不純
物を広い濃度範囲にわたりドープでき、かつ転位密度の
小さい単結晶を製造することができる有用な方法を提供
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a gallium arsenide single crystal using a boat growth method, which enables doping with impurities other than silicon over a wide range of concentrations, and produces a single crystal with a low dislocation density. This provides a useful method that can be used to
先ず、ひ化ガリウムの従来の製造方法の代表的な例を挙
げ、その問題点を述べる。First, a typical example of a conventional method for producing gallium arsenide will be given, and its problems will be described.
第1図はいわゆる二温度形水平式ブリッジマン法の結晶
成長炉の構成図、炉内温度分布図および結晶成長用容器
を示す図である。FIG. 1 is a diagram showing the configuration of a so-called two-temperature horizontal Bridgman method crystal growth furnace, a temperature distribution diagram in the furnace, and a crystal growth container.
横軸はこの成長炉の内部の位置を示し、縦軸は炉内温度
を示している。The horizontal axis shows the position inside the growth furnace, and the vertical axis shows the temperature inside the furnace.
温度T、、T3はそれぞれT1=1250°−1270
℃。Temperatures T, , T3 are respectively T1 = 1250° - 1270
℃.
T 3=605°−620℃である。T3=605°-620°C.
またTmはひ化ガリウムの融点でおおよそTm=123
8℃ である。Also, Tm is the melting point of gallium arsenide, which is approximately Tm = 123
It is 8℃.
第1図において、1はひ化ガリウムの融液2を保持する
高純度石英製ボート6を収容した高純度石英製容器で、
3は成長した少量のひ化ガリウム単結晶又は高純度ひ化
ガリウムの種結晶、4はひ素(As)の蒸気圧を制御す
るための過剰ひ素である。In FIG. 1, 1 is a high-purity quartz container containing a high-purity quartz boat 6 that holds a gallium arsenide melt 2;
3 is a small amount of grown gallium arsenide single crystal or a high purity gallium arsenide seed crystal, and 4 is excess arsenic for controlling the vapor pressure of arsenic (As).
7,9は高温加熱部Aと低温加熱部Cに分けられた電気
炉を模式的に示したものである。7 and 9 schematically show an electric furnace divided into a high temperature heating section A and a low temperature heating section C.
石英容器1は予め10−5mHg以下の高真空に封入さ
れるが、容器を炉内に挿入後定常状態に達すると過剰の
ひ素4によって容器内にはひ素の蒸気が充満し約1気圧
に保たれる。The quartz container 1 is sealed in advance in a high vacuum of 10-5 mHg or less, but when the container reaches a steady state after being inserted into the furnace, the container is filled with arsenic vapor due to the excess arsenic 4 and maintained at approximately 1 atm. dripping
この状態で電気炉7゜9を石英容器1に対して相対的に
左に向って5〜50叫/時の速度で移動させることによ
ってひ化ガリウムの単結晶化ができる。In this state, gallium arsenide can be single crystallized by moving the electric furnace 7.9 to the left relative to the quartz container 1 at a speed of 5 to 50 m/hr.
ここで高温加熱部(温度Tt)と低温加熱部(温度T3
)間の温度勾配Gは10〜50℃hと太きい。Here, a high temperature heating section (temperature Tt) and a low temperature heating section (temperature T3)
The temperature gradient G between ) is as large as 10 to 50°Ch.
そのため凝固後の冷却過程において、結晶内の長手方向
に大きな温度差が生ずる。Therefore, during the cooling process after solidification, a large temperature difference occurs in the longitudinal direction within the crystal.
湿度差が生ずると熱膨張の差(格子定数の差)(こより
歪が生じ、この歪量が結晶の弾性限を越えると塑性変形
し、転位が発生又は増殖される。When a humidity difference occurs, a difference in thermal expansion (difference in lattice constant) causes strain, and when the amount of strain exceeds the elastic limit of the crystal, plastic deformation occurs and dislocations are generated or multiplied.
特にひ化ガリウムの融点直下では、塑性変形を起しやす
いので、融点直下の部分での湿度勾配Gが大きいこの方
法では、転位密度が大きくなり、小断面積(5cm以下
)の結晶でも通常2X103crrl−2以上となって
しまう。In particular, just below the melting point of gallium arsenide, plastic deformation is likely to occur. Therefore, in this method where the humidity gradient G is large just below the melting point, the dislocation density increases, and even crystals with a small cross-sectional area (5 cm or less) are usually 2X103crrl. -2 or more.
断面積が10cm1ユ上では1×104crrl−2を
越えてしまう。If the cross-sectional area is 10cm/unit, it exceeds 1×104crrl-2.
