[go: up one dir, main page]

JPH03193693A - Method for growing mixed crystal of compound semiconductor - Google Patents

Method for growing mixed crystal of compound semiconductor

Info

Publication number
JPH03193693A
JPH03193693A JP33452889A JP33452889A JPH03193693A JP H03193693 A JPH03193693 A JP H03193693A JP 33452889 A JP33452889 A JP 33452889A JP 33452889 A JP33452889 A JP 33452889A JP H03193693 A JPH03193693 A JP H03193693A
Authority
JP
Japan
Prior art keywords
crystal
raw material
compound semiconductor
material solution
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33452889A
Other languages
Japanese (ja)
Inventor
Masashi Yamashita
正史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33452889A priority Critical patent/JPH03193693A/en
Publication of JPH03193693A publication Critical patent/JPH03193693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、発光ダイオード等に用いられるAlGaAs
、 InGaAs、 AlGaAs、 HgCdTe等
化合物半導体混晶C成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application]
, InGaAs, AlGaAs, HgCdTe, etc. compound semiconductor mixed crystal C growth method.

[従来の技術] 従来、化合物半導体混晶は、主にGaAs、 lnPに
代表される二元化合物半導体を材料とする基板上のエピ
タキシャル成長により得られて℃する。また、化合物半
導体混晶をバルク結晶で成長させる方法として、例えば
特公昭52−2344号公報に示される方法も試みられ
ている。
[Prior Art] Conventionally, compound semiconductor mixed crystals have been obtained by epitaxial growth on a substrate made of a binary compound semiconductor, typically GaAs or lnP, at a temperature of .degree. Furthermore, as a method for growing a compound semiconductor mixed crystal in bulk crystal form, a method disclosed in Japanese Patent Publication No. 52-2344, for example, has also been attempted.

[発明が解決しようとする問題点コ 化合物半導体混晶が成長する上での障害は偏析現象によ
り成長方向で構成元素の組成が変化し、所望の組成の結
晶が効率よく得られな11)ことである。この問題を解
決する手段とし下原料溶液番こ固体原料を接触させて、
原料溶液の組成を一定4と保つ方法が考案されている。
[Problems to be Solved by the Invention] An obstacle to the growth of compound semiconductor mixed crystals is that the composition of the constituent elements changes in the growth direction due to segregation phenomena, making it difficult to efficiently obtain crystals with the desired composition11) It is. As a means to solve this problem, the raw material solution is brought into contact with the solid raw material,
A method of keeping the composition of the raw material solution constant 4 has been devised.

しかし、この方法は化学量論的の溶液からの成長を前提
とした高温での成長であり、構成元素の解離を抑えるた
めに液体封止剤を用いる必要があり、AI等の酸化性の
強へ1元素を構成元素に持つ系には適用できな0゜[問
題を解決するための手段] 本発明は、化合物半導体化合物混晶の構成元素であるG
aとAsよりなる二元系化合物半導体結晶GaAs、 
Gaとsbよりなる二元系化合物半導体結晶GaSb、
 CdとTeよりなる二元系化合物半導体結晶CdTe
結晶等二元系化合物半導体結晶を、半導体化合物混晶を
成長させる原料溶液の底にチャージし、さらに前記混晶
の構成元素のうち一つを細孔を通じて前記原料溶液に供
給させながら結晶成長を進行させることを特徴とする化
合物半導体混晶の成長方法である。
However, this method requires growth at high temperatures based on the premise of growth from a stoichiometric solution, and requires the use of a liquid sealant to suppress the dissociation of constituent elements. [Means for solving the problem] The present invention is applicable to systems having one element as a constituent element, G, which is a constituent element of a compound semiconductor compound mixed crystal.
Binary compound semiconductor crystal GaAs consisting of a and As,
Binary compound semiconductor crystal GaSb consisting of Ga and sb,
Binary compound semiconductor crystal CdTe consisting of Cd and Te
A binary compound semiconductor crystal such as a crystal is charged to the bottom of a raw material solution for growing a semiconductor compound mixed crystal, and the crystal is grown while one of the constituent elements of the mixed crystal is supplied to the raw material solution through the pores. This is a method for growing a compound semiconductor mixed crystal, which is characterized by the step of growing a compound semiconductor mixed crystal.

例えばN AlGaAs混晶を成長させる場合、Gaの
構成比の高い原料溶液を用いることによって低温、水素
雰囲気、低圧での成長が可能になる。この場合結晶の成
長に伴っ下原料溶液中のA1及びAsの比率が減少し、
一定温度では結晶成長の継続ができない。そこで固体の
GaAsを原料溶液に接触させることによりAsを供給
する。溶液とGaAs結晶の界面の温度を一定に保てば
、原料溶液には結晶を成長させるのに必要なAsが自動
的に供給される。さらに溶液中のA i 714度を一
定に保つために、結晶の成長量に合わせて細孔より液体
の金属AIを供給する。以上の方法によりA1組成の一
定なAlGaAs混晶を成長させることができる。
For example, when growing a N AlGaAs mixed crystal, using a raw material solution with a high composition ratio of Ga allows growth at low temperature, hydrogen atmosphere, and low pressure. In this case, as the crystal grows, the ratio of A1 and As in the raw material solution decreases,
Crystal growth cannot continue at a constant temperature. Therefore, As is supplied by bringing solid GaAs into contact with the raw material solution. By keeping the temperature at the interface between the solution and the GaAs crystal constant, the As necessary for growing the crystal is automatically supplied to the raw material solution. Further, in order to keep the A i in the solution constant at 714 degrees, liquid metal AI is supplied through the pores in accordance with the amount of crystal growth. By the above method, an AlGaAs mixed crystal having a constant A1 composition can be grown.

以下、本発明の実施について説明する。第1図は本発明
が実施できる成長装置の一例を示し、まずこの装置の、
概略を説明する。
Hereinafter, implementation of the present invention will be explained. FIG. 1 shows an example of a growth apparatus in which the present invention can be carried out.
Explain the outline.

図において、5は外るつぼ、4は内るつぼを示し、いず
れも高純度カーボンを材料としたものである。内るつぼ
4の側壁には後述の原料溶液1の存在する位置で内外に
連通ずる細孔8が形成され、また副軸6を備え、外るつ
ぼ5に挿入された杖態で上下方向に自在に駆動できる構
造をなし、外るつぼ5の底部に液体があるときは、内る
っぽ4の底部外侮がピストン作用をし、外るっぽ5め底
部にある液体を押し上げ、液体は前記細孔8のレベルに
達し、該細孔8より液体はるつぼ4の内側に注入できる
構造となっている。
In the figure, 5 indicates an outer crucible, and 4 indicates an inner crucible, both of which are made of high-purity carbon. A pore 8 is formed in the side wall of the inner crucible 4 at a position where a raw material solution 1 (to be described later) is present, and the pore 8 communicates with the inside and outside. When there is liquid at the bottom of the outer crucible 5, the bottom outer part of the inner crucible 4 acts as a piston, pushing up the liquid at the bottom of the outer crucible 5, and the liquid flows into the pores. 8, and the liquid can be injected into the crucible 4 through the pores 8.

図示していないが、外るつぼ5を囲みヒータが区分して
配置され、前記内るつぼ4の上方には、垂直方向におい
て、回転できる引き上げ軸7が設置される。なお、図示
していないが引き上げ軸7は重量センサーに取り付けら
れており、これら内外るつぼ、引き上げ軸7の一部は容
器中に収納されている。
Although not shown, heaters are arranged in sections surrounding the outer crucible 5, and above the inner crucible 4, a pulling shaft 7 that can rotate in the vertical direction is installed. Although not shown, the pulling shaft 7 is attached to a weight sensor, and the inner and outer crucibles and a portion of the pulling shaft 7 are housed in a container.

[実施例コ 原料溶液1としてGaGa100OGaAs結晶25.
20g、 klを1.[i0Gg投入した。内るつぼ4
の底部に直径75mmのGaAs結晶1200gがチャ
ージされている。一方外るつぼ5にはAr110g投入
した。
[Example - GaGa100OGaAs crystal 25.
20g, kl 1. [i0Gg was added. inner crucible 4
1200 g of GaAs crystals with a diameter of 75 mm are charged at the bottom of the tube. On the other hand, 110 g of Ar was charged into the outer crucible 5.

高純度■2雰囲気中で800℃まで昇温した後、副軸6
の駆動により、るつぼ5の底部にある溶融したAIの溶
液3を細孔8を通し下原料溶液1と連通させる。安定の
後、引き上げ軸7にセットしたAlGaAsの種結晶9
を原料溶液1につけ込み、成長を開始した。引き上げ軸
7は上述のように重量センサに取りつけられており、こ
れにより成長中の結晶の重量を監視できる。結晶重量に
データを元にヒーターの出力を調整し、結晶の径制御を
行うとともに、成長した結晶の重量の0.109倍のA
I溶液が原料溶液中に注入されるように副軸6を駆動し
た。成長結晶の径制御及び副軸の駆動はコンピューター
制御によって行った。種結晶9は< 100>方向を軸
としたAI組組成が0.5のAlGaAs単結晶を用い
、成長速度は2m−/h1回転速度はQ rpmとした
。得られた結晶の直胴部の直径が50■、重量1kgの
インゴットである。結晶中の成長方向のA1組成を分析
すると全領域にわたってX=0.5と均一であった。
High purity ■2 After heating up to 800℃ in an atmosphere, the secondary shaft 6
, the molten AI solution 3 at the bottom of the crucible 5 is communicated with the lower raw material solution 1 through the pores 8 . After stabilization, the AlGaAs seed crystal 9 set on the pulling shaft 7
was soaked in raw material solution 1 to start growth. The pulling shaft 7 is attached to a weight sensor as described above, so that the weight of the growing crystal can be monitored. The output of the heater is adjusted based on the data on the crystal weight, the diameter of the crystal is controlled, and the A of 0.109 times the weight of the grown crystal is
The subshaft 6 was driven so that the I solution was injected into the raw material solution. Control of the diameter of the grown crystal and driving of the secondary axis were performed by computer control. The seed crystal 9 was an AlGaAs single crystal with an AI group composition of 0.5 with the <100> direction as its axis, and the growth rate was 2 m-/h1 and the rotation speed was Q rpm. The resulting crystal was an ingot with a diameter of 50 cm and a weight of 1 kg. Analysis of the A1 composition in the growth direction in the crystal revealed that it was uniform over the entire region with X=0.5.

なお、前記の実施例では原料溶液にGaAs結晶25.
20gをを入れているが、これは原料溶液の温度800
℃において溶解可能なGaAsの量である。このような
GaAs結晶をあえて用意せずに、Al−Ga溶液に飽
和量のGaAsが内るつぼの底から補給されるのを待っ
た後に、成長を開始することは原理的に可能であるが、
より速やかに飽和量のGaAsを含んだAl−Ga溶液
を作るために、上記実施例の方法を採ったのである。
In the above embodiment, GaAs crystals were added to the raw material solution.
20g is added, which means that the temperature of the raw material solution is 800.
It is the amount of GaAs that can be dissolved at ℃. In principle, it is possible to start growth without preparing such a GaAs crystal, and after waiting for the Al-Ga solution to be replenished with a saturated amount of GaAs from the bottom of the inner crucible.
In order to more quickly produce an Al--Ga solution containing a saturated amount of GaAs, the method of the above embodiment was adopted.

次にAlGaSb混晶の成長については、るつぼの底に
GaSb結晶をチャージし、その上にGa、 GaSb
結晶、AIの原料溶液を用意し、AI融液を供給する方
法で実施する。
Next, regarding the growth of AlGaSb mixed crystal, a GaSb crystal is charged at the bottom of the crucible, and Ga, GaSb
The method is carried out by preparing raw material solutions of crystals and AI and supplying an AI melt.

また、InGaAs混晶の成長については、るつぼの底
にInAs結晶、その上に+n、 InAs結晶、Ga
の原料溶液を用意し、Ga融液を供給するか、るつぼの
底にGaAs結晶を用意し、In融液を供給する方法で
も実施することができる。
In addition, regarding the growth of InGaAs mixed crystal, an InAs crystal is placed at the bottom of the crucible, and +n, InAs crystal, and Ga are placed on top of it.
It can also be carried out by preparing a raw material solution and supplying a Ga melt, or by preparing a GaAs crystal at the bottom of a crucible and supplying an In melt.

更に、HgCdTeについては、HgTe結晶をるつぼ
の底にチャージし、その上に、Te、 ′F4)Te結
晶の原料溶液を用意し、cd溶液を補給する方法で実施
することができる。
Furthermore, for HgCdTe, it can be carried out by charging HgTe crystals at the bottom of a crucible, preparing a raw material solution of Te, 'F4)Te crystals on top of the crucible, and replenishing the CD solution.

以上の本発明実施例から理解できるように、原料溶液の
充たされるるつぼの底に、成長される三元系化合物半導
体結晶に含まれる二元系化合物半導体結晶をチャージす
るとともに前記原料溶液中に前記二元系化合物半導体結
晶を形成する元素以外の元素を液体として注入し、いず
れにしても原料溶液から結晶が析出される時に発生する
元素の横゛成比の変化を打ち消すような方法を選ぶよう
にし、結晶と一定の比率で原料溶液に供給するようにし
ている。
As can be understood from the above embodiments of the present invention, the binary compound semiconductor crystal contained in the ternary compound semiconductor crystal to be grown is charged to the bottom of the crucible filled with the raw material solution, and the We recommend choosing a method that injects elements other than the elements that form the binary compound semiconductor crystal as a liquid, thereby canceling out changes in the composition ratio of the elements that occur when crystals are precipitated from the raw material solution. The crystals are then supplied to the raw material solution at a fixed ratio.

[発明の効果] 本発明によれば、化合物半導体混晶を成長させる組成の
制御が容易となり、均一な組成を有する化合物半導体混
晶を大量に得ることができる。
[Effects of the Invention] According to the present invention, the composition for growing a compound semiconductor mixed crystal can be easily controlled, and a large amount of compound semiconductor mixed crystals having a uniform composition can be obtained.

As等を構成元素とするものにおいても液体封止剤を用
いることなく、且つ低圧にて化合物半導体混晶を成長さ
せることができる。
Even when the constituent element is As, a compound semiconductor mixed crystal can be grown at low pressure without using a liquid sealant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置を示す。 1・・・原料溶液、2・・・GaAs等二元系化合物半
導体結晶、3・・・A1等溶液、4・・・内るっぽ、5
・・・外るっぽ、6・・・副軸、7・・・引き上げ軸、
8・・・細孔、9・・・種結晶、10・・・1jGaA
s等混晶。
FIG. 1 shows an apparatus for implementing the invention. 1... Raw material solution, 2... Binary compound semiconductor crystal such as GaAs, 3... Solution such as A1, 4... Inner Ruppo, 5
...outer shaft, 6...secondary shaft, 7...pull shaft,
8... Pore, 9... Seed crystal, 10... 1jGaA
Mixed crystals such as s.

Claims (2)

【特許請求の範囲】[Claims] (1)原料溶液の底部に二元系化合物半導体結晶をチャ
ージし、さらに構成元素のうち、ひとつを細孔を通じ下
原料溶液に供給させながら結晶成長を進行させることを
特徴とする化合物半導体混晶の成長方法。
(1) A compound semiconductor mixed crystal characterized in that a binary compound semiconductor crystal is charged at the bottom of a raw material solution, and one of the constituent elements is further supplied to the lower raw material solution through pores while crystal growth progresses. How to grow.
(2)原料溶液の底部にGaAs結晶をチャージし、さ
らに細孔により原料溶液と連通しているAl溶液をピス
トン機構により、強制的に、且つ成長している結晶と一
定の比率で原料溶液に供給させながら結晶成長を進行さ
せることを特徴とするAlGaAs混晶の成長方法。
(2) Charge GaAs crystals at the bottom of the raw material solution, and then use a piston mechanism to force the Al solution, which is in communication with the raw material solution through pores, into the raw material solution at a constant ratio with the growing crystals. A method for growing an AlGaAs mixed crystal, characterized by progressing crystal growth while supplying the crystal.
JP33452889A 1989-12-21 1989-12-21 Method for growing mixed crystal of compound semiconductor Pending JPH03193693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33452889A JPH03193693A (en) 1989-12-21 1989-12-21 Method for growing mixed crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33452889A JPH03193693A (en) 1989-12-21 1989-12-21 Method for growing mixed crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH03193693A true JPH03193693A (en) 1991-08-23

Family

ID=18278414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33452889A Pending JPH03193693A (en) 1989-12-21 1989-12-21 Method for growing mixed crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH03193693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122588A (en) * 1992-05-25 1994-05-06 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Method for producing oxide crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122588A (en) * 1992-05-25 1994-05-06 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Method for producing oxide crystal

Similar Documents

Publication Publication Date Title
JP3924604B2 (en) Gallium arsenide single crystal
JP4586154B2 (en) Gallium arsenide single crystal manufacturing equipment
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
EP0186213A2 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
CN1070009A (en) The method and apparatus of Grown by CZ Method gallium antimonide monocrystalline
JPH03193693A (en) Method for growing mixed crystal of compound semiconductor
EP0104741A1 (en) Process for growing crystalline material
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH10259100A (en) Method for producing GaAs single crystal
JPH11147785A (en) Single crystal manufacturing method
JPH06128096A (en) Production of compound semiconductor polycrystal
JP3840683B2 (en) Single crystal pulling method
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP3885245B2 (en) Single crystal pulling method
JPS58217496A (en) Method and device for pulling-up single crystal of compound semiconductor
JP3313412B2 (en) Method and apparatus for manufacturing semiconductor crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2539841B2 (en) Crystal manufacturing method
JP2830290B2 (en) Single crystal growing method and apparatus
JPH02167883A (en) Compound semiconductor single crystal manufacturing method and device
JPH0280391A (en) Method for adding dopant in pulling up semiconductor single crystal
JPS58172291A (en) Method for manufacturing compound semiconductor single crystal
JPH0483794A (en) Compound semiconductor single crystal growth method and equipment
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound