[go: up one dir, main page]

JPS58174241A - Method for regenerating boron selective ion exchange resin - Google Patents

Method for regenerating boron selective ion exchange resin

Info

Publication number
JPS58174241A
JPS58174241A JP57057384A JP5738482A JPS58174241A JP S58174241 A JPS58174241 A JP S58174241A JP 57057384 A JP57057384 A JP 57057384A JP 5738482 A JP5738482 A JP 5738482A JP S58174241 A JPS58174241 A JP S58174241A
Authority
JP
Japan
Prior art keywords
liquid
boron
desorption
regenerating
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57057384A
Other languages
Japanese (ja)
Other versions
JPH0310378B2 (en
Inventor
Senji Osawa
大沢 専治
Isao Etsuno
越野 勇夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP57057384A priority Critical patent/JPS58174241A/en
Publication of JPS58174241A publication Critical patent/JPS58174241A/en
Publication of JPH0310378B2 publication Critical patent/JPH0310378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To increase stepwise the concn. of boron by adding a fresh concd. regenerating liquid to an intermediate desorbing liquid and using the same cyclically as the regenerating liquid in obtaining the desorbing liquid of boron by passing the regenerating liquid and force out water through the boron selective ion exchange resin on which boron is adsorbed. CONSTITUTION:In the stage of a passing regenerating liquid through a boron selective ion exchange resin 2 on which boron is adsorbed, passing force out water there through to obtain the desorbing liquid of boron, the desorbing liquid is divided to initial desorbing liquid A contg. boron in a low rate, intermediate desorbing liquid B contg. boron in a high rate, and late desorbing liquid C contg. boron in a low rate. The liquid A and the liquid C are removed to the outside of the system, and a fresh regenerating liquid D is added to the liquid B and is cyclically used again as the regenerating liquid. The total amt. of the liquid between the liquid A and the liquid B and the total amt. of the liquid between the liquid D and the force out water are made equal, whereby the concn. of boron of the liquid B is increased gradually. As a result, the heat energy required for the prior art is reduced considerably.

Description

【発明の詳細な説明】 方法に関するものである。[Detailed description of the invention] It is about the method.

海水や排水などのように塩類濃度が濃い水から比較的小
量含まれている硼素を除去する場合,沈殿法や一般的な
イオン交換法では不1J能であり,通常硼素選択性イオ
ン交換樹脂が用いられる。
When removing relatively small amounts of boron from water with a high salt concentration, such as seawater or wastewater, precipitation methods and general ion exchange methods are ineffective, and boron-selective ion exchange resins are usually used. is used.

当該硼素選択性イオン交換樹脂はたとえばスチレントジ
ビニルベンゼンとを共重合シタ母体などをクロロメチル
化した後, N−metyl−glucamineなど
の多価アルコール化合物を結合したものでその基本的構
造は以下のように表わせる。
The boron-selective ion-exchange resin is made by chloromethylating a base material copolymerized with styrene divinylbenzene, and then bonding a polyhydric alcohol compound such as N-methyl-glucamine, and its basic structure is as follows. It can be expressed as follows.

−CH−CH3−CH−CH2−CH−CH2−CH2
−CH−CH2−CI(2 1 (HCI) ・N −C6Ho(OH)5(Hcl) 
−N −C6H3(OH)、。
-CH-CH3-CH-CH2-CH-CH2-CH2
-CH-CH2-CI(2 1 (HCI) ・N -C6Ho(OH)5(Hcl)
-N-C6H3(OH),.

1 CH3CH3 水中の硼素は通常硼酸イオンとして存在するが、・硼酸
イオンはマンニットなどの多価アルコール化合物と反応
して強い酸を形成する性質がある。
1 CH3CH3 Boron in water normally exists as borate ions, but borate ions have the property of reacting with polyhydric alcohol compounds such as mannitol to form strong acids.