又ひ化ガリウム融液(ドープされたシリコンも含む)と
石英ボートとは次のような反応をひき起すことが知られ
ている。It is also known that the following reaction occurs between gallium arsenide melt (including doped silicon) and quartz boats.
4Ga(Ga As融液中)+5i02(固体)=2G
a20(気体)+s i・一曲−・(1)Si+5i0
2(固体)−2SiO(気体)・・・・・・・・・(2
)3Ga20(気体)+A s 4(気体)−〇a20
a(固体)+40aAs(固体)
・・・・・・・・・(3)S iO(気体)=SiO(
固体) ・・・・・・・・・(4)微量のシリコ
ンの汚染を問題にする場合には、主として(1)式と(
3成が反応に寄与してくる。4Ga (in GaAs melt) + 5i02 (solid) = 2G
a20 (gas) + s i・one song −・(1) Si+5i0
2 (solid) -2SiO (gas) (2
)3Ga20 (gas) + A s 4 (gas) -〇a20
a (solid) + 40aAs (solid)
・・・・・・・・・(3) SiO (gas) = SiO(
(solid) ・・・・・・・・・(4) When considering trace amounts of silicon contamination, mainly equation (1) and (
Three components contribute to the reaction.
一酸化ガリウム(Ga20)の蒸気は高温加熱部から低
温加熱部へ拡散していって(3)式の反応により凝縮し
、PGa2oが低下する。Gallium monoxide (Ga20) vapor diffuses from the high-temperature heating section to the low-temperature heating section and is condensed by the reaction of equation (3), resulting in a decrease in PGa2o.
PGa2oが低下すると(1)式の反応が右側へ進行す
ることになり、融液と石英ボートとが反応する、いわゆ
る「ぬれ」が進行する。When PGa2o decreases, the reaction of equation (1) proceeds to the right, and so-called "wetting" in which the melt and the quartz boat react progresses.
その結果、良質な単結晶は得られない。本発明は以上の
難点を解消し、成長したひ化ガリウム単結晶の残留シリ
コン濃度を約2 X 1015Crrl−3以下、シリ
コン以外のドープすべき不純物濃度を約3×1015C
Wl−3〜5×1019cm−3の範囲に制御でき、か
つ転位密度を約2X10”cm−2以下にすることを可
能とする製造方法を提供せんとするものである。As a result, good quality single crystals cannot be obtained. The present invention solves the above-mentioned difficulties and reduces the residual silicon concentration of the grown gallium arsenide single crystal to about 2 x 1015Crrl-3 or less, and the concentration of impurities to be doped other than silicon to about 3 x 1015C.
It is an object of the present invention to provide a manufacturing method that can control the Wl-3 to 5 x 1019 cm-3 and make it possible to reduce the dislocation density to about 2 x 10'' cm-2 or less.
本発明は上記二湿度形水平式ブリッジマン法の改良方法
である。The present invention is an improved method of the two-humidity horizontal Bridgman method.
本出願人が先に提案した三温度形水平式ブリッジ7ン法
(特公昭48−35861号参照)すなわち、
(a)結晶成長炉は約1245°−1270℃の高温加
熱部と約10800〜1220℃の中間温度加熱部とひ
素の蒸気圧がほぼ1気圧になる程度の加熱を行う低湿加
熱部を具備し、
(b) ひ化ガリウムを収容するボートとして石英ボ
ートを用い、上記石英ボートを収容する密封容器は、該
ボートを収容する室とひ素を収容する室とそれらの室の
間に設けられたひ素の蒸気の流通は認められるが、ガリ
ウムの酸化物やシリコンの酸化物の蒸気の拡散を阻害す
る細孔部とより成り、
(c)上記細孔部の上記ひ素収容室との境界線と上記中
間温度加熱部の最低温度位置との距離上。The three-temperature horizontal bridge method previously proposed by the present applicant (see Japanese Patent Publication No. 48-35861) is as follows: ℃ intermediate temperature heating section and a low humidity heating section that heats the vapor pressure of arsenic to approximately 1 atm; (b) A quartz boat is used as a boat to accommodate gallium arsenide, and the quartz boat is accommodated. A sealed container is installed between the chamber housing the boat, the chamber housing the arsenic, and the chambers, allowing the flow of arsenic vapor, but preventing the diffusion of gallium oxide or silicon oxide vapor. (c) on the distance between the boundary between the pore and the arsenic storage chamber and the lowest temperature position of the intermediate temperature heating section;
)を、上記ボートの全長(Ll)にほぼ等しくするか又
はより長くすると共に、
(d) 上記ボート内にシリコン又はシリコンを含む
非酸化物化合物、シリコン以外のドープすべき不純物、
および上記密封容器内に酸素又は酸化物(原料の酸化物
も含む)を添加して製造する方法において、上記中間温
度加熱部の温度を特に1100’−1200℃とし、上
記高温加熱部と中間温度加熱部との間の湿度勾配G(第
2図)を約2〜10 VCrnとし、かつ結晶の成長速
度を約2〜10mm/時とすることにより、単結晶中の
残留シリコン濃度を約2×1015Cnl−3以下、シ
リコン以外のドープすべき不純物濃度を約3×10Cr
rl〜5×1019crrl−3の範囲に制御し、かつ
転位密度を約2X10”z”以下にすることを特徴とす
るシリコン以外の不純物がドープされた転位密度の小さ
いひ化ガリウム単結晶の製造方法を提供するものである
。) is approximately equal to or longer than the total length (Ll) of the boat, and (d) silicon or a non-oxide compound containing silicon, an impurity other than silicon to be doped,
And in the method of manufacturing by adding oxygen or oxides (including raw material oxides) into the sealed container, the temperature of the intermediate temperature heating section is set to 1100'-1200°C, and the temperature of the intermediate temperature heating section and the intermediate temperature By setting the humidity gradient G (Fig. 2) between the heating section and the heating section to about 2 to 10 VCrn and the crystal growth rate to about 2 to 10 mm/hour, the residual silicon concentration in the single crystal can be reduced to about 2×. 1015Cnl-3 or less, the concentration of impurities to be doped other than silicon is approximately 3×10Cr
A method for producing a gallium arsenide single crystal doped with an impurity other than silicon and having a low dislocation density, which is characterized by controlling the dislocation density to be within the range of rl to 5×1019crrl-3 and making the dislocation density less than about 2×10”z”. It provides:
本発明によれば単結晶の断面積が5c77f(直径35
mm)以上において、シリコン以外の不純物がドープさ
れた転位密度の小さいひ化ガリウム単結晶を製造しうる
。According to the present invention, the cross-sectional area of the single crystal is 5c77f (diameter 35
mm) or more, a gallium arsenide single crystal doped with impurities other than silicon and having a low dislocation density can be produced.
上述のように従来の方法では断面積5c4(直径35m
mの半円)以下の小断面GaAs結晶でも転位密度は2
×1O−3Crn−2以上、又断面積が10crrt(
直径50mmの半円)以上ではI X 10’cm−2
以上の転位密度のGaAs結晶しか得られていない。As mentioned above, in the conventional method, the cross-sectional area is 5c4 (diameter 35m
Even in a GaAs crystal with a small cross section of less than 2 m semicircle, the dislocation density is 2.
×1O-3Crn-2 or more, and the cross-sectional area is 10 crrt (
I x 10'cm-2
Only GaAs crystals with dislocation densities above the above have been obtained.
後述のようにGaAs結晶は一般に(111)方向に成
長させられるので、断面積5crAは(100)断面積
で約9Cm、又断面積10cdは(100)断面積で約
15cdに相当する。As will be described later, GaAs crystals are generally grown in the (111) direction, so a cross-sectional area of 5 crA corresponds to a (100) cross-sectional area of about 9 cm, and a cross-sectional area of 10 cd corresponds to a (100) cross-sectional area of about 15 cd.
又T、S、 Plaskett et al、The
Eff−ect of Growth 0rien
tation onthe Crystal P
erfection of Ho−rizontal
Bridgman Grown GaAs、、”
Journal of Electrochemi
cal 5o−ciety、Jan、 (1971)
PP、 115〜117.によれば直径約15mmの半
円(断面積0.9tyA)の小結晶でも<013>方向
に成長した結晶のみが転位密度約1000Crrl−2
以下になったという。Also T, S, Plaskett et al, The
Effect of Growth
tation on the Crystal P
Erfection of Ho-rizontal
Bridgman Grown GaAs,”
Journal of Electrochemi
cal 5o-city, Jan, (1971)
PP, 115-117. According to , only crystals grown in the <013> direction have a dislocation density of about 1000 Crrl-2 even in a small semicircular crystal with a diameter of about 15 mm (cross-sectional area 0.9tyA).
It is said that it became below.
これに対し本発明によれば、断面積5cm−2(直径3
5mmの半円)以上の大面積GaAs結晶でも再現性よ
く転位密度が2×103Crn−2以下になるのである
。On the other hand, according to the present invention, the cross-sectional area is 5 cm-2 (diameter 3 cm-2).
Even in a large-area GaAs crystal with a diameter of 5 mm or more (a semicircle of 5 mm), the dislocation density can be reduced to 2×10 3 Crn-2 or less with good reproducibility.
又本発明においては、単結晶が成長し終って単結晶全体
が上記中間温度加熱部に位置せしめられた後、結晶成長
炉を停止し、該炉を降温させて徐冷することか適当であ
る。Furthermore, in the present invention, after the single crystal has finished growing and the entire single crystal has been placed in the intermediate temperature heating section, it is appropriate to stop the crystal growth furnace and lower the temperature of the furnace for slow cooling. .
以下に本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.
実施例 1
第2図は本発明の実施例によりひ化ガリウム単結晶を製
造する場合の三温度形水平式ブリッジマン法の結晶成長
炉の構成図、炉内温度分布図および結晶成長用容器を示
す図である。Example 1 Figure 2 shows a configuration diagram of a three-temperature horizontal Bridgman method crystal growth furnace, a temperature distribution diagram in the furnace, and a crystal growth container for manufacturing gallium arsenide single crystals according to an example of the present invention. FIG.
横軸はこの成長炉の内部の位置を示し、縦軸は炉内温度
を示している。The horizontal axis shows the position inside the growth furnace, and the vertical axis shows the temperature inside the furnace.
温度T1.T2.T3はそれぞれT1=1245°−1
270℃、T2=1100°−1200℃、T3=60
5°−620℃特に610℃である。Temperature T1. T2. T3 is T1=1245°−1 respectively
270°C, T2=1100°-1200°C, T3=60
5°-620°C, especially 610°C.
但し、過剰ひ素4の量を極めて少くすれば、T3はT2
程度まで加熱してもひ素の蒸気圧はほぼ1気圧になるの
で、場合によってはC炉を省略することができる。However, if the amount of excess arsenic 4 is extremely small, T3 becomes T2
Since the vapor pressure of arsenic is approximately 1 atm even when heated to a certain degree, the C furnace can be omitted in some cases.
第2図において、1はひ化ガリウムの融液2を保持する
高純度石英製ボート6を収容した高純度石英製容器で、
3は成長した少量のひ化ガリウム単結晶および高純度又
はシリコンをドープしたひ化ガリウムの種結晶、4はひ
素(As)の蒸気圧を制御するための過剰ひ素である。In FIG. 2, 1 is a high-purity quartz container containing a high-purity quartz boat 6 that holds a gallium arsenide melt 2;
3 is a small amount of grown gallium arsenide single crystal and a high purity or silicon-doped gallium arsenide seed crystal, and 4 is excess arsenic for controlling the vapor pressure of arsenic (As).
石英ボート6は最も簡単な形のものを示しであるが、種
結晶を用いて、いわゆるシーディングを行なう場合には
、鈴木隆、「化合物半導体の製造と問題点」、日本エコ
ノミストセンター主催講演会資料、10月20日〜10
月21日(1970)PP、1〜16に発表されて以来
採用されるようになった、いわゆる棚つきボートの棚上
に細い種結晶を置くことができる。Quartz boat 6 is shown in its simplest form, but when using seed crystals to perform so-called seeding, see Takashi Suzuki, “Production and Problems of Compound Semiconductors,” Lecture Sponsored by the Japan Economist Center. Materials, October 20th-10th
A thin seed crystal can be placed on the shelf of a so-called shelf boat, which has been adopted since it was published in May 21, 1970, PP, 1-16.
5は細孔部で、ひ素の蒸気の流通は認めるが、ガリウム
の酸化物およびシリコンの酸化物の蒸気の拡散を阻害す
る役目をする。Reference numeral 5 denotes a pore, which allows the flow of arsenic vapor, but serves to inhibit the diffusion of gallium oxide and silicon oxide vapor.
7,8゜9は各々高温加熱部A1中間温度加熱部Bおよ
び低温加熱部Cに分けられた電気炉を模式的に示してい
る。7, 8 and 9 schematically show an electric furnace divided into a high temperature heating section A1, an intermediate temperature heating section B, and a low temperature heating section C, respectively.
又Gは高濡加熱部Aと中間温度加熱部Bとの間の温度勾
配で、約2〜10℃Δであった。Further, G is the temperature gradient between the high wetness heating section A and the intermediate temperature heating section B, which was approximately 2 to 10°C Δ.
ボート6内には、最初ガリウム(純度99.9999%
)の約500gr、高純度シリコンの15mgr。Inside boat 6, gallium (purity 99.9999%) was initially
) and 15mgr of high purity silicon.
および高純度テルルの800mgr が収容され、石英
容器1内の低湿部には、ひ素(純1i99.9999%
)の約550grと高純度三酸化ひ素(As203)の
50mgr が収容された。and 800mgr of high-purity tellurium are stored in the low humidity part of the quartz container 1.
) and 50 mgr of high purity arsenic trioxide (As203).
