JPS58189568A - Magnetic field measuring device - Google Patents
Magnetic field measuring deviceInfo
- Publication number
- JPS58189568A JPS58189568A JP7121882A JP7121882A JPS58189568A JP S58189568 A JPS58189568 A JP S58189568A JP 7121882 A JP7121882 A JP 7121882A JP 7121882 A JP7121882 A JP 7121882A JP S58189568 A JPS58189568 A JP S58189568A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- measuring device
- field measuring
- light
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 111
- 238000001514 detection method Methods 0.000 claims description 38
- 239000013307 optical fiber Substances 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 23
- 239000002223 garnet Substances 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 13
- 239000000696 magnetic material Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 5
- 230000005415 magnetization Effects 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000005298 paramagnetic effect Effects 0.000 claims description 2
- 229910052789 astatine Inorganic materials 0.000 claims 2
- 229910052693 Europium Inorganic materials 0.000 claims 1
- 229910052779 Neodymium Inorganic materials 0.000 claims 1
- COQOFRFYIDPFFH-UHFFFAOYSA-N [K].[Gd] Chemical compound [K].[Gd] COQOFRFYIDPFFH-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 244000175448 Citrus madurensis Species 0.000 description 1
- 235000017317 Fortunella Nutrition 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LEIVEYCHMBFDIG-UHFFFAOYSA-N neodymium potassium Chemical compound [K][Nd] LEIVEYCHMBFDIG-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- -1 samarium potassium Chemical compound 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
- G01R33/0322—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は磁界測定装置、特に光ファイバと光の偏波面の
回転能(ファラデー回転能)を利用した磁界測定装置に
係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic field measuring device, and particularly to a magnetic field measuring device that utilizes an optical fiber and the rotatability (Faraday rotatability) of the plane of polarization of light.
高電圧が発生する変圧機や遮断機のような内部構造が見
えない所の事故予防ヤ、特に絶縁性、高応答性が強く要
求される高電圧機器の予防保全のためにはそれらの’t
Rや磁界の平常時からの乱れ変化を監視することが有効
である。In order to prevent accidents in places where high voltage is generated such as transformers and circuit breakers where the internal structure cannot be seen, and especially for preventive maintenance of high voltage equipment that requires strong insulation and high response, it is necessary to
It is effective to monitor disturbance changes in R and the magnetic field from normal times.
従来高電圧機器の電流、磁界の測定には金W4fii!
をコイル状に形成した磁界検出コイルを便用し、磁界の
強さ全電流−電圧の大きさに変換して磁界を検出する装
置が使用されている。しかし、上記金属コイルを測定部
に配置することは、測定部が非常に空間的に広く、又コ
イルを挿入しても絶縁性が充分保てる所は良いが、空間
的に非常に狭い所、電圧が非常に高く絶縁性が問題とな
る部分では危険で使用に#Fえない。籍に100万v、
50万Vを使用する変電所の変圧器等には使用できない
。Gold W4fii for measuring current and magnetic field of conventional high voltage equipment!
A device is used that detects a magnetic field by converting the strength of the magnetic field into the magnitude of the total current minus the voltage, using a magnetic field detection coil formed into a coil shape. However, placing the above-mentioned metal coil in the measurement part is good if the measurement part is very spacious and the insulation can be maintained sufficiently even if the coil is inserted, but if the measurement part is very narrow and the voltage It is dangerous and cannot be used in areas where insulation is very high and insulation is a problem. 1 million v for registration,
It cannot be used for transformers in substations that use 500,000V.
このような場合、光ファイバの如き^絶縁性の媒質の利
用が考えられる。従来知られている光を利用して電流・
磁界を測定する装置での代表例は特許分間公報、特開昭
57−37277号で靜明したように2本の光ファイバ
の間に磁界検出素子を挿入したものである。この構成を
第1図を用いて蔽明する。磁界検出素子は、例λばYI
G(Ys l;”e、 ol! ) をファラデー回
転素子1とし、その前後金偏光子2、検光子3でサンド
イッチしたものである。一本の光ファイバ4からの出力
は無偏光でるるため偏光子2によって直線偏光成分だけ
を取出しファラデー回転素子1に入射する。In such a case, it is possible to use an insulating medium such as an optical fiber. Using conventionally known light to generate electric current and
A typical example of a device for measuring magnetic fields is one in which a magnetic field detection element is inserted between two optical fibers, as disclosed in Japanese Patent Application Laid-Open No. 57-37277. This configuration will be explained using FIG. 1. The magnetic field detection element is, for example, λ or YI.
G(Ys l;"e, ol!) is used as a Faraday rotation element 1, which is sandwiched between a gold polarizer 2 and an analyzer 3 before and after it. Since the output from one optical fiber 4 is non-polarized, Only the linearly polarized light component is taken out by the polarizer 2 and is incident on the Faraday rotation element 1 .
ここで注意することは、光ファイバ4よシ偏光子2を通
過する元の半分は損失となる点にある。ファラデー回転
素子1に入った直線偏光に磁界の大きさHに応じただけ
その振動面の回転を受け、例えば検光子3の光学Sを偏
光子2癒光学軸と45で交差して相対するように配置し
ておくと、検光子を通過する光の強度は、振動面の回転
に比例して増大する。It should be noted here that half of the light that passes through the optical fiber 4 and the polarizer 2 is a loss. The linearly polarized light entering the Faraday rotation element 1 undergoes rotation of its vibration plane according to the magnitude H of the magnetic field, so that, for example, the optical axis S of the analyzer 3 intersects with the optical axis of the polarizer 2 at 45 and faces it. , the intensity of light passing through the analyzer increases in proportion to the rotation of the vibrating surface.
以上が光を用いた従来の磁界測定の方法であるが、この
方法には、1)磁界測定点が1点のため、測定磁界以外
力・らの磁界の影響全党ff−?すい。The above is a conventional method for measuring magnetic fields using light. This method has the following problems: 1) Since there is only one magnetic field measurement point, the influence of the magnetic field other than the measurement magnetic field is entirely ff-? water.
2)地殻の変動、地震などで磁界測定位置がすれると出
力変動が生ずる、という難点が存在する。2) There is a drawback in that output fluctuations occur if the magnetic field measurement position shifts due to crustal movements, earthquakes, etc.
本発明の目的は空間的に狭い部分の磁界や高電圧部での
磁界を安全がつ測定位置、外部磁界に無関係に高精度に
測定できる磁界測定装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic field measuring device that can measure magnetic fields in spatially narrow areas or in high-voltage areas with high accuracy, at a safe measurement position, and regardless of external magnetic fields.
上記目的を達成するため、本発明の磁界測定装置は光源
部、ファラデー回転能を有する媒質を具備した磁性体を
含む磁界検出部、該検出部からの光を計測する計測部、
ならびに該光源部と該検出部および該計測部を光学的に
結合する光伝送路がらなり、且つ複数個の該検出部が光
学的に直列に結合されている。In order to achieve the above object, the magnetic field measurement device of the present invention includes a light source section, a magnetic field detection section including a magnetic material equipped with a medium having Faraday rotation ability, a measurement section that measures light from the detection section,
Also, an optical transmission line optically couples the light source section, the detection section, and the measurement section, and the plurality of detection sections are optically coupled in series.
このように、磁界検出部7i−複数個設け、これらを光
学的に直列に結合し局所的に存在する測定誤差の19因
が平均化ないしに希釈化烙nることにより、本発明の磁
界測定装置は測定位置や外部磁界の影響が著るしく峰減
さ几ることになった。しかし、前述のように、ファラデ
ー[同転素子を用いた従来の磁界測定装置では偏九子に
よる光損失のため磁界検出素子全通過する光量は入射光
の半分となる。したがって、N個のファラデー回転素子
を゛直列に結合させた場合にはたかだか(1/2)Hの
光量しめ・出射されないことになる。例えば磁界検出部
が4個光学的に直列に結合されている場合には人力の6
%しか出力に現−われす、瑛出梢度を著るしく害する。In this way, by providing a plurality of magnetic field detection units 7i and optically coupling them in series, the 19 causes of locally existing measurement errors are averaged or diluted. The influence of the measurement position and external magnetic field has been significantly reduced in the device. However, as mentioned above, in the conventional magnetic field measurement device using a Faraday (co-rotating element), the amount of light that passes through the magnetic field detection element is half of the incident light due to optical loss due to the polarizer. Therefore, when N Faraday rotation elements are coupled in series, the amount of light is limited to (1/2) H at most, and no light is emitted. For example, if four magnetic field detection units are optically coupled in series, six
% appears in the output, which seriously harms the output power.
各検出部の結合は光ファイバのような光伝送路によれば
よい。The respective detection sections may be coupled by an optical transmission path such as an optical fiber.
上記のような、磁界検出部通過光波の減少全防止するた
めには、ファラデー回転素子を用いた従来の磁界測定装
置におりブる偏光子に代えて偏光プリズムを用い、該偏
光プリズムにより入射光を2つの血縁偏光の光に分能し
、その−万の光をファラデー回転能を有する媒質全具備
した磁性体、すなわちファラデー回転素子に入射後横光
子全通過式せて光ファイバに入力すると共に、他方の光
音前記7アラデー回転素子と同−又は他のファラデー回
転素子に入射後上記と同−又は他の検光子を通過させて
前記光ファイバに入力巳、分I41Iテれた2偏光を合
体せしめるように構成するとよい。すなわち、この場合
、磁界検出部は、光入射側の光ファイバと光出射側の光
ファイバとの間に、少なくとも入射用偏光プリズム、前
記磁性体および検光子が順に配置されており、さらに拝
しくに光入射側の光ファイバと光出射側の光ファイバと
の間に、レンズ、入射用偏光プリズム、@記磁性体。In order to completely prevent the decrease in the light waves passing through the magnetic field detection section as described above, a polarizing prism is used instead of the polarizer that is used in conventional magnetic field measurement devices using Faraday rotation elements. is split into two related polarized lights, and after entering a magnetic material that is fully equipped with a medium capable of Faraday rotation, that is, a Faraday rotation element, the transverse photon all passes through the optical fiber, and the resulting light is input into an optical fiber. , the other optical sound enters the same or other Faraday rotator as the above-mentioned 7 Alladay rotator, passes through the same or other analyzer as above, and inputs into the optical fiber the 2 polarized light. It is preferable to configure them so that they are combined. That is, in this case, in the magnetic field detection section, at least the polarizing prism for incidence, the magnetic material, and the analyzer are arranged in this order between the optical fiber on the light input side and the optical fiber on the light output side. Between the optical fiber on the light input side and the optical fiber on the light output side, there is a lens, an input polarizing prism, and a magnetic material.
検光子およびレンズが11@に配直さ1てなる磁界検出
部であることが望ましい。It is preferable that the analyzer and the lens be arranged at 11@ in the magnetic field detection section.
前記入射用偏光プリズムとしては周知の偏光ビームスフ
リツタ、ローションプリズム、ウオラストンフリスム、
テュアルニコルプリズム、セナモンプリズム、もしくは
グランティラープリズム等を用いることができる。特に
偏光ビームスプリッタ−を用いるのが一般的と言える。The incident polarizing prism includes the well-known polarizing beam sifter, Rochon prism, Wollaston frism,
A Tual Nicol prism, a Cenamon prism, a Grantiller prism, or the like can be used. In particular, it is common to use a polarizing beam splitter.
前記検光子は従来のものでもよいが、偏光プリズム金柑
いて検光子の作用と2偏光を合体する作用と?兼ねさせ
るのが便利である。この場合の検光用プリズムとして、
上記の入射用偏光プリズムとして列挙しtどれでも用い
ることができ、特に偏光ビームヌプリッターが一般的で
ある。入射用偏光プリズムと検光用偏光プリズムは、フ
ァラデー回転能を有する媒fJ!!全具備した磁性体ケ
介して互に向〃・い合った状態にすると磁界検出部をコ
ンパクトにできて便利である。The analyzer may be a conventional one, but the polarizing prism kumquat has the function of an analyzer and the function of combining two polarized lights. It is convenient to have it do double duty. In this case, as a prism for analysis,
Any of the above-mentioned incident polarizing prisms can be used, and polarizing beam nuplitters are particularly common. The polarizing prism for incidence and the polarizing prism for analysis are made of a medium fJ! having Faraday rotation ability. ! It is convenient to make the magnetic field detecting section compact by arranging them to face each other through the magnetic bodies provided therein.
なお、入射用偏光プリズムと検光用偏光プリズムとは対
称に対向している〃・、又は光学的に45に交差して対
向しているのが一般的で好筐しいが、こnに限定されな
い。In addition, it is generally preferable that the polarizing prism for incidence and the polarizing prism for analysis are symmetrically opposed to each other, or they are opposed to each other with an optical angle of 45, but this is not limited to this. Not done.
前記ファラデー回転熊全Mする嫁質を具備した磁性体に
は、ファラデー回転iie ′fr:Mする媒質として
、例えば一般式RB (F e、 −z M* ] O
1t で表わされる組成(但し、RUY、La、Sm
、F、u。The magnetic material having the bride material that undergoes the Faraday rotation is given the general formula RB (Fe, -z M* ] O as a medium that undergoes the Faraday rotation iie'fr:M
1t (However, RUY, La, Sm
,F,u.
Gd、Tm、Yb、Lu、Caお↓U B i カらな
る群より選択した少なくとも一元素、MはQa。At least one element selected from the group consisting of Gd, Tm, Yb, Lu, Ca, and ↓UBi, and M is Qa.
G e + A /−* S I+ Sez I nお
よびCrからなる群より選択した少なくとも一元素であ
り、Xの値は0≦X≦1.5とする)を自し目つ光の伝
送方向に磁化されてなる少なくとも1枚の磁性カーネッ
ト薄膜を有するものを用いるとよいが、これに限定され
ない。At least one element selected from the group consisting of n and Cr, and the value of X is 0≦X≦1.5) in the direction of light transmission. It is preferable to use one having at least one magnetized magnetic Carnet thin film, but the present invention is not limited thereto.
元素Mk添加することにより、基板との格子定数の整合
がとれたり、飽和磁化の大きさ全変化させ低磁界領域で
の^積度検出を可能にするなどの効果を生じるが、Xの
値が1.5ヲ越えるとキューリ温度が室温以下となり強
磁性体として不安定となり好1しくない。Adding the element Mk brings about effects such as matching the lattice constant with the substrate and completely changing the magnitude of saturation magnetization, making it possible to detect ^^ in the low magnetic field region, but the value of If it exceeds 1.5 degrees, the Curie temperature will drop below room temperature, making it unstable as a ferromagnetic material, which is not desirable.
上記磁性ガーネット薄膜は、製盾上の都合により、カド
リウム・ガリウム・ガーネット(Qcl、 Qa、 0
□)、 ネオジウム・カリウム・ガーネット(NdsG
asO+t)又はサマリウム・カリウム・ガーネット(
Sm3 Ga1l oat ) (以下簡明のためそれ
ぞれGGG、NdGG、smooと呼ぶ)等の常磁性体
基板の両面又は片面に、磁化方向が上記面に垂直となる
ように上記出性ガーネット薄膜?散相成長法又に気相法
((’ V D法)によって形成し、元の伝搬が上記出
化力向と一致するように光ファイバと結合させる。The above magnetic garnet thin film is made of cadrium gallium garnet (Qcl, Qa, 0
□), neodymium potassium garnet (NdsG
asO+t) or samarium potassium garnet (
The above-mentioned garnet thin film is deposited on both sides or one side of a paramagnetic substrate such as Sm3Ga1l oat ) (hereinafter referred to as GGG, NdGG, and smooth, respectively, for simplicity) so that the magnetization direction is perpendicular to the above-mentioned surface. It is formed by a dispersed phase growth method or a vapor phase method (('VD method), and is coupled to an optical fiber so that the original propagation coincides with the direction of the output power.
上記のエラに、本発明の磁界測定波Rに複数個の磁界検
出部を光学的に直列に結合したものであるが、これらの
複数個の磁界検出部は磁界発生源の周囲に、ループ状に
設げるのが望チしい。例えば、電流の流れる電線から発
生する磁界?測定するには、を線の周囲にループ状に磁
界検出部を配置するのが好ましい。この場合、磁界検出
部の向きに、前記磁性体の面に垂直な方向が、電線に直
交する向上で電線全中心とする円の円周の接続方向とな
るように構成するのが好ブしい。In addition to the above error, a plurality of magnetic field detection sections are optically coupled in series to the magnetic field measurement wave R of the present invention, and these plurality of magnetic field detection sections are connected in a loop shape around the magnetic field generation source. It is desirable to set it in For example, a magnetic field generated by a wire carrying current? For measurement, it is preferable to arrange magnetic field detection units in a loop around the wire. In this case, it is preferable to configure the magnetic field detection unit so that the direction perpendicular to the surface of the magnetic body is the connecting direction of the circumference of a circle that is perpendicular to the wire and has the entire center of the wire. .
上記のように構成された本発明の磁界測定装置は、少な
い光損失で複数1向の磁界検出部ft直列に結合したも
のであり、このような磁界検出部を測定対象物の周辺に
設置することによって、磁界検出部の位置に関係なく安
定な測定がi=J能になる。The magnetic field measurement device of the present invention configured as described above has a plurality of magnetic field detection units ft connected in series in one direction with low optical loss, and such magnetic field detection units are installed around the object to be measured. This enables stable measurement regardless of the position of the magnetic field detection section.
なお、上記以外の構成については、従来技術(例えば丑
許公開公報1%開昭57−37277号記載の磁界測定
装置)k踏襲してよい。Note that the configuration other than the above may follow the conventional technology (for example, the magnetic field measuring device described in Japanese Patent Publication No. 1983-37277).
以下図面を用いて実施例により本発明の詳細な説明する
。The present invention will be described in detail below by way of examples with reference to the drawings.
実施例
第2図に本発明による磁界測定゛装置の一実施例の構成
を示す説明図で、同図において磁界測定装置に計測部A
1光伝送路B、、B、、B、・・・・・・および磁界検
出部C1、C,、C5・・・・・・からなる。Embodiment FIG. 2 is an explanatory diagram showing the configuration of an embodiment of the magnetic field measuring device according to the present invention.
1 consists of optical transmission lines B, , B, , B, . . . and magnetic field detection sections C 1 , C, , C 5 .
計測部Afl一般の光計測システムと同様の構成で、光
源7から出た光はレンズ8によって光ファイバ6に最大
の光が入射できるように調整される。上記レンズ8から
の光にハーフミラ−9を介して一部に光ファイバ6に結
合さn最初の検出部C1に導波される。他の一部に受光
部10に導〃・n1出力電気信号P1 となる。−万、
後述のan < 、検出部Ct 、Ct 、Cs・・・
・・・からの光に光ファイバ6で受光器11に導かnl
出力電気(Q号Ptとなる。Measurement unit Afl has the same configuration as a general optical measurement system, and the light emitted from the light source 7 is adjusted by the lens 8 so that the maximum amount of light can enter the optical fiber 6. The light from the lens 8 is partially coupled to the optical fiber 6 via the half mirror 9 and guided to the first detection section C1. The other part is guided to the light receiving section 10 and becomes an output electric signal P1. Ten thousand,
An<, detection portions Ct, Ct, Cs... described later
The light from... is guided to the receiver 11 by the optical fiber 6.
Output electricity (becomes Q Pt.
このPlとP、の値より磁界Hを算出できるが、簡便に
はHとP t / P t との関係を予め予備実験で
求めておき、これ全計測部に記憶させておいて実際のP
、とP、の値から■]を導出するように構成しておけば
よい。The magnetic field H can be calculated from the values of Pl and P, but it is convenient to find the relationship between H and P t / P t in advance in a preliminary experiment, store this in all measurement units, and calculate the actual P.
, and P from the values of , and P.
mffj部c+ 、Ct 、Cs・・・・・・(グ、そ
σ月例を第3図に示すが光ファイバ6の端面に収光レン
ズ12、偏光ビームス1リツター13と先に述べた磁性
ガーネット15が密着さnている。さらに上記磁性ガー
ネット15の他端面には偏光ビームスプリッタ−13と
同じであるが反射面が逆向きの偏光ビームスプリッタ1
4、収光レンズ16が密着されている。ここで各偏光ビ
ームスプリッタ−についてその機能を明確に示すために
第4図に示した。偏光ビームスプリッタ−は積層偏光子
面17及び全反射面18を有しており、光ファイノく力
・らの無偏光の光UPk積層偏光子面17に直交する@
線偏光波HPとそれに平行なる直線偏光波■Pにわける
役割りをはたす。mffj part c+, Ct, Cs... (G, σ) An example is shown in FIG. Further, on the other end surface of the magnetic garnet 15, there is a polarizing beam splitter 1 which is the same as the polarizing beam splitter 13 but whose reflecting surface is in the opposite direction.
4. The condensing lens 16 is in close contact. Here, each polarizing beam splitter is shown in FIG. 4 to clearly show its function. The polarizing beam splitter has a laminated polarizer surface 17 and a total reflection surface 18, and the unpolarized light UPk of the optical fiber is perpendicular to the laminated polarizer surface 17.
It plays the role of dividing into a linearly polarized light wave HP and a linearly polarized light wave parallel to it P.
この偽造において、2つの直線偏光成分に分離された光
VP、HPに磁性ガーネット15に入る。In this forgery, the light enters the magnetic garnet 15 into two linearly polarized components VP and HP.
検出部c、l c、I・・・・・・に磁界がないと磁性
ガーネット15全通る光は同じ偏光状態で他の偏光ピ−
ムスプリッター14に入り、再び偏光ビームスプリッタ
−14で結合され、収光レンズ16で光ファイバ6に入
射きれる。If there is no magnetic field in the detection parts c, l c, I..., the light passing through all the magnetic garnets 15 will be in the same polarization state and will not pass through other polarization peaks.
The beam enters the beam splitter 14, is combined again by the polarizing beam splitter 14, and enters the optical fiber 6 by the converging lens 16.
1例として磁性ガーネット15は厚みh=0.35鶏の
GGG基板の少tくとも一端面に厚みdの磁性ガーネッ
ト薄膜をもっている。上記基板に結晶の<111>方向
が端子部となっている。あとで磁性ガーネット薄膜は液
相成長法(LPE法)萱たに気相法(CVD法)で形成
される。この薄膜の磁化方向に光の進行方向すなわち端
面に垂直な方向に向いている。磁性ガーネット薄膜の組
成の例として
(YSmLuCa )s (FeG e )s OIt
(YSm)s (FeGa)s 01!Y3FelO1
!
(BiSm)3 (FeGa)sOttが取り上げら
れた。ここでは(YSmLuCa)s(FeGe)sO
+tの場合について説明する。磁界を第3図に記号Hで
示すように磁性カーネット15の面に垂直方向、すなわ
ち光の進行方向に印加した時、出力P、′がどの工うに
変化するか紮調べた。磁性ガー坏ツ)15に磁界が印加
すると2つの光VP、HPのO1i彼面がファラテー効
果によって回転する。この回転のため光HPは偏光ビー
ムスプリッタ−14の偏光面17ケ通過する光讐が変化
し、−力先VPは反射する光警が変化する。As an example, the magnetic garnet 15 has a magnetic garnet thin film having a thickness d on at least one end surface of a GGG substrate having a thickness h=0.35. The <111> direction of the crystal on the substrate serves as a terminal portion. Later, a magnetic garnet thin film is formed by a liquid phase epitaxy (LPE method) or a vapor phase method (CVD method). The magnetization direction of this thin film is oriented in the direction in which light travels, that is, in a direction perpendicular to the end face. An example of the composition of a magnetic garnet thin film is (YSmLuCa)s (FeGe)s OIt
(YSm)s (FeGa)s 01! Y3FelO1
! (BiSm)3(FeGa)sOtt was featured. Here (YSmLuCa)s(FeGe)sO
The case of +t will be explained. We investigated how the outputs P,' change when a magnetic field is applied perpendicularly to the surface of the magnetic Kernet 15, as indicated by symbol H in FIG. 3, in the direction in which the light travels. When a magnetic field is applied to the magnetic guard 15, the two optical surfaces VP and HP rotate due to the Faraday effect. Due to this rotation, the direction of the light HP passing through the polarization plane 17 of the polarizing beam splitter 14 changes, and the direction of light reflected at the tip VP changes.
ここで変化するi警音測定した所、光の波長0.633
μmでの測定で第5図に示す結果をえた。The i-warning sound that changes here was measured and the wavelength of light was 0.633.
The results shown in FIG. 5 were obtained by measurement in μm.
図中カッコ内の数字は薄膜の岸みdをミクロン単位で表
わしている。得られたどの特性も小さな磁界の強きで急
激に増加し、ある磁界の強さくHo0eとする)から変
化に小さくなる。このH8に使用材料によって異な9使
用した磁性ガーネットではtlは3000eである。The numbers in parentheses in the figure represent the depth d of the thin film in microns. All of the obtained properties increase rapidly with small magnetic field strengths, and decrease with a change from a certain magnetic field strength (assumed Ho0e). The tl of the 9 magnetic garnets used in H8, which differs depending on the material used, is 3000e.
飽和磁界H8以下において磁界による7アラデー効果で
消滅するパワーの割合(入射に対する出射率)η、に
η、=1−(VeH,L)”・・・・・・・・・・・・
(1)となる。ここでVeは7アラデ一回転能をあら
れす材質固有の定数(ベルデ定数)であり、Hlは磁界
の強さ、Lは磁性ガーネットの厚みである。At saturation magnetic field H8 or lower, the ratio of power that disappears due to the 7 Alladay effect due to the magnetic field (output ratio with respect to incidence) η, = 1 - (VeH, L)''...
(1) becomes. Here, Ve is a constant (Verdet constant) specific to the material that gives it a 7-Alade rotation ability, Hl is the strength of the magnetic field, and L is the thickness of the magnetic garnet.
この1つの磁界検出部全第2図に示すよつに直列に組合
わせる。組合せる個数=kNとすると、磁界が印加さ扛
た時の全出力変化ηは
となる。このtめ光源7より光ファイバに入る全パワー
全Ppmとし受光器11で受ける出力パワー全P sa
tとすれば
P @II l ” P I mη ・・・・・・・・
・・・・ (3)となる。All of this one magnetic field detection section is combined in series as shown in FIG. If the number of combinations is kN, then the total output change η when a magnetic field is applied is as follows. The total power entering the optical fiber from the light source 7 is Ppm, and the output power received by the optical receiver 11 is Psa.
If t, then P @II l ” P I mη ・・・・・・・・・
...(3).
さてこのようなループ方式を第2図に示す送電母線19
の周辺に配置するとする。ここで母線19は勝面に垂直
方向に向いている。母線にt#Lが流れると母線の周り
に磁界が発生する。これは丁度光ファイバのループと同
じ向きにあるため磁界検出部で磁界が検出される。さて
この方式を採用した大きな理由は次の事項にある。母線
に流れるt派Iは周辺に発生する磁界Hの崗回檀分で表
示される。Now, such a loop system is used as a power transmission bus 19 shown in Fig. 2.
Suppose that it is placed around . Here, the generatrix 19 is oriented perpendicularly to the winning surface. When t#L flows through the bus bar, a magnetic field is generated around the bus bar. Since this is in the same direction as the optical fiber loop, the magnetic field is detected by the magnetic field detection section. The main reason for adopting this method is as follows. The t-wave I flowing to the busbar is expressed by the magnification of the magnetic field H generated around it.
1、−fH−dl・・・・・・・・・・・・・・・(4
)但し、dtは母線の胸りに取った任意の閉ループの線
素である。1, -fH-dl・・・・・・・・・・・・(4
) However, dt is a line element of an arbitrary closed loop taken at the center of the busbar.
このため、ループ状に多数の磁界検出Sを配列すると、
磁界検出部の設置位置がどこに5あろうと、周回積分を
行っていることになり、従来のように母線19の周りに
1個磁界センサ?おいた場合と具なり、セ/すの設置位
置に関係がないという大きな特長をもつ。Therefore, if a large number of magnetic field detections S are arranged in a loop,
No matter where the magnetic field detection section is installed, circular integration is performed, and one magnetic field sensor is installed around the bus bar 19 as in the conventional method. It has the great advantage of being independent of the installation position of the cell/seat.
本実施例、′cは偏光ビームスプリッタ−を相向いあっ
て配列したが、第3図における積層偏光子面17合互い
に45 相対するように配列すると、式(2)、(3)
で出力が第3図の場合にはi界Hの2乗で変化するのに
対して、磁界Hの1乗すなわち直憩的に変化する。In this embodiment, the polarizing beam splitters were arranged opposite to each other in 'c, but if the laminated polarizer surfaces 17 in FIG.
In the case of FIG. 3, the output changes according to the square of the i-field H, whereas it changes according to the first power of the magnetic field H, that is, in a direct manner.
″1fc以上の実施例においては偏光ビームスプリッタ
−を用いてランダム偏光の光を2つのikgする@線偏
光に分けたが、例えば周知のローションフリズム、ウオ
ラストプリズム、デュアルニコルプリズム、セナモンプ
リズム、グラ/テイラーブリズムなどの偏光プリズムを
用いて2つの直交する直線偏光の光に分け、再び収束さ
せてもよい。In the embodiment of ``1 fc or more, a polarizing beam splitter was used to separate the randomly polarized light into two ikg @ line polarized beams, but for example, the well-known Rochon prism, Wolast prism, dual Nicol prism, and Cenamon prism were used. The light may be split into two orthogonally linearly polarized lights using a polarizing prism such as a Grass/Taylor prism, and then converged again.
第゛1図は従来の磁界検出部の構成を示す説明図、第2
図は本発明の一実施例における磁界測定装置の構成を示
す説明図、第3図は第2図に示す装置の磁界検出部の拡
大図、第4図は偏光ビームスプリッタ−の動作説明図、
第5図は第3図の磁界検出部を用いた場合の磁界の強さ
と出力の変化量との関係を示すグラフである。
1・・・ファラデー回転素子、2・・・偏光子、3・・
・検光子、4.5’、6・・・光ファイバ、7・・・光
源、8・・・レンズ、9・・・半透明膜、10.11・
・・受光器、12゜16・・・レンズ、13.14・・
・偏光ビームスプリッタ−117・・・積層偏光子面、
18・・・全反射面、第 1 (2)
y]2 口
第 3 図
1δ
第 4 図
8Figure 1 is an explanatory diagram showing the configuration of a conventional magnetic field detection section, Figure 2
3 is an enlarged view of the magnetic field detection section of the device shown in FIG. 2, FIG. 4 is an explanatory view of the operation of the polarizing beam splitter,
FIG. 5 is a graph showing the relationship between the strength of the magnetic field and the amount of change in output when the magnetic field detection section of FIG. 3 is used. 1... Faraday rotation element, 2... polarizer, 3...
・Analyzer, 4.5', 6... Optical fiber, 7... Light source, 8... Lens, 9... Semi-transparent film, 10.11.
...Receiver, 12°16...Lens, 13.14...
・Polarizing beam splitter 117...Laminated polarizer surface,
18... Total reflection surface, 1st (2) y] 2 mouth 3rd figure 1δ 4th figure 8
Claims (1)
磁性体を含む磁界検出部、該慣出部からの光を計測する
計測部、ならびに該光源部と該検出部お工び該計測部を
光学的に結合する光伝送路からなる磁界測定装置におい
て、複数個の該検出部が光学的に直列に結合されてなる
ことを特徴とする磁界測定装置。 2、前記磁界検出部は、光入射側の光ファイバと光出射
側の光ファイバとの間に、少なくとも入射用偏光プリズ
ム、前記磁性体および検光子が順に配置されてなること
を特徴とする特許請求の範囲第1項記載の磁界測定装置
。 3、前記磁界検出部は、光入射側の光ファイバと光出射
側の光ファイバとの間に、レンズ、入射用偏光プリズム
、前記磁性体、検光子およびレンズが順に配置されてな
ることを特徴とする特許請求の範囲第2項記載の磁界測
定装置。 4、前記入射用偏光プリズムVCより分離びtまた2つ
の偏光の一万金、前記磁性体ならひに前記検光子を経て
@配光出射側の光ファイノ(に大引せしめ、肚つ該2つ
の偏光の他方を該磁性体又は他の磁性体ならびに該検光
子又は他の検光子を経て該光ファイバに入射せしめるこ
とにより、該−万の偏光の出射光と他方の偏光の出射光
とを合体せしめるように礪成してなること全特徴とする
特許請求の範囲第2項もしくは第3項記載の磁界測定装
置。 5、前記入射用偏光プリズムが、偏光ビームスプリッタ
、ローションプリズム、ウォラストンプリズム、デ珈ア
ルニコルプリズム、セナモンプリズム、もしくはグラン
ティラープリズムであること’l徴とする特許請求の範
囲第2項、第3項もしくは第4項記載の磁界測定装置。 6、前記磁性体が前記ファラデー回転能を有する媒質と
して、一般式R3(F es −−M−) O+tで表
わされる組成(但し、RにY、I、a、3m。 Eu、Gd、Tm、Yb、 Lu、CaおよびBiから
なる群エリ選択した少なくとも一元素、MはQa、Qe
、At、S i、i9c、Inお工びCrからなる群よ
り選択した少なくとも一元素であり、Xの値はO≦X≦
1.5とする)を有し且つ光の伝送方向に磁化されてな
る少なくとも1枚の磁性カーネット薄膜ケ有することを
特徴とする特許請求の範囲第1項乃至第5項のいずれの
項に記載の磁界測定装置。 7、前記磁性体はガドリニウム・カリウム・ガーネット
、ネオジウム・ガリウム・ガーネット。 もしくはサマリウム・ガリウム・カーネットからなる常
磁性体基板の少なくとも一端面に前記磁性ガーネット薄
膜tその磁化方向が該端面に垂直となるように形成して
なること全特徴とする特許請求の範囲第6項記載の磁界
測定装置。 8、前記検光子が分離している2偏光全合体する検光用
偏光プリズムからなることを特徴とする特許請求の範囲
第2項乃至第7項のいずれかの項に記載の磁界測定装置
。 9、前記入射用偏光プリズムと前記検光用偏光プリズム
とが前記磁性体を介して互いに向の・い合っていること
を特徴とする特許請求の範囲第2項乃至第8mのいずれ
かの項に記載の磁界測定装置。 10、前記入射用偏光プリズムと前記検光用偏光プリズ
ムとが互に45 に交差していることを特徴とする特許
請求の範囲第9項記載の磁界測定装置。 11、前記入射用偏光プリズムが入射用偏光スプリッタ
であp1前記検光用プリズムが検光用偏光スプリッタで
あること全特徴とする特許請求の範囲第2項乃至第10
項のいずれかの項に記載の磁界測定装置。 12、複数個の前記磁界検出部を、磁界発生源の周囲に
ループ状に設けることを特徴とする特許請求の範囲第1
項乃至第111”11のいずれかの項に記載の磁界測定
装置。 13、複数個の前記磁界検出部を、電線の周囲にループ
状に配置し、且つ前記磁性体の面に垂直な方向が、市原
に直交する面上で該電線を中心とする円の円周の接線方
向となるように構成してなることを特徴とする特許請求
の範囲第12項記載の磁界測定装置。[Claims] 1. A light source section, a magnetic field detection section including a magnetic material equipped with a medium having Faraday rotation ability, a measurement section that measures light from the run-in section, and the light source section and the detection section. What is claimed is: 1. A magnetic field measuring device comprising an optical transmission line optically coupling the measuring sections, characterized in that a plurality of the detecting sections are optically coupled in series. 2. The patent characterized in that the magnetic field detection unit includes at least an incident polarizing prism, the magnetic body, and an analyzer arranged in this order between an optical fiber on the light input side and an optical fiber on the light output side. A magnetic field measuring device according to claim 1. 3. The magnetic field detection section is characterized in that a lens, an incident polarizing prism, the magnetic body, an analyzer, and a lens are arranged in this order between an optical fiber on the light input side and an optical fiber on the light output side. A magnetic field measuring device according to claim 2. 4. Separate the two polarized lights from the incident polarizing prism VC, pass through the analyzer to the magnetic material, and then send it to the optical fiber on the light distribution and output side. By making the other of the two polarized lights enter the optical fiber through the magnetic material or other magnetic material and the analyzer or other analyzer, the outgoing light of the -10,000 polarized light and the outgoing light of the other polarized light are separated. The magnetic field measuring device according to claim 2 or 3, characterized in that the magnetic field measuring device is formed so as to be combined with each other.5. The magnetic field measuring device according to claim 2, 3 or 4, characterized in that the magnetic field measuring device is a de-aluminum prism, a Cenamon prism, or a Glantiller prism.6. The medium having Faraday rotation ability has a composition represented by the general formula R3(Fes--M-)O+t (where R is Y, I, a, 3m, Eu, Gd, Tm, Yb, Lu, Ca, and At least one element selected from the group consisting of Bi, M is Qa, Qe
At least one element selected from the group consisting of , At, Si, i9c, and In-processed Cr, and the value of X is O≦X≦
1.5) and is magnetized in the direction of light transmission. The magnetic field measuring device described. 7. The magnetic material is gadolinium potassium garnet or neodymium gallium garnet. Alternatively, the magnetic garnet thin film t is formed on at least one end surface of a paramagnetic substrate made of samarium gallium carnet so that its magnetization direction is perpendicular to the end surface. The magnetic field measuring device described in Section 1. 8. The magnetic field measuring device according to any one of claims 2 to 7, characterized in that the analyzer is comprised of a polarizing prism for analysis that completely combines two separated polarized lights. 9. Any one of claims 2 to 8m, characterized in that the polarizing prism for incidence and the polarizing prism for analysis are oriented toward each other via the magnetic material. The magnetic field measuring device described in . 10. The magnetic field measuring device according to claim 9, wherein the incident polarizing prism and the analyzing polarizing prism intersect with each other at 45 degrees. 11. Claims 2 to 10, characterized in that the incident polarizing prism is an incident polarizing splitter, and the analyzing prism is an analyzing polarizing splitter.
The magnetic field measuring device described in any of the paragraphs. 12. Claim 1, wherein the plurality of magnetic field detection units are provided in a loop around the magnetic field generation source.
The magnetic field measuring device according to any one of items 1 to 111"11. 13. A plurality of the magnetic field detection parts are arranged in a loop around an electric wire, and the direction perpendicular to the surface of the magnetic body is 13. The magnetic field measuring device according to claim 12, wherein the magnetic field measuring device is configured to be tangential to the circumference of a circle centered on the electric wire on a plane perpendicular to Ichihara.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7121882A JPS58189568A (en) | 1982-04-30 | 1982-04-30 | Magnetic field measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7121882A JPS58189568A (en) | 1982-04-30 | 1982-04-30 | Magnetic field measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58189568A true JPS58189568A (en) | 1983-11-05 |
Family
ID=13454311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7121882A Pending JPS58189568A (en) | 1982-04-30 | 1982-04-30 | Magnetic field measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58189568A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0740162A2 (en) * | 1995-04-25 | 1996-10-30 | Toshihiko Yoshino | Optical current transformer |
-
1982
- 1982-04-30 JP JP7121882A patent/JPS58189568A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0740162A2 (en) * | 1995-04-25 | 1996-10-30 | Toshihiko Yoshino | Optical current transformer |
EP0740162A3 (en) * | 1995-04-25 | 1996-12-11 | Yoshino Toshihiko | |
US5780845A (en) * | 1995-04-25 | 1998-07-14 | Toshihiko Yoshino | Optical current transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1176427B1 (en) | Optical magnetic field sensor | |
US4604577A (en) | Temperature-compensated magnetic field measuring instrument | |
US5631559A (en) | Method and apparatus for performing magnetic field measurements using magneto-optic kerr effect sensors | |
US4560932A (en) | Magneto-optical converter utilizing Faraday effect | |
Roth et al. | Observation of magnetoelectric Jones birefringence | |
JP2018028499A (en) | Magnetic field sensor element and magnetic field sensor device | |
CN104158161A (en) | Differential protection device based on optics current sensors | |
JP3144928B2 (en) | Optical sensor | |
EP0046298A1 (en) | Apparatus for measuring a magnetic field | |
JPS58189568A (en) | Magnetic field measuring device | |
CN105954564B (en) | A kind of device and method that conductor current is measured using magneto-optic memory technique | |
JPH01312483A (en) | Magnetic field measuring apparatus | |
JPS59145977A (en) | Magnetic field measuring device | |
JP3135744B2 (en) | Optical magnetic field sensor | |
JP3008721B2 (en) | Magneto-optical element and magnetic field measuring device | |
JP3140546B2 (en) | Optical magnetic field measuring apparatus and method | |
JP3044084B2 (en) | Magneto-optical element for magnetic field sensor | |
JPS62102131A (en) | Testing device for optical fiber | |
JPS61212773A (en) | light sensor | |
Yoshino et al. | Highly sensitive all-optical method for measuring magnetic fields | |
JP3065142B2 (en) | Optical magnetic field sensor | |
Günther et al. | Reflectivity and evanescent diffraction of polarized neutrons from Ni (1 1 0) | |
Spielman | Optical tests for broken time-reversal symmetry in the cuprate superconductors | |
CN117039791A (en) | Optical computing system and method for optical differential protection | |
JPS62150184A (en) | Magnetic field measuring apparatus |