当該硼素選択性イオン交換樹脂は硼酸イオンと多価アル
コール化合物の前記した反応を利用するもので、交換基
を形成しているN −metyl −glucamin
eと硼酸イオンを反応させることにより、硼素を吸着す
るものである。また当該反応は選択的に進行するので、
海水などの共存塩類濃度が極めて濃い水から小量の硼素
を選択的に除去することができる。
The boron-selective ion exchange resin utilizes the above-described reaction between boric acid ions and polyhydric alcohol compounds, and N-methyl-glucamine forming an exchange group.
Boron is adsorbed by reacting e with boric acid ions. In addition, since the reaction proceeds selectively,
It is possible to selectively remove small amounts of boron from water such as seawater, which has an extremely high concentration of coexisting salts.

このような硼素選択性イオン交換樹脂としてアンバーラ
イト(登録商標)工RA−743カする。
Amberlite (registered trademark) RA-743 is used as such a boron-selective ion exchange resin.

当該硼素選択性イオン交換樹脂の使用方法は通常のイオ
ン交換樹脂と同様にカラムに当該樹脂を充填し、当該充
填層に硼素を含む水を通水したり、あるいは硼素を含む
水中に当該樹脂を添加してパッチ反応を行なわせたりし
て硼素を吸着させる。
The method for using the boron-selective ion-exchange resin is to fill a column with the resin in the same way as a normal ion-exchange resin, and to pass boron-containing water through the packed bed, or to pour the resin into boron-containing water. Boron is adsorbed by adding it and causing a patch reaction.

また硼素を吸着させた当該樹脂に再生液として硫酸、塩
酸などの鉱酸あるいは力性ソーダなどのアルカリを接触
させると硼素を脱着することができる。
Further, boron can be desorbed by contacting the resin on which boron has been adsorbed with a mineral acid such as sulfuric acid or hydrochloric acid or an alkali such as hydrochloric acid as a regenerating liquid.

ところで硼素選択性イオン交換樹脂は海水や排水などの
塩類濃度が濃い水から小量の硼素を選択的に吸着できる
という利点がある反面、その吸着量が通常のイオン交換
樹脂と比較してかなり小さく、その脱着液の硼素濃度か
非常に薄いという欠点がある。したがって脱着液を濃縮
して硼素を固形物として回収する場合、余分な熱エネル
ギーを要していた。
By the way, boron-selective ion exchange resins have the advantage of being able to selectively adsorb small amounts of boron from waters with high salt concentrations such as seawater and wastewater, but on the other hand, the amount of boron adsorbed is quite small compared to ordinary ion exchange resins. However, the drawback is that the boron concentration of the desorption solution is very low. Therefore, when concentrating the desorption liquid to recover boron as a solid substance, extra thermal energy is required.

なお一般に濃い脱着液を得たい場合、脱着液の前半部お
よび後半部を採取せず中間部の濃い部分のみを取り出す
ことが行なわれているが、このような手法を用いても当
該脱着液の場合はその脱着液の濃度が満足する結果が得
られない。
Generally speaking, if you want to obtain a thick desorption solution, you do not collect the first half or the second half of the desorption solution, but only take out the middle dark part. If the concentration of the desorption solution is insufficient, satisfactory results cannot be obtained.

本発明はこの点に鑑みてなされたもので。The present invention has been made in view of this point.

比較的濃い濃度の硼素脱着液を得ることができる再生方
法を提供するものである。
The present invention provides a regeneration method capable of obtaining a boron desorption solution with a relatively high concentration.