かくしてボート6内(こ生成された溶融ひ化ガリウムと
ボート6の長手方向に(111)As方向を有するシリ
コンドープひ化ガリウム種結晶とを接続した後、電気炉
t。After connecting the molten gallium arsenide produced in the boat 6 and the silicon-doped gallium arsenide seed crystal having the (111) As direction in the longitudinal direction of the boat 6, the electric furnace t is placed.
8.9を石英容器1に対して相対的に左に向って約2〜
10mm/時の速度で移動させた。8.9 to the left relative to the quartz container 1 by about 2~
It was moved at a speed of 10 mm/hour.
溶融ひ化ガリウム結晶が全部凝固した後、30〜b 却した。After all the molten gallium arsenide crystals have solidified, 30~b Rejected.
この様(こして断面積6〜10c4.(100)断面積
にして9〜15 cm、長さ約30〜40Cmもの大面
積かつ長尺のひ化ガリウム単結晶が得られ、この結晶の
ボート側の光沢は非常によく、ボートと融液との「ぬれ
」の痕跡をも認めることができなかった。In this way, a large and long gallium arsenide single crystal with a cross-sectional area of 6 to 10 cm (100 cm) and a length of about 30 to 40 cm is obtained, and the boat side of this crystal is The gloss was very good, and no trace of "wetting" between the boat and the melt could be discerned.
なお結晶の全長にわたって良質の結晶とするには、第2
図でL2≧L1とすることが必要であった。In addition, in order to obtain a high quality crystal over the entire length of the crystal, the second
In the figure, it was necessary to set L2≧L1.
又温度勾配G(2〜10 C/l、*)と結晶の成長速
度R(2〜10mm/時)の比、いわゆるG/RはLO
G、時/1yrtより大きいことが望まし’:z)□
G≧10℃乙?772.R210mm7時、G/R≦1
0℃。Also, the ratio of the temperature gradient G (2 to 10 C/l, *) and the crystal growth rate R (2 to 10 mm/hour), so-called G/R, is LO
It is desirable that it be larger than G, hour/1yrt':z)□
G≧10℃? 772. R210mm7 o'clock, G/R≦1
0℃.
2時/C肩の場合には、断面5c肩以上の低転位密度G
aAs結晶は得られ難い。In the case of 2 o'clock/C shoulder, low dislocation density G with a cross section of 5c shoulder or higher
aAs crystals are difficult to obtain.
この結晶の長手方向に垂直な(111)Ga面を3H2
S04:lH2O□:lH2Oを用いて、室温で約10
分間エツチングしてエッチピット密度を測定した結束、
転位密度が結晶の先端部で約1000cm−2、後端部
で約1500cm−2である事が分った。The (111) Ga plane perpendicular to the longitudinal direction of this crystal is 3H2
Using S04:lH2O□:lH2O, about 10
The bundle was etched for minutes and the etch pit density was measured.
It was found that the dislocation density was approximately 1000 cm-2 at the tip of the crystal and approximately 1500 cm-2 at the rear end.
又この結晶の(100)面を溶融KOHで約8分間エツ
チングしてエッチピット密度を測定した結果、はゾ同じ
結果が得られた。Furthermore, when the (100) plane of this crystal was etched with molten KOH for about 8 minutes and the etch pit density was measured, very similar results were obtained.
さらにこの結晶をファンデルパラ法によってホール係数
を測定した結果、295°にでのキャリヤー濃度が先端
部で1×1018CrrI−3、後端部で3 X 10
18cm ”である事が分った。Furthermore, as a result of measuring the Hall coefficient of this crystal by the van der Para method, the carrier concentration at 295° was 1 x 1018 CrrI-3 at the tip and 3 x 10 at the rear end.
It turned out to be 18 cm.
なお質量分析の結果シリコン濃度は約1×1015m
であった。As a result of mass spectrometry, the silicon concentration is approximately 1 x 1015 m
Met.
実施例 2 実施例1と同様の製造方法が採用された。Example 2 A manufacturing method similar to Example 1 was adopted.
ただし、ボート6内には実施例1の高純度テルルの代り
(こ高純度クロムの400mgrが収容された。However, instead of the high-purity tellurium in Example 1, 400 mg of high-purity chromium was stored in the boat 6.
得られた結果は、転位密度が結晶の先端部で約1200
cm−2、後端部で約1600CWl”である事が分っ
た。The obtained results show that the dislocation density is approximately 1200 at the tip of the crystal.
cm-2, and approximately 1600 CWl'' at the rear end.
又295°にでの比電気抵抗率が結晶全体にわたって1
06 ohm−tm 以上の半絶縁性ひ化ガリウム単結
晶が得られた。Also, the specific electrical resistivity at 295° is 1 throughout the crystal.
A semi-insulating gallium arsenide single crystal of 0.06 ohm-tm or higher was obtained.
質量分析の結果クロム濃度は約4 X 1015cm−
3、シリコン濃度は約1×1015CrrL−3、酸素
濃度は約1刈017Crrl−3であった。As a result of mass spectrometry, the chromium concentration is approximately 4 x 1015 cm-
3. The silicon concentration was approximately 1×10 15 Crrl-3, and the oxygen concentration was approximately 1×10 17 Crrl-3.
実施例1および2の効果は次のように説明される。The effects of Examples 1 and 2 are explained as follows.
■ 高温加熱部と低温加熱部間の温度勾配Gが2〜10
°Gと従来の方法に比べて小さいため、凝固後の冷却過
程において結晶内の長手方向の温度差が小さく、又成長
速度が2〜10w/時と小さいため、結晶内の半径方向
の温度差も小さくなるので、熱歪が少すく、転位が発生
又は増殖しない。■ Temperature gradient G between high temperature heating section and low temperature heating section is 2 to 10
°G is small compared to the conventional method, so the temperature difference in the longitudinal direction within the crystal is small during the cooling process after solidification, and the growth rate is small at 2 to 10 W/hour, so the temperature difference in the radial direction within the crystal is small. Since the temperature is also small, thermal strain is small and dislocations do not occur or multiply.
■ 凝固完了後の冷却速度が約り0℃/時と小さいため
、結晶の内、9′+部の温度差が小さくなるので、熱歪
が少なく、転位が発生又は増殖しなG)。(2) Since the cooling rate after solidification is as low as approximately 0°C/hour, the temperature difference in the 9'+ part of the crystal is small, so there is little thermal strain and no dislocations occur or multiply.G).
■ (1)式の一酸化ガリウム(Ga 2Q)の蒸気は
中間温度加熱部の温度T2が1100°−1200℃と
高いため凝縮しない。(1) The vapor of gallium monoxide (Ga 2Q) in formula (1) does not condense because the temperature T2 of the intermediate temperature heating section is as high as 1100°-1200°C.
すなわち(3成は右側へ進行しないため、PGa2oの
低下は起らない。That is, (because the ternary does not proceed to the right, no decrease in PGa2o occurs.
その結果(ト)式は右側へ進行しないため、「ぬれ」は
起らないと考えられる。As a result, equation (g) does not proceed to the right, so it is considered that "wetting" does not occur.
この中間湛度帯の役割を示したのが第3図である。Figure 3 shows the role of this intermediate watershed zone.
第3図は本発明によってひ化ガリウム中の残留シリコン
の濃度をコントロールできる範囲を説明する図で、横軸
は中間湿度加熱部の温度T2の逆数を示し、左の縦軸は
ひ化ガリウム融液中のシリコンの活量(aSi)を示し
、右の縦軸は得られた結晶中の残留シリコンの濃度N
・ を示していSす
る。FIG. 3 is a diagram explaining the range in which the concentration of residual silicon in gallium arsenide can be controlled by the present invention. The activity of silicon in the liquid (aSi) is shown, and the vertical axis on the right is the concentration N of residual silicon in the obtained crystal.
・It shows S.
図の直線10−aは(4弐の、直線10−bは;(3)
式の平衡関係を示している。The straight line 10-a in the figure is (42), and the straight line 10-b is (3)
It shows the equilibrium relationship of Eq.
残留シリコン濃度が制御されるにはT2は1045℃<
T 2(yx −p −の範囲であることが必要である
が、実験的に良質な単結晶を得るには、1050℃〈T
2〈1200℃ である事が必要であった。To control the residual silicon concentration, T2 must be 1045°C<
It is necessary that T 2 (yx −p −) be in the range of 1050°C <T
2. It was necessary that the temperature be 1200℃.
特に本発明により結晶中の残留シリコン濃度Nsi が
約2×1015cm−3以下である良質な単結晶を得る
には、T2の温度が約1100’−1200℃でなけれ
ばならないことが分る。In particular, in order to obtain a high quality single crystal in which the residual silicon concentration Nsi in the crystal is approximately 2.times.10@15 cm@-3 or less according to the present invention, it is found that the temperature T2 must be approximately 1100'-1200 DEG C.
本発明の方法は、ドープされる不純物として実・施例で
述べたテルル(Te )やクロム(Cr )の他にも、
亜鉛(Zn )、錫(Sn)、カドミウム(Cd )、
鉄(Fe)r、、Cどをドープする場合にも適用できる
。In addition to the tellurium (Te) and chromium (Cr) mentioned in the Examples, the method of the present invention can also be used as impurities to be doped.
Zinc (Zn), tin (Sn), cadmium (Cd),
It can also be applied to doping with iron (Fe), C, etc.
以上詳述した如く、本発明の方法は、シリコン以外の不
純物がドープされたひ化ガリウム単結晶、の製造におい
て、結晶中の残留シリコン濃度を約2×1015Crr
l−3以下、シリコン以外のドープすべき不純物濃度を
約3 X 10′5cm”〜5X1019cm−3の範
囲にわたって制御でき、かつ転位密度を約2×103c
m−2以下にできる方法を提供す・るものである。As detailed above, the method of the present invention reduces the residual silicon concentration in the crystal to approximately 2×10 15 Cr in the production of a gallium arsenide single crystal doped with impurities other than silicon.
l-3 or less, the concentration of impurities to be doped other than silicon can be controlled over the range of about 3 x 10'5 cm'' to 5 x 1019 cm-3, and the dislocation density can be controlled to about 2 x 103 c.
The purpose is to provide a method that can reduce the amount of energy to less than m-2.
第1図はひ化ガリウム結晶を従来の方法によって製造す
る場合の結晶成長炉の構成図、炉内温度分布図および結
晶成長用容器を示す図である。
第2図は本発明の実施例によりひ化ガリウム結晶を製造
する場合の結晶成長炉の構成図、炉内温度分布図および
結晶成長用容器を示す図である。
第3図は本発明によってひ化ガリウム中の残留シリコン
の濃度はコントロールできる範囲を説明する図である。
図において、1は石英製容器、2はひ化ガリウム融液、
3は結晶したひ化ガリウム、4は過剰ひ素、5は細孔部
、6は石英ボート、7は高温加熱部、8は中間温度加熱
部、9は低湿加熱部である。FIG. 1 is a diagram showing a configuration diagram of a crystal growth furnace, a temperature distribution diagram in the furnace, and a crystal growth container when manufacturing gallium arsenide crystals by a conventional method. FIG. 2 is a diagram showing a configuration diagram of a crystal growth furnace, a temperature distribution diagram in the furnace, and a crystal growth container when producing gallium arsenide crystals according to an embodiment of the present invention. FIG. 3 is a diagram illustrating the range in which the concentration of residual silicon in gallium arsenide can be controlled by the present invention. In the figure, 1 is a quartz container, 2 is a gallium arsenide melt,
3 is crystallized gallium arsenide, 4 is excess arsenic, 5 is a pore section, 6 is a quartz boat, 7 is a high temperature heating section, 8 is an intermediate temperature heating section, and 9 is a low humidity heating section.
Claims (1)
法、すなわち、 (a)結晶成長炉は、約1245°−1270℃の高温
加熱部と約1080°−1220℃の中間温度加熱部と
ひ素の蒸気圧がほぼ1気圧になる程度の加熱を行う低温
加熱部を具備し、 (b) ひ化ガリウムを収容するボートとして石英ボ
ートを用い、上記石英ボートを収容する密封容器は、該
ボートを収容する室とひ素を収容する室とそれらの室の
間に設けられたひ素の蒸気の流通は認められるが、ガリ
ウムの酸化物やシリコンの酸化物の蒸気の拡散を阻害す
る細孔部とより成り、 (c)上記細孔部の上記ひ素収容室との境界線と上記中
間温度加熱部の最低−r=1位置との則瓢L 2 )を
、上記ボートの全長(L、)にほぼ等しくするか又はよ
り長くすると共に、 (d) 上記ボート内にシリコン又はシリコンを含む
非酸化物化合物、シリコン以外のドープすべき不純物、
および上記密封容器内に酸素又は酸化物(原料の酸化物
も含む)を添加して製造する方法において、上記中間湿
度加熱部の温度を特に1100°−1200℃とし、上
記高温加熱部と中間温度加熱部との間の温度勾配G(第
2図)を約2〜10 C/lynとし、かつ結晶の成長
速度4約2〜10m/時とすることにより、単結晶中の
残留シリコン濃度を約2 X 1015cm ”以下シ
リコン以外のドープすべき不純物濃度を約3×10 C
n1 〜5×1019cm−3の範囲に制御し、かつ転
位密度を約2 X 103cm ”以下にすることを
特徴とするシリコン以外の不純物がドープされた転位密
度の小さいひ化ガリウム単結晶の製造方法。[Claims] 1. A gallium arsenide single crystal is grown using the three-humidity horizontal Bridgman method: It is equipped with an intermediate-temperature heating section and a low-temperature heating section that heats the vapor pressure of arsenic to approximately 1 atm; (b) A quartz boat is used as a boat for accommodating gallium arsenide, and a sealed vessel for accommodating the quartz boat is provided. A container is provided between the chamber containing the boat and the chamber containing arsenic, which allows the flow of arsenic vapor, but prevents the diffusion of gallium oxide and silicon oxide vapor. (c) The law L 2 ) between the boundary line of the pore with the arsenic storage chamber and the lowest -r=1 position of the intermediate temperature heating section is defined as the total length of the boat. (L,) approximately equal to or longer than (d) silicon or a non-oxide compound containing silicon in the boat, an impurity to be doped other than silicon;
And in the method of manufacturing by adding oxygen or oxides (including raw material oxides) into the sealed container, the temperature of the intermediate humidity heating section is set to 1100° to 1200°C, and the temperature of the intermediate humidity heating section and the intermediate temperature By setting the temperature gradient G (Fig. 2) between the heating part and the heating part to about 2 to 10 C/lyn and the crystal growth rate 4 to about 2 to 10 m/hour, the residual silicon concentration in the single crystal can be reduced to about 2 to 10 m/hour. 2 x 1015 cm" or less, the concentration of impurities to be doped other than silicon is approximately 3 x 10 C.
A method for producing a gallium arsenide single crystal doped with an impurity other than silicon and having a low dislocation density, characterized by controlling n1 to 5 x 1019 cm-3 and making the dislocation density less than about 2 x 103 cm''. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49090992A JPS5819638B2 (en) | 1974-08-07 | 1974-08-07 | Silicon gallium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49090992A JPS5819638B2 (en) | 1974-08-07 | 1974-08-07 | Silicon gallium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5118472A JPS5118472A (en) | 1976-02-14 |
JPS5819638B2 true JPS5819638B2 (en) | 1983-04-19 |
Family
ID=14013999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49090992A Expired JPS5819638B2 (en) | 1974-08-07 | 1974-08-07 | Silicon gallium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5819638B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61195828A (en) * | 1985-02-27 | 1986-08-30 | 昭和飛行機工業株式会社 | honeycomb panel |
JPH0645517B2 (en) * | 1985-09-10 | 1994-06-15 | 住友電気工業株式会社 | Method for producing compound semiconductor single crystal |
JPH02121831A (en) * | 1988-10-31 | 1990-05-09 | Nissan Shatai Co Ltd | Honeycomb structure and manufacture thereof |
WO2000021105A1 (en) * | 1998-10-02 | 2000-04-13 | Hitachi, Ltd. | Vacuum switch gear |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832920A (en) * | 1971-09-03 | 1973-05-04 | ||
JPS4835861A (en) * | 1971-09-09 | 1973-05-26 |
-
1974
- 1974-08-07 JP JP49090992A patent/JPS5819638B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832920A (en) * | 1971-09-03 | 1973-05-04 | ||
JPS4835861A (en) * | 1971-09-09 | 1973-05-26 |
Also Published As
Publication number | Publication date |
---|---|
JPS5118472A (en) | 1976-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030315A (en) | Methods of manufacturing compound semiconductor crystals and apparatus for the same | |
EP0244987B1 (en) | A process for growing a multi-component crystal | |
Greene | Growth of GaAs ingots with high free electron concentrations | |
JPS5819638B2 (en) | Silicon gallium | |
Bachmann et al. | The growth of InP crystals from the melt | |
US5728212A (en) | Method of preparing compound semiconductor crystal | |
Gille et al. | Crystal growth of PbTe and (Pb, Sn) Te by the Bridgman method and by THM | |
JPH10167898A (en) | Method for producing semi-insulating GaAs single crystal | |
US3494730A (en) | Process for producing cadmium telluride crystal | |
US3290181A (en) | Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system | |
US3322501A (en) | Preparation of gallium arsenide with controlled silicon concentrations | |
US4612082A (en) | Arsenic cell stabilization valve for gallium arsenide in-situ compounding | |
JPS5819637B2 (en) | Silicon doped gallium tank | |
JPH0365593A (en) | Single crystal growing apparatus | |
JPS62288186A (en) | Production of compound semiconductor single crystal containing high vapor pressure component | |
US5007979A (en) | Method of fabricating GaAs single crystal | |
JP3788156B2 (en) | Method for producing compound semiconductor single crystal and PBN container used therefor | |
JPS62230694A (en) | Production of gaas single crystal | |
Plaskett | The Synthesis of Bulk GaP from Ga Solutions | |
KR930000903B1 (en) | Temperature control method of low temperature part of single crystal of III-V compound semiconductor | |
KR950013003B1 (en) | Polycrystalline Growth Method for Gallium Arsenide Single Crystal Growth | |
JP2873449B2 (en) | Compound semiconductor floating zone melting single crystal growth method | |
JP2576239B2 (en) | Compound semiconductor crystal growth equipment | |
JPS61158896A (en) | Method for producing compound semiconductor single crystal and apparatus therefor | |
JPH03193693A (en) | Method for growing mixed crystal of compound semiconductor |