[go: up one dir, main page]

JP3727212B2 - Apparatus and method for treating wastewater containing boron - Google Patents

Apparatus and method for treating wastewater containing boron Download PDF

Info

Publication number
JP3727212B2
JP3727212B2 JP2000022785A JP2000022785A JP3727212B2 JP 3727212 B2 JP3727212 B2 JP 3727212B2 JP 2000022785 A JP2000022785 A JP 2000022785A JP 2000022785 A JP2000022785 A JP 2000022785A JP 3727212 B2 JP3727212 B2 JP 3727212B2
Authority
JP
Japan
Prior art keywords
boron
type
exchange resin
ion exchange
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000022785A
Other languages
Japanese (ja)
Other versions
JP2001212455A (en
Inventor
智 早川
達也 細井
寅雄 石田
Original Assignee
日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電工株式会社 filed Critical 日本電工株式会社
Priority to JP2000022785A priority Critical patent/JP3727212B2/en
Publication of JP2001212455A publication Critical patent/JP2001212455A/en
Application granted granted Critical
Publication of JP3727212B2 publication Critical patent/JP3727212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケルめっき工程洗浄排水、アルミ表面処理工程洗浄排水、及びホウ素を含有する表面処理剤を使用する金属若しくは非金属表面処理工程洗浄排水、或いはガラス、釉薬、アルミコンデンサー等ホウ素を使用する工場における工程排水の処理において陽イオン、陰イオン、ホウ素を除去すると共に処理水を洗浄水或いは工程水として再利用する装置及び方法に関する。
【0002】
【従来の技術】
一般にニッケルめっき液或いはアルミ表面処理液中にはホウ素化合物(ホウ酸等)が含まれており、これらを扱う工場においてはホウ素を含有する排水が発生する。またガラス、釉薬、アルミコンデンサー等ホウ素を使用する工場においてもホウ素を含む排水が発生する。ホウ素化合物は植物にとっては必須微量元素であり、海水には4〜5mg/L程度含まれていることは周知のことである。一方ホウ素が人体に与える影響は必ずしも明確ではないものの低濃度の継続摂取において生殖機能の低下などの健康障害を起こす可能性が指摘されている。平成11年2月、ホウ素の環境基準として1mg/L以下が告示され、追って排水基準も定められることになると予想されるため、これらのホウ素を含む工程排水中のホウ素除去処理が必要となる。
【0003】
ホウ素の除去方法としては、ホウ素含有排水にアルミニウム化合物及びカルシウム化合物を用いて凝集沈殿によりホウ素化合物を分離除去する方法(特公昭58−15193号公報、同59−24876号公報)或いはニッケルめっき洗浄排水にマグネシウム塩を添加して凝集沈殿によりホウ素を分離除去する方法等(平成11年度東京都立産業技術研究所発表会予稿集p52)が知られている。しかし、ホウ素を不溶化させるために多量の薬剤を使用する必要があり、発生汚泥も多くその処理が困難であるという問題がある。またホウ素含有排水を陰イオン交換樹脂、或いはホウ素選択吸着樹脂により吸着処理する方法も知られているが、これらの樹脂へのホウ素吸着力は非常に弱く、かつイオン交換樹脂に吸着できるホウ素量も少ないため、イオン交換塔の寿命が短いという問題がある。
【0004】
【発明が解決しようとする課題】
本発明の課題は、イオン交換樹脂へのホウ素の吸着量を増加させることによりイオン交換樹脂塔の寿命を延ばし、かつ処理水を高純度のイオン交換水として再利用を行なう処理装置及び方法を得ることである。
【0005】
【課題を解決するための手段】
すなわち、本発明装置は、この課題を達成するために、ホウ素を含む排水の流入側から順に、H型に調整した強酸性陽イオン交換樹脂を充填し、陽イオンを吸着除去させる第一イオン交換塔と、OH型に調整した弱塩基性陰イオン交換樹脂若しくはOH型に調整した強塩基性陰イオン交換樹脂(I型若しくはII型)を充填し、ホウ素を除く陰イオンを吸着除去させる第二イオン交換塔と、ホウ素を吸着除去させるイオン交換樹脂を充填した第三イオン交換塔を配置してなるホウ素を含む排水の処理装置であり、
本発明方法は、ホウ素を含む排水を、H型に調整した強酸性陽イオン交換樹脂を充填した第一イオン交換塔に通水して陽イオンを吸着除去させる工程と、陽イオンが吸着除去された排水を、OH型に調整した弱塩基性陰イオン交換樹脂若しくはOH型に調整した強塩基性陰イオン交換樹脂(I型若しくはII型)を充填した第二イオン交換塔に通水してホウ素を除く陰イオンを吸着除去させる工程と、ホウ素を除くすべてのイオンが吸着除去された排水を、ホウ素を吸着除去させるイオン交換樹脂を充填した第三イオン交換塔に通水してホウ素を吸着除去する工程とを備えたホウ素を含む排水の処理方法である。
【0006】
ここで、第三イオン交換塔に充填されるイオン交換樹脂は、OH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂挙げられる。
【0007】
このように陽イオン、陰イオン、及びホウ素が除去された排水を洗浄工程に導き、高純度イオン交換水として洗浄工程に利用することができる。
【0008】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0009】
本発明者は、イオン交換樹脂に対するホウ素(ホウ酸イオン)を含む種々のイオンのイオン選択性を鋭意研究し、ホウ素を量も効率的に吸着させる方法を開発したものである。すなわちホウ素は希薄溶液中pH9付近では、H2BO3 -として陰イオンで存在しているものと思われ、陰イオン交換樹脂(強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂)或いはN−メチルグルカミン基を有するホウ素選択吸着樹脂で吸着される。通常陰イオン交換樹脂としては再生のし易さを考え弱塩基性陰イオン交換樹脂が使用される。しかしホウ素以外の塩化物イオン、或いは硫酸イオンなどが含まれると、弱塩基性陰イオン交換樹脂においてはホウ素はすぐ漏出し入口と同じ濃度になってしまうことが明らかになった。更に弱塩基性陰イオン交換樹脂はOHイオンが最も選択性が大きいため、Naのような陽イオンが含まれていると、イオン交換樹脂の中がアルカリ性になり、Cl等の陰イオンが吸着されにくい性質があるため、この現象はより顕著である。陰イオン交換樹脂としてI型若しくはII型強塩基性陰イオン交換樹脂を使用した場合、前項の弱塩基性陰イオン交換樹脂と比較すればホウ素は吸着されるものの、ホウ素の吸着量は僅かであった。N−メチルグルカミン基を有するホウ素選択吸着樹脂も同様の性質を持っている。このような現象を踏まえ鋭意検討を行った結果、第一塔に陽イオン交換樹脂を充填し、第二塔に陰イオン交換樹脂を充填して通液することによりホウ素以外のイオンを吸着除去させ、第三イオン交換樹脂塔に充填したOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、H型に調整した強酸性陽イオン交換樹脂及びOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂を混合して充填した混合樹脂、或いは遊離型に調整したホウ素選択吸着樹