すなわち本発明は硼素を吸着した硼素選択性イオン交換
樹脂に再生液を通液し2次いで押出水を通水して硼素の
脱着液を得るにあたり、当該脱着液を硼素の含有量が少
ない初期脱着液Aと、硼素の含有量が多い中期脱着液B
と、硼素の含有量が少ない後期脱着液Cとに分割し、初
期脱着液Aと後期脱着液Cを系外に取り出し、中期脱着
液Bに新らたな濃厚再生QDを加えて再び再生液として
循環使用し、かつ初期脱着量Aと後期脱着液Cの合計液
量と濃厚再生fi、Dと押出水の合計液量とを等しくす
ることによって、前記脱着液Bの硼素濃度を順次濃くす
ることを特徴とする硼素選択性イオン交換樹脂の再生方
法である。
That is, in the present invention, when a regeneration solution is passed through a boron-selective ion exchange resin that has adsorbed boron, and then extruded water is passed through to obtain a boron desorption solution, the desorption solution is used as an initial desorption solution with a low boron content. Solution A and medium-term desorption solution B with high boron content
The initial desorption liquid A and the late desorption liquid C have a low boron content, and the initial desorption liquid A and the late desorption liquid C are taken out of the system, and a new concentrated regenerated QD is added to the middle desorption liquid B, and the regenerated liquid is regenerated again. The boron concentration of the desorption liquid B is gradually increased by making the total liquid volume of the initial desorption amount A and the late desorption liquid C equal to the total liquid volume of the concentrated regeneration fi, D and the extruded water. This is a method for regenerating a boron-selective ion exchange resin.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は硼素選択性イオン交換樹脂の硼素の脱着に関し
ては再生液の純度はあまり問題とならず、再生液中の酸
やアルカリの濃度が支配的要因となっているという知見
に基づいている。
The present invention is based on the knowledge that the purity of the regenerating liquid does not matter much with respect to the desorption of boron from a boron-selective ion exchange resin, and that the concentration of acid or alkali in the regenerating liquid is the dominant factor.

すなわち本発明は基本的には前サイクルで得られた硼素
を含む脱着液に新らたな再生液を添加し、これを再度再
生液として用い、当該操作を順次繰り返すことにより脱
着液の硼素濃度を段階的に増加させるものである。
In other words, the present invention basically involves adding a new regeneration solution to the boron-containing desorption solution obtained in the previous cycle, using this again as the regeneration solution, and repeating this operation sequentially to reduce the boron concentration of the desorption solution. This is a step-by-step increase in

しかしここで問題となるのは新らたに加える再生液と、
押出水の通液によって脱着液の液量かしだいに増加する
ことである。
However, the problem here is the newly added regeneration liquid,
The amount of desorption fluid gradually increases as the extruded water passes through it.

すなわち前述したような基本的操作によつて脱着液中の
硼素量が増加しても、それに比例して液量も増加しだの
では硼素濃度の増加は期待できない。
That is, even if the amount of boron in the desorption solution is increased by the basic operation as described above, an increase in the boron concentration cannot be expected unless the amount of the solution increases in proportion to the amount of boron.

本発明はこの課題を、初期脱着液および後期脱着液を系
外に取り出し、この取り出し液量に見合う新らたな再生
液および押出水を系内に入れることにより解決するもの
である。
The present invention solves this problem by removing the initial desorption liquid and the latter desorption liquid from the system, and introducing new regeneration liquid and extrusion water into the system in an amount corresponding to the amount of the removed liquid.

これを再生系の液バランスを示した第1図を用いて更に
詳しく説明する。
This will be explained in more detail using FIG. 1, which shows the liquid balance of the regeneration system.

第1図において1は硼素選択性イオン交換樹脂2を充填
した樹脂塔であるが、当該樹脂塔lに常法により硼素を
含む原水3を通水して処理水4を系外に排水することに
より当該イオン交換樹脂2に硼素を吸着させた後、以下
の再生を行なう。
In Fig. 1, 1 is a resin tower filled with a boron-selective ion exchange resin 2, and the raw water 3 containing boron is passed through the resin tower 1 using a conventional method, and the treated water 4 is drained out of the system. After boron is adsorbed onto the ion exchange resin 2, the following regeneration is performed.

すなわち硫酸、塩酸、力性ソーダなどの再生液B′を通
液し、ついで押出水Eを通水する。
That is, a regenerating liquid B' such as sulfuric acid, hydrochloric acid, or sodium hydroxide is passed through the tube, and then extruded water E is passed through the tube.

このような操作により第2図に示したような脱着曲線を
描いて硼素の脱着液が得られるが。
Through such operations, a boron desorption solution can be obtained with a desorption curve as shown in FIG.

本発明においては当該脱着液を硼素の含有量か少ない初
期脱着液Aと、硼素の含有量が多い中期脱着液Bと、硼
素の含有量が少ない後期脱着液Cとに分割する。そして
初期脱着液Aおよび後期脱着液Cを系外に取り出し、中
期脱着液Bに新らたな濃厚再生液りを加えて次回の再生
における再生液B′として用いる。
In the present invention, the desorption liquid is divided into an initial desorption liquid A having a low boron content, a middle desorption liquid B having a high boron content, and a late desorption liquid C having a low boron content. Then, the initial desorption liquid A and the late desorption liquid C are taken out of the system, and a new concentrated regeneration liquid is added to the intermediate desorption liquid B to be used as the regeneration liquid B' in the next regeneration.

図に見られるごとく再生系において系外に持ち出される
液量は初期脱着液Aおよび後期脱着Qcのみであり、ま
た系外に入ってくるe、量は押出水Eと濃厚再生液りの
みである。
As shown in the figure, the amount of liquid taken out of the regeneration system is only the initial desorption liquid A and the late desorption liquid Qc, and the amount of liquid e that enters the system is only extruded water E and concentrated regeneration liquid. .

したがってA+C=E十りの関係となるように液バラン
スを取りながらこの再生操作を繰り返せは、中期脱着液
Bの液量は常に一定であり、力・つサイクルを重ねる毎
に当該脱着液の硼素濃度を順次増加させることができる
Therefore, by repeating this regeneration operation while maintaining the liquid balance so that the relationship A + C = E is satisfied, the amount of medium-term desorption liquid B is always constant, and the amount of boron in the desorption liquid increases with each cycle. Concentrations can be increased sequentially.

なお系外に排出する初期脱着液Aおよび後期脱着液Cに
は小量の硼素が含まれているので、当該両脱着液は原水
槽などに流入して原水と混合するとよい。なお当該混合
によシ原水の塩類濃度が若干増加したとしても、硼素の
吸着に関しては全く問題がない。
Note that since the initial desorption liquid A and the latter desorption liquid C discharged to the outside of the system contain a small amount of boron, it is preferable that the two desorption liquids flow into a raw water tank or the like and mix with the raw water. Note that even if the salt concentration of the raw raw water increases slightly due to the mixing, there is no problem with regard to boron adsorption.

本発明に用いる再生液としては硫酸、塩酸。The regenerating liquid used in the present invention is sulfuric acid or hydrochloric acid.

硝酸などの鉱酸および力性ソーダなどの力性アルカリを
用いることができるが、脱着効果については力性アルカ
リより鉱酸の方が優れている。また鉱酸の中では次いで
行なう濃縮操作において、腐蝕性の蒸気を出さないとい
う点で硫酸か望ましい。
Mineral acids such as nitric acid and hydroalkali such as hydrocarbon soda can be used, but mineral acids are superior to hydroalkali in terms of desorption effect. Among mineral acids, sulfuric acid is preferable because it does not emit corrosive vapors during the subsequent concentration operation.

再生液として硫酸を用いる場合、その濃度は5〜10%
が適当であり、濃厚再生液りとしては30%以上の濃度
のものを用いるとよい。
When using sulfuric acid as the regenerating liquid, its concentration is 5 to 10%.
is appropriate, and it is preferable to use a concentrated regenerating liquid with a concentration of 30% or more.

なお硫酸などの鉱酸で再生しまた後、当該イオン交換樹
脂を再度力性ソーダやアンモニア水で処理した方が2通
水における硼素の漏洩量を小さくすることができるので
、処理水中の硼素濃度が問題となるような場合は、酸と
アルカリの2段再生をした方が好せしい。
It should be noted that it is possible to reduce the amount of boron leaked in two passes of water by regenerating the ion exchange resin with a mineral acid such as sulfuric acid, and then treating the ion exchange resin again with sodium chloride or aqueous ammonia, so the boron concentration in the treated water can be reduced. If this is a problem, it is better to perform two-stage regeneration using acid and alkali.

本発明において初期脱着液A、中期脱着液B、後期脱着
e、c、濃厚再生液り、押出水Eの液量は任意に決定で
きるが、基本的にはA + C= E + Dとなるよ
うにし、かつ当該イオン交換樹脂から脱着される全硼素
のすくなくとも70係以上が中期脱着液Bに含まれるよ
うK Lだ方が望ましい。
In the present invention, the amounts of initial desorption liquid A, middle desorption liquid B, late desorption e and c, concentrated regeneration liquid, and extruded water E can be arbitrarily determined, but basically A + C = E + D. It is preferable to use KL so that at least 70 parts or more of the total boron desorbed from the ion exchange resin is contained in the medium-term desorption liquid B.

以上説明したような再生を繰り返すことにより中期脱着
液Bの硼素濃度が段階的に増加してくるが、ある時点で
硼素の飽和溶解濃度となり、それでもなお当該再生操作
を繰り返すと当該イオン交換樹脂の脱着効果が低下する
。したがって飽和溶解濃度に達しない適当な時期に中期
脱着液Bを系外に取り出し、以下の操作を行なう。
By repeating the regeneration as explained above, the boron concentration in the medium-term desorption solution B increases step by step, but at a certain point it reaches the saturated dissolved concentration of boron, and even then, if the regeneration operation is repeated, the concentration of boron in the ion exchange resin increases. The desorption effect decreases. Therefore, the intermediate desorption solution B is taken out of the system at an appropriate time before the saturated dissolved concentration is reached, and the following operation is performed.

中期脱着液Bの主成分は、再生液として硫酸を用いた場
合は硫酸と硼酸である。したがって当該中期脱着液Bを
常圧加熱あるいは減IF加熱して水分を蒸発させると硼
酸を固形物として析出させることができる。
The main components of the intermediate desorption liquid B are sulfuric acid and boric acid when sulfuric acid is used as the regenerating liquid. Therefore, boric acid can be precipitated as a solid by heating the medium-term desorption liquid B at normal pressure or at reduced IF to evaporate water.

このようにして硼酸を固形物として分離するが、同時に
得られる残液は硼素等の若干の不純物を含有するものの
そのほとんどは濃厚な硫酸である。したがって当該残液
は前述した再生工程における濃厚再生液りとして再使用
するとよい。
In this way, boric acid is separated as a solid, and the residual liquid obtained at the same time contains some impurities such as boron, but most of it is concentrated sulfuric acid. Therefore, the residual liquid may be reused as a concentrated regeneration liquid in the above-mentioned regeneration process.

以上述べたごとく本発明によれば硼素濃度の濃い脱着液
が得られるので、従来必要としていた熱エネルギーを大
巾に減少せしめることができる。
As described above, according to the present invention, a desorption liquid with a high boron concentration can be obtained, so that the thermal energy required conventionally can be greatly reduced.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 500m1のアンバーライトIRA−743をカラムに
充填し、第1表に示した原水を5VIOで4・8を通水
し硼素を吸着させた。
Example 500 ml of Amberlite IRA-743 was packed in a column, and the raw water shown in Table 1 was passed through the column at 5 VIO of 4.8 to adsorb boron.

その後104 H2SO,zz5ml (98チH2S
o 、 23.5f/lR)をSV4で通液し1次いで
SV4で押出水500mA’で押出したところ第2図に
示したような脱着曲線が得られた。
Then 104 H2SO, zz5ml (98chi H2S
23.5 f/lR) was passed through an SV4 and then extruded using an extrusion water of 500 mA' using an SV4, and a desorption curve as shown in FIG. 2 was obtained.

当該脱着液の内25ortteの・、初期脱着液と26
3m1の後期脱着液を系外に取り出し、前記原水の貯槽
200tに混合し、一方z1zmlの中期脱着液を次回
の再生に備えて蓄えた。なお当該た。
Of the desorption liquid, 25 ortte, initial desorption liquid and 26
3 ml of late-stage desorption liquid was taken out of the system and mixed into the 200 t storage tank of the raw water, while z1 ml of middle-stage desorption liquid was stored in preparation for the next regeneration. Please note that the same applies.

次いで常法により当該イオン交換樹脂を洗浄した後、再
び同じ原水を5VIOで4・8を通水し硼素を吸着させ
た。
Next, the ion exchange resin was washed by a conventional method, and then the same raw water was passed through it again at 5 VIO of 4.8 to adsorb boron.

この通水後の再生については前回の再生で得た212r
nlノ中期脱着液に98% (D H2SO41’5 
mlを加えて2251111の再生液とし、これを通液
した後、 500ffi/の押出水を通水して前回と同
じようにして中期脱着液212m1を採取した。
Regarding the regeneration after this water flow, the 212r obtained in the previous regeneration
98% (D H2SO41'5
ml was added to make 2251111 regenerating liquid, and after passing this through, 500ffi/extrusion water was passed through, and 212 ml of medium-term desorption liquid was collected in the same manner as the previous time.

このような通水と再生を4サイクル繰り返した後、得ら
れた中期脱着液212罰の硼素濃度は4,1りasB/
lであった。
After repeating such water passage and regeneration for 4 cycles, the boron concentration of the obtained medium-term desorption liquid 212 was 4.1 asB/
It was l.

次いで当該中期脱着液を加熱して濃縮したところ16.
49の素硼酸が得られた。またその時の残液の硫酸濃度
は約40%であり2本発明の濃厚再生液として充分に使
用できるものでちった。
Then, when the medium-term desorption liquid was heated and concentrated, 16.
49 basic boric acids were obtained. The sulfuric acid concentration of the residual liquid at that time was about 40%, which was sufficient to be used as the concentrated regenerating liquid of the present invention.

第1表原水の組成Table 1 Composition of raw water

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の再生液の液バランスを示す説明図であ
り、第2図は本発明の実施例における硼素の脱着曲線で
あり、縦軸に硼素脱着量、横軸に液量を示す。 l・・・樹脂塔 2・・・硼素選択性イオン交換樹脂 3・・・原水     4・・・処理水A・・・初期脱
着MB・・・中期脱着液C・・・後期脱着液  D・・
・濃厚再生液E・・・押出水 第1図 0    200  40o   60o   800
−→ 液量(m) 手続補止書(自発) 昭和58年7月7日 特許庁長官若杉和夫 殿 /、 4f件の表示 昭和57年特許願第57384号 2発明の名称 硼素選択性イオノ交換樹脂の再生方法 3袖ILをする者 ・1件との関係  出願人 ≠代理人〒113 j袖+Eの対象 明細書中の下記事項を訂正願います。 f特許請求の範囲を別紙のとおり訂正する。 2、第6頁1行目に「初期脱着量A」とあるのを[初期
脱着液A」と訂正する。 3、第12頁下から4行目に[16,+tJとあるのを
「4.92」と訂正する。 以  上 2特許請求の範囲 (1)硼素を吸着した硼素選択性イオン交換樹脂に再生
液をm#:L・次いで押出水を通水して硼素の脱着液を
得るにあたり・当該脱着液を硼素の含有酸が少ない初期
脱着液Aと・硼素の含有量が多い中期脱着液Bと・硼素
の含有量が少ない後期脱着ti、Cとに分割し・初期脱
着o、Aと後期脱着液Cを系外に取り出し・中期脱着液
Bに新らたな濃厚再生液1)を加えて再び再生液として
循環使用し・かつ初期脱着液Aと後期脱着液Cの合計液
量と濃厚再生液りと押出水の合計液量とを等しくするこ
とによって・明記脱着液Bの硼素濃度を順次濃くするこ
とを特徴とする硼素選択性イオン交換樹脂の再生方法。 (2)硼素濃度が増加した脱着液Bを系外に取り出し・
その水分を蒸発させることにより硼素を析出させて同形
物として回収し・さらに当該残液を濃厚再生液りとして
使用する特許請求の範囲第1項記載の硼素選択性イオン
交換樹脂の再生方法。 (3)再生液が硫酸である特許請求の範囲第1項および
第2項記載の硼素選択性イオン交換樹脂の再生方法。 〕
Fig. 1 is an explanatory diagram showing the liquid balance of the regenerating liquid of the present invention, and Fig. 2 is a boron desorption curve in an example of the present invention, where the vertical axis shows the boron desorption amount and the horizontal axis shows the liquid amount. . l... Resin column 2... Boron selective ion exchange resin 3... Raw water 4... Treated water A... Initial desorption MB... Middle desorption liquid C... Late desorption liquid D...
・Concentrated regenerated liquid E... Extruded water Figure 1 0 200 40o 60o 800
-→ Liquid volume (m) Procedural supplement (voluntary) July 7, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office/, 4f indications 1982 Patent Application No. 57384 2 Name of the invention Boron selective ion exchange Resin Recycling Method 3 Person who performs Sleeve IL/Relationship with 1 case Applicant ≠ Agent〒113 Please correct the following matters in the subject specification of Sleeve + E. f. The scope of the patent claims is amended as shown in the attached sheet. 2. In the first line of page 6, "Initial desorption amount A" is corrected to "Initial desorption liquid A." 3. On the 4th line from the bottom of page 12, [16, +tJ] is corrected to "4.92". Claims of the above two patents (1) In m#:L of regenerating solution being passed through a boron-selective ion exchange resin that has adsorbed boron.Then, when extruded water is passed through to obtain a boron desorption solution, the desorption solution is Divided into initial desorption solution A, which contains less acid; middle-stage desorption solution B, which has a high boron content; and late-stage desorption solution ti, C, which contains less boron. Take it out of the system, add new concentrated regenerating liquid 1) to the mid-term desorption liquid B, and recirculate it as a regenerating liquid. A method for regenerating a boron-selective ion-exchange resin, comprising: sequentially increasing the boron concentration of the specified desorption solution B by making the total volume of extruded water equal to the total volume of the extruded water. (2) Take out the desorption liquid B with increased boron concentration from the system.
2. The method for regenerating a boron-selective ion exchange resin according to claim 1, wherein boron is precipitated by evaporating the water and recovered as an isomorphic product, and the residual liquid is used as a concentrated regenerating liquid. (3) The method for regenerating a boron-selective ion exchange resin according to claims 1 and 2, wherein the regeneration liquid is sulfuric acid. ]

Claims (3)

【特許請求の範囲】[Claims] (1)硼素を吸着した硼素選択性イオン交換樹脂に再生
液を通液し1次いで押出水を通水して硼素の脱着液を得
るにあたり、当該脱着液を硼素の含有量が少ない初期脱
着液Aと。 硼素の含有量が多い中期脱着液Bと、硼素の含有量が少
ない後期脱着液Cとに分割し。 初期脱着液Aと後期脱着液Cを糸外に取り出し、中期脱
着液Bに新らたな濃厚再生液りを加えて再び再生液とし
て循環使用し。 かつ初期脱着量Aと後期脱着液Cの合計液量と濃厚再生
液りと押出水の合計液量とを等しくすることによって、
前記脱着液Bの硼素濃度を順次濃くすることを特徴とす
る硼素選択性イオン交換樹脂の再生方法。
(1) When a regeneration solution is passed through a boron-selective ion exchange resin that has adsorbed boron, and then extruded water is passed through to obtain a boron desorption solution, the desorption solution is used as an initial desorption solution with a low boron content. With A. It is divided into a medium-term desorption liquid B with a high boron content and a late-stage desorption liquid C with a low boron content. The initial desorption liquid A and the late desorption liquid C are taken out of the yarn, and a new concentrated regenerating liquid is added to the intermediate desorption liquid B, and the mixture is recycled as a regenerating liquid. And by making the total amount of the initial desorption amount A and the late desorption liquid C equal to the total amount of concentrated regeneration liquid and extruded water,
A method for regenerating a boron-selective ion exchange resin, the method comprising increasing the boron concentration of the desorption liquid B in sequence.
(2)硼素濃度が増加した脱着液Bを系外に取り出し、
その水分を蒸発させることによ、!2硼素を析出させて
固形物として回収し、さらに当該残液を濃厚再生液りと
して使用する特許請求の範囲第1項記載の硼素選択性イ
オン交換樹脂の再生方法。 、
(2) Take out the desorption liquid B with increased boron concentration from the system,
By evaporating that water! 2. The method for regenerating a boron-selective ion exchange resin according to claim 1, wherein boron is precipitated and recovered as a solid, and the residual liquid is used as a concentrated regenerating liquid. ,
(3)再生液が硫酸である特許請求の範囲第1項および
第2項記載の硼素選択性イオン交換樹脂の再生方法。
(3) The method for regenerating a boron-selective ion exchange resin according to claims 1 and 2, wherein the regeneration liquid is sulfuric acid.
JP57057384A 1982-04-08 1982-04-08 Method for regenerating boron selective ion exchange resin Granted JPS58174241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057384A JPS58174241A (en) 1982-04-08 1982-04-08 Method for regenerating boron selective ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057384A JPS58174241A (en) 1982-04-08 1982-04-08 Method for regenerating boron selective ion exchange resin

Publications (2)

Publication Number Publication Date
JPS58174241A true JPS58174241A (en) 1983-10-13
JPH0310378B2 JPH0310378B2 (en) 1991-02-13

Family

ID=13054106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057384A Granted JPS58174241A (en) 1982-04-08 1982-04-08 Method for regenerating boron selective ion exchange resin

Country Status (1)

Country Link
JP (1) JPS58174241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173182A (en) * 1983-03-18 1984-10-01 Kurita Water Ind Ltd How to treat boron-containing water
JP2007313506A (en) * 2007-07-25 2007-12-06 Mitsubishi Chemicals Corp Purification method of basic anion exchange resin
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189255B2 (en) * 2006-07-03 2013-04-24 合同資源産業株式会社 Iodine recovery from polarizing film manufacturing wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173182A (en) * 1983-03-18 1984-10-01 Kurita Water Ind Ltd How to treat boron-containing water
JPH0143594B2 (en) * 1983-03-18 1989-09-21 Kurita Water Ind Ltd
JP2007313506A (en) * 2007-07-25 2007-12-06 Mitsubishi Chemicals Corp Purification method of basic anion exchange resin
JP4518112B2 (en) * 2007-07-25 2010-08-04 三菱化学株式会社 Purification method of basic anion exchange resin
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water

Also Published As

Publication number Publication date
JPH0310378B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
JP3037574B2 (en) How to recover lithium
CN105836936A (en) An ammonia nitrogen recovering method based on membrane electroadsorption and ion exchange
US3842002A (en) Method for removing sulfate and bicarbonate ions from sea water or brackish water through the use of weak anionic exchange resins containing amino groups of the primary and secondary type
JPS58174241A (en) Method for regenerating boron selective ion exchange resin
JPWO2020013070A1 (en) Acid solution regeneration device and regeneration method
CN103071456B (en) Organic amine iodine ion adsorbent as well as preparation method and application thereof
RU2232714C2 (en) Method for purifying lithium chloride
Myers et al. Synthetic-resin ion exchangers in water purification
JP2013119487A (en) Method for treating hydrosilicofluoric acid-containing liquid
US2373632A (en) Removal of fluorine from water
JPS61192385A (en) Treatment of fluorine-containing waste solution
Tiger et al. Demineralizing solutions by a two-step ion exchange process
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JP2001104807A (en) Boron recovery method
JP3832961B2 (en) Regeneration method of radium adsorbent
KR100197300B1 (en) Biological absorbents prepared with colloidal silica gel and absorption and recovery of heavy metal by the same
JPS5823156B2 (en) Pure water production method
JPS6159177B2 (en)
JP3364308B2 (en) Wastewater treatment method and apparatus
JPS5939517B2 (en) Method for recovering and reusing selenium components from electrolytic coloring process wastewater
WO2024012042A1 (en) Method for regenerating alkanolamine solution
JPH041659B2 (en)
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JP2004262676A (en) Method for producing high-purity sodium chloride crystals
JP2941988B2 (en) Removal method of nitrate ion in raw water