[go: up one dir, main page]

JP3065142B2 - Optical magnetic field sensor - Google Patents

Optical magnetic field sensor

Info

Publication number
JP3065142B2
JP3065142B2 JP3281738A JP28173891A JP3065142B2 JP 3065142 B2 JP3065142 B2 JP 3065142B2 JP 3281738 A JP3281738 A JP 3281738A JP 28173891 A JP28173891 A JP 28173891A JP 3065142 B2 JP3065142 B2 JP 3065142B2
Authority
JP
Japan
Prior art keywords
optical
magnetic field
magneto
field sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3281738A
Other languages
Japanese (ja)
Other versions
JPH05172917A (en
Inventor
信治 岩塚
義和 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3281738A priority Critical patent/JP3065142B2/en
Priority to US07/892,468 priority patent/US5477376A/en
Publication of JPH05172917A publication Critical patent/JPH05172917A/en
Priority to US08/526,336 priority patent/US5619367A/en
Application granted granted Critical
Publication of JP3065142B2 publication Critical patent/JP3065142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,磁気光学素子を用いた
新規な構造の光磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor having a novel structure using a magneto-optical element.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】光磁界
センサは,光を媒体としているため,絶縁性が良好であ
り,電磁誘導の影響を受けないという特徴を持ち,送電
線の電流測定等に使用されている。図6に従来の光磁界
センサの検出部の光学系を示す。光学系は,磁気光学素
子1,光ファイバ2,2’,コリメ−タレンズ3,
3’,偏光子7,検光子8から構成されている。光ファ
イバ2から出射した光はコリメ−タレンズ3により平行
ビ−ムとなり,偏光子7を透過し,直線偏光となる。磁
気光学素子1に磁界が印加されるとファラデ−効果によ
りこの直線偏光の偏光面が磁界の強度に比例して回転す
る。この光が検光子3を透過すると偏光面の角度により
光量が変化し,コリメ−タレンズ3’により光ファイバ
2’へ集光される。このようにして,磁界の大きさが光
量に変換される。
2. Description of the Related Art An optical magnetic field sensor, which uses light as a medium, has good insulation properties and is not affected by electromagnetic induction. Used in FIG. 6 shows an optical system of a detection unit of a conventional optical magnetic field sensor. The optical system includes a magneto-optical element 1, an optical fiber 2, 2 ', a collimator lens 3,
3 ', a polarizer 7, and an analyzer 8. The light emitted from the optical fiber 2 is converted into a parallel beam by the collimator lens 3, transmitted through the polarizer 7, and converted into linearly polarized light. When a magnetic field is applied to the magneto-optical element 1, the plane of polarization of the linearly polarized light rotates in proportion to the strength of the magnetic field due to the Faraday effect. When this light passes through the analyzer 3, the amount of light changes depending on the angle of the polarization plane, and is condensed on the optical fiber 2 'by the collimator lens 3'. In this way, the magnitude of the magnetic field is converted into a light amount.

【0003】しかしながら,上記のような従来の光磁界
センサは,特定の偏光成分を取り出すことにより光強度
を調整するため磁気光学素子の両側に偏光子,検光子を
配置する必要があり構造が複雑であるという問題があっ
た。
However, the conventional optical magnetic field sensor as described above requires a polarizer and an analyzer to be disposed on both sides of the magneto-optical element in order to adjust the light intensity by extracting a specific polarization component. There was a problem that is.

【0004】本発明の目的は,偏光子,検光子を要せ
ず,そのため光磁界センサ全体の構造を簡単にすること
ができる新規な光磁界センサを提供することにある。
An object of the present invention is to provide a novel optical magnetic field sensor which does not require a polarizer and an analyzer, and thus can simplify the structure of the entire optical magnetic field sensor.

【0005】[0005]

【課題を解決するための手段】本発明者は,上記課題を
解決するために鋭意検討・研究した結果,偏光子,検光
子を配置しなくても,垂直磁化の磁気光学材料を通過し
た光量が外部磁界により大きく変化できることを見出
し,本発明の光磁界センサを完成するに至った。
Means for Solving the Problems As a result of intensive studies and studies to solve the above problems, the present inventor has found that the amount of light passing through a perpendicularly magnetized magneto-optical material can be obtained without disposing a polarizer and an analyzer. Can be changed greatly by an external magnetic field, and the optical magnetic field sensor of the present invention has been completed.

【0006】すなわち,このような目的は,下記(1)
〜(5)の発明により達成される。
That is, such an object is achieved by the following (1)
This is achieved by the inventions of (5) to (5).

【0007】(1)磁界を印加しない状態では多磁区構
造を有し且つ磁区内の光の進行方向と平行な磁化成分が
隣接する磁区で互いに異なる磁気光学素子を用い、磁気
光学素子を前記進行方向に透過する非回折光を検出する
ことを特徴とする光磁界センサ。
(1) When no magnetic field is applied, a magneto-optical element having a multi-domain structure and having different magnetization components in adjacent magnetic domains in parallel with the traveling direction of light in the magnetic domain is used .
An optical magnetic field sensor for detecting undiffracted light transmitted through an optical element in the traveling direction .

【0008】(2)磁気光学素子の一方の側に1本また
は2本の光ファイバを配置し,他方の側に反射鏡を配置
したことを特徴とする上記(1)に記載の光磁界セン
サ。
(2) An optical magnetic field sensor according to (1), wherein one or two optical fibers are arranged on one side of the magneto-optical element, and a reflecting mirror is arranged on the other side. .

【0009】(3)反射鏡として磁気光学素子の表面に
作製した反射膜を用いることを特徴とする上記(2)に
記載の光磁界センサ。
(3) The optical magnetic field sensor according to the above (2), wherein a reflection film formed on the surface of the magneto-optical element is used as the reflection mirror.

【0010】(4)複数枚の上記磁気光学素子を光の進
行方向に重ねて備えることを特徴とする上記(1)ない
し(3)のいずれかに記載の光磁界センサ。
(4) The optical magnetic field sensor according to any one of (1) to (3), wherein a plurality of the magneto-optical elements are provided so as to overlap in a traveling direction of light.

【0011】(5)磁気光学素子としてLPE法により
作製したBi置換した希土類鉄ガ−ネット膜を用いるこ
とを特徴とする上記(1)ないし(4)のいずれかに記
載の光磁界センサ。
(5) The optical magnetic field sensor according to any one of (1) to (4), wherein a Bi-substituted rare earth iron garnet film produced by the LPE method is used as the magneto-optical element.

【0012】本発明に用いる磁気光学素子は,磁界を印
加しないときに,多磁区構造を有する材料であって,入
射光の進行方向に対する磁化ベクトル成分が隣接する磁
区で互いに異なるように入射光に対して配置される。磁
気光学素子の入射光に対する配置は,図2に示すよう
に,隣接する磁区内の磁化方向が入射光と平行であり且
つ互いに逆向きであることが好ましいが,垂直磁化を有
する磁気光学素子自体を入射光に対して斜めの配置にす
ることもできる。これは,斜めの配置にしても,入射光
と平行な磁化成分があり,かつ隣接するこの磁化成分が
逆向きになっているからである。また,感度の調整の目
的で磁気光学素子を複数枚重ね合わせて使用することも
できる。
The magneto-optical element used in the present invention is made of a material having a multi-domain structure when no magnetic field is applied. Placed for The arrangement of the magneto-optical element with respect to the incident light is preferably such that the magnetization directions in adjacent magnetic domains are parallel to the incident light and opposite to each other as shown in FIG. May be arranged obliquely to the incident light. This is because there is a magnetization component parallel to the incident light and the adjacent magnetization component is in the opposite direction even in the oblique arrangement. In addition, a plurality of magneto-optical elements can be used in an overlapping manner for the purpose of adjusting the sensitivity.

【0013】上記のような磁界を印加しない状態で多磁
区構造を有する材料としては,例えば,LPE法等によ
り作製したBi置換希土類鉄ガ−ネット材料,希土類鉄
ガ−ネット,オルソフェライト等を挙げることができる
が,特にこれらに限定されず,本発明の目的を達成でき
る範囲内で多磁区材料を有する種々の材料を用いること
ができる。これらの材料を,磁化容易軸が面と垂直な方
向となるように切り出すことによって,一般に,垂直磁
化の薄膜状が得られ,本発明の素子として用いることが
できる。特に,LPE法により作製したBi置換希土類
鉄ガ−ネット膜の場合は,成長誘導磁気異方性により特
別の処理をしなくてもそのままで垂直磁化性を有してお
り,本発明の目的を達成する上で好ましい。しかも,こ
のBi置換希土類鉄ガ−ネット材料はファラデ−回転能
が大きいため,薄い厚さで大きな回折損失が得られると
いう点からも好適である。
As a material having a multi-domain structure in a state where no magnetic field is applied as described above, for example, Bi-substituted rare earth iron garnet material, rare earth iron garnet, orthoferrite, etc. produced by the LPE method or the like are exemplified. However, the present invention is not particularly limited thereto, and various materials having a multi-domain material can be used as long as the object of the present invention can be achieved. By cutting out these materials so that the axis of easy magnetization is in a direction perpendicular to the plane, a thin film having perpendicular magnetization is generally obtained and can be used as an element of the present invention. In particular, in the case of a Bi-substituted rare earth iron garnet film produced by the LPE method, the film has perpendicular magnetizability without any special treatment due to the growth-induced magnetic anisotropy. It is preferable to achieve. In addition, since the Bi-substituted rare earth iron garnet material has a large Faraday rotatory power, it is preferable in that a large diffraction loss can be obtained with a small thickness.

【0014】[0014]

【作用】前記のような多磁区構造を有する磁気光学素子
からの回折損失は,外部磁界により磁壁の移動を介して
変化するので,外部磁界の強度が変化すると光強度が変
化し,磁界センサを実現できる。一般に回折損失は外部
磁界が0のとき最大になり,外部磁界が増すと磁壁の移
動により回折損失が減少する。そして飽和磁界以上で
は,該素子の多磁区構造は単磁区構造に変化するので回
折は生じなくなる。
The diffraction loss from the magneto-optical element having the multi-domain structure as described above changes through the movement of the magnetic domain wall due to the external magnetic field. realizable. Generally, the diffraction loss becomes maximum when the external magnetic field is 0, and when the external magnetic field increases, the diffraction loss decreases due to the movement of the domain wall. When the magnetic field exceeds the saturation magnetic field, the multi-domain structure of the element changes to a single-domain structure, so that diffraction does not occur.

【0015】この回折による透過率Tは以下の近似式で
表される。
The transmittance T due to this diffraction is represented by the following approximate expression.

【0016】 T=COS2θf+(H/Hs)2SIN2θf ここで,θf は,飽和のファラデ−回転角 H は,外部磁界 Hsは,飽和磁界である。T = COS 2 θ f + (H / Hs) 2 SIN 2 θ f where θ f is a Faraday rotation angle of saturation H, an external magnetic field Hs is a saturation magnetic field.

【0017】このように透過率は外部磁界の2乗に依存
する。そのため外部磁界の大きさにのみ透過率が依存
し,外部磁界の正負は区別できない。通常,光磁界セン
サは,送電線から発生する交流磁界を検出するために用
いられるので,磁界の大きさが検出できれば充分であ
る。なお,磁気光学素子1にバイアスの磁界を印加して
おけば,外部磁界の正負も検出できる。
As described above, the transmittance depends on the square of the external magnetic field. Therefore, the transmittance depends only on the magnitude of the external magnetic field, and the sign of the external magnetic field cannot be distinguished. Usually, an optical magnetic field sensor is used for detecting an AC magnetic field generated from a power transmission line, so that it is sufficient if the magnitude of the magnetic field can be detected. If a bias magnetic field is applied to the magneto-optical element 1, the sign of the external magnetic field can be detected.

【0018】以下に本発明の実施例を示すが,本発明は
それらに限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited thereto.

【0019】[0019]

【実施例】 実施例1 図1に,本発明の光磁界センサの一具体例を用いた光学
系を示す。光学系は,印加磁界がないときに多磁区構造
を有する磁気光学材料1,コリメ−タレンズ3,3’,
光ファイバ2,2’から構成されている。光ファイバ2
から出射した光は,コリメ−タレンズ3により平行ビ−
ムに変換され,磁気光学素子1を透過する。磁気光学素
子1により回折されない光のみ,コリメ−タレンズ3’
により光ファイバ2’へ入射する。磁気光学材料1とし
て,LPE法により作製したBi1.41.6Fe512
材料を用いた。この材料は垂直磁化性を有していた。こ
の材料の厚さを200μmとした。この系において,外
部磁界の強度を0から徐々に大きくすることによって磁
気光学材料1からの回折損失が低下し,光ファイバ2’
への入射光が増加する。磁界を印加しない状態での透過
損失は12dBであった。徐々に磁界を印加すると,損
失は徐々に減少し,約1.5kOeの磁界の下で損失は
1dBとなった。これ以上磁界を印加しても,損失は1
dBのまま変化しなかった。
Embodiment 1 FIG. 1 shows an optical system using a specific example of the optical magnetic field sensor of the present invention. The optical system includes a magneto-optical material having a multi-domain structure when there is no applied magnetic field, a collimator lens 3, 3 ',
It is composed of optical fibers 2, 2 '. Optical fiber 2
Of light emitted from the collimator lens 3
And is transmitted through the magneto-optical element 1. Only the light that is not diffracted by the magneto-optical element 1, the collimator lens 3 '
Incident on the optical fiber 2 ′. As magneto-optical material 1, a material other Bi 1.4 Y 1.6 Fe 5 O 12 prepared by LPE method. This material had perpendicular magnetizability. The thickness of this material was 200 μm. In this system, the diffraction loss from the magneto-optical material 1 is reduced by gradually increasing the intensity of the external magnetic field from 0, and the optical fiber 2 ′
The incident light to the light increases. The transmission loss when no magnetic field was applied was 12 dB. When a magnetic field was gradually applied, the loss gradually decreased, and the loss became 1 dB under a magnetic field of about 1.5 kOe. Even if a magnetic field is applied any more, the loss is 1
It remained unchanged in dB.

【0020】実施例2 図3は,本発明の光磁界センサの別の具体例を用いた光
学系を示す図である。
Embodiment 2 FIG. 3 is a view showing an optical system using another specific example of the optical magnetic field sensor of the present invention.

【0021】磁気光学材料1の一方の側に,併設した2
本の光ファイバ2,2’を,他方の側に反射鏡4を配置
した光学系である。光ファイバ2から出射した光はコリ
メ−タレンズ3で平行ビ−ムとなり磁気光学素子1を透
過後,反射鏡4で反射される。
On one side of the magneto-optical material 1, 2
This is an optical system in which two optical fibers 2 and 2 'are arranged and a reflecting mirror 4 is arranged on the other side. The light emitted from the optical fiber 2 becomes a parallel beam by the collimator lens 3, passes through the magneto-optical element 1, and is reflected by the reflecting mirror 4.

【0022】反射光は再び磁気光学素子1を透過し,コ
リメ−タレンズ3により光ファイバ2’へ集光される。
但し,磁気光学素子1により回折された光は光ファイバ
2’へ集光されず,損失が生じる。この場合,光は,磁
気光学素子1を2度透過するため,実施例1と比較して
磁気光学素子1の厚さをほぼ半分にできる。実際に実施
例1と同じ材料を,厚さを100μmとして用い,反射
鏡としては磁気光学素子1の表面に蒸着により作製した
Al膜を用いて光磁界センサを作製した。各素子は接着
剤により一体化した。測定した所,実施例1とほぼ同様
な結果が得られた。
The reflected light passes through the magneto-optical element 1 again and is condensed by the collimator lens 3 onto the optical fiber 2 '.
However, the light diffracted by the magneto-optical element 1 is not condensed on the optical fiber 2 ', causing a loss. In this case, since the light passes through the magneto-optical element 1 twice, the thickness of the magneto-optical element 1 can be reduced to almost half as compared with the first embodiment. An optical magnetic field sensor was actually manufactured using the same material as in Example 1 with a thickness of 100 μm, and using an Al film formed by evaporation on the surface of the magneto-optical element 1 as a reflecting mirror. Each element was integrated with an adhesive. As a result of measurement, almost the same results as in Example 1 were obtained.

【0023】実施例3 図4は,実施例2にさらに反射膜6を備えたガラスプリ
ズム5を配置したものである。光ファイバ2から出射し
た光はコリメ−タレンズ3で平行ビ−ムとなり,反射膜
6で反射され,磁気光学素子1を透過後,反射鏡4で反
射される。反射光はほぼ同じ光路を通り,コリメ−タレ
ンズ3により光ファイバ2’へ集光される。
Embodiment 3 FIG. 4 shows an embodiment in which a glass prism 5 further provided with a reflection film 6 is arranged in Embodiment 2. The light emitted from the optical fiber 2 becomes a parallel beam by the collimator lens 3, is reflected by the reflection film 6, passes through the magneto-optical element 1, and is reflected by the reflection mirror 4. The reflected light passes through substantially the same optical path and is condensed on the optical fiber 2 'by the collimator lens 3.

【0024】回折光が集光されないのは,実施例2と同
様であるが,図4に示すように検出可能な磁界の方向
は,実施例2の場合とは,90°と異なっている。光フ
ァイバが送電線に沿って配置されており,測定したい磁
界が光ファイバの方向と直角の角度をなす場合に,好都
合な構造である。
Although the diffracted light is not converged as in the second embodiment, the direction of the detectable magnetic field is different from that in the second embodiment by 90 ° as shown in FIG. This is a convenient structure when the optical fiber is arranged along the transmission line and the magnetic field to be measured makes an angle perpendicular to the direction of the optical fiber.

【0025】実施例4 図5は,実施例2において光ファイバを一本のみで構成
した場合である。光ファイバ2から出射した光は,磁気
光学素子1により回折されない光のみ,再び光ファイバ
2へ入射する。この場合は,光送受信側に光分岐器を配
置し,戻り光を受信部で受光できるようにする必要があ
る。光ファイバを一本のみで構成した非常に簡単な構造
である。
Embodiment 4 FIG. 5 shows a case in which only one optical fiber is used in the second embodiment. As for the light emitted from the optical fiber 2, only the light that is not diffracted by the magneto-optical element 1 enters the optical fiber 2 again. In this case, it is necessary to arrange an optical splitter on the optical transmitting / receiving side so that the receiving light can be received by the receiving unit. This is a very simple structure composed of only one optical fiber.

【0026】[0026]

【発明の効果】本発明の光磁界センサは,偏光子,検光
子が不要であり構造が極めて簡単である。また,反射鏡
を配置して磁気光学素子に光を2度透過させる構造を採
用した場合は,単に透過させる場合と比較して素子の厚
さを半分にでき,かつレンズも1個で済むため,極めて
小型である。
The optical magnetic field sensor of the present invention does not require a polarizer and an analyzer, and has a very simple structure. In addition, when a structure is employed in which a reflecting mirror is arranged and light is transmitted twice through the magneto-optical element, the thickness of the element can be reduced by half and only one lens is required as compared with a case where light is simply transmitted. , It is extremely small.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光磁界センサの一具体例を用いた光
学系を示す図である。
FIG. 1 is a diagram showing an optical system using a specific example of an optical magnetic field sensor according to the present invention.

【図2】 本発明に用いる多磁区構造を有する磁気光学
素子を示す図である。
FIG. 2 is a diagram showing a magneto-optical element having a multi-domain structure used in the present invention.

【図3】 反射鏡を配置した本発明の光磁界センサの他
の具体例を用いた光学系を示す図である。
FIG. 3 is a diagram showing an optical system using another specific example of the optical magnetic field sensor of the present invention in which a reflecting mirror is arranged.

【図4】 プリズムを配置した本発明の光磁界センサの
他の具体例を用いた光学系を示す図である。
FIG. 4 is a diagram showing an optical system using another specific example of the optical magnetic field sensor of the present invention in which a prism is arranged.

【図5】 光ファイバを1本で構成した本発明の光磁界
センサの他の具体例を用いた光学系を示す図である。
FIG. 5 is a diagram showing an optical system using another specific example of the optical magnetic field sensor of the present invention in which one optical fiber is formed.

【図6】 従来型の光磁界センサを示す図である。FIG. 6 is a diagram showing a conventional optical magnetic field sensor.

【符号の説明】[Explanation of symbols]

1 磁気光学材料 2,2’ 光ファイバ 3,3’ コリメ−タレンズ 4 反射鏡 5 ガラスプリズム 6 反射膜 7 偏光子 8 検光子 DESCRIPTION OF SYMBOLS 1 Magneto-optical material 2, 2 'Optical fiber 3, 3' Collimator lens 4 Reflector 5 Glass prism 6 Reflective film 7 Polarizer 8 Analyzer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−188982(JP,A) 特開 昭61−140821(JP,A) 特開 昭59−81570(JP,A) 特開 平5−264603(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-188982 (JP, A) JP-A-61-140821 (JP, A) JP-A-59-81570 (JP, A) JP-A-5-81570 264603 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01R 33/00-33/18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁界を印加しない状態では多磁区構造を
有し且つ磁区内の光の進行方向と平行な磁化成分が隣接
する磁区で互いに異なる磁気光学素子を用い、磁気光学
素子を前記進行方向に透過する非回折光を検出すること
を特徴とする光磁界センサ。
[Claim 1] uses a magneto-optical element traveling direction parallel to the magnetization component of the light are different from each other in adjacent domains within and magnetic domains having a multi-domain structure in a state of no applied magnetic field, the magneto-optical
An optical magnetic field sensor for detecting undiffracted light transmitted through the element in the traveling direction .
【請求項2】 磁気光学素子の一方の側に1本または2
本の光ファイバを設置し、他方の側に反射鏡を配置した
ことを特徴とする請求項1に記載の光磁界センサ。
2. One or two magneto-optical elements are provided on one side of the magneto-optical element.
The optical magnetic field sensor according to claim 1, wherein the optical fiber is provided, and a reflecting mirror is disposed on the other side.
【請求項3】 反射鏡として磁気光学素子の表面に作製
した反射膜を用いることを特徴とする請求項2に記載の
光磁界センサ。
3. The optical magnetic field sensor according to claim 2, wherein a reflecting film formed on the surface of the magneto-optical element is used as the reflecting mirror.
【請求項4】 複数枚の上記磁気光学素子を光の進行方
向に重ねて備えることを特徴とする請求項1ないし3の
いずれかに記載の光磁界センサ。
4. The optical magnetic field sensor according to claim 1, wherein a plurality of the magneto-optical elements are provided so as to overlap in a traveling direction of light.
【請求項5】 磁気光学素子としてLPE法により作製
したBi置換した希土類鉄ガーネット膜を用いることを
特徴とする請求項1ないし4のいずれかに記載の光磁界
センサ。
5. The optical magnetic field sensor according to claim 1, wherein a Bi-substituted rare earth iron garnet film produced by an LPE method is used as the magneto-optical element.
JP3281738A 1991-06-04 1991-10-28 Optical magnetic field sensor Expired - Fee Related JP3065142B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3281738A JP3065142B2 (en) 1991-10-28 1991-10-28 Optical magnetic field sensor
US07/892,468 US5477376A (en) 1991-06-04 1992-06-02 Optical attenuators and optical modulators employing magneto-optic element
US08/526,336 US5619367A (en) 1991-06-04 1995-09-11 Apparatus and method for measuring magnetic fields employing magneto-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281738A JP3065142B2 (en) 1991-10-28 1991-10-28 Optical magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH05172917A JPH05172917A (en) 1993-07-13
JP3065142B2 true JP3065142B2 (en) 2000-07-12

Family

ID=17643298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281738A Expired - Fee Related JP3065142B2 (en) 1991-06-04 1991-10-28 Optical magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3065142B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619216B2 (en) * 2015-11-25 2019-12-11 公益財団法人電磁材料研究所 Translucent magnetic material
WO2019066050A1 (en) * 2017-09-29 2019-04-04 シチズンファインデバイス株式会社 Magnetic sensor element and magnetic sensor device

Also Published As

Publication number Publication date
JPH05172917A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
US5033828A (en) Optical output controlling method and apparatus
US5038102A (en) Speed sensor utilizing magneto-optics switch actuated by magnetic field rotation
EP0236345B1 (en) Optical systems with antireciprocal polarization rotators
US5619367A (en) Apparatus and method for measuring magnetic fields employing magneto-optic element
US4952014A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
US5153512A (en) Speed measuring system utilizing magneto-optic switch actuated by magnetic field rotation
CA1308284C (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
JP3065142B2 (en) Optical magnetic field sensor
US4650290A (en) Magneto-optical device
Wolfe et al. Fiber optic magnetic field sensor based on domain wall motion in garnet film waveguides
JPH1144744A (en) Reflection type optical magnetic field sensor
JP3140546B2 (en) Optical magnetic field measuring apparatus and method
JP3044084B2 (en) Magneto-optical element for magnetic field sensor
US3545840A (en) Enhanced transverse kerr magneto-optical transducer
JPH05834Y2 (en)
US3515456A (en) Optical readout implementation
Sohlstrom et al. Waveguide-based fiber optic magnetic field sensor with directional sensitivity
JP2004219137A (en) Reflection type optical magnetic field sensor head
JPH0228574A (en) Optical magnetic field sensor
JPS6162882A (en) Magnetic field detector
JP2682052B2 (en) Optical head
Veeser et al. Optical wheel-rotation sensor
JPS6035353A (en) Photomagnetic reproducing device
Krinchik et al. Magneto-optic investigation of magnetic structures under micron resolution conditions
JP2916995B2 (en) Magnetic garnet for optical devices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000404

LAPS Cancellation because of no payment of annual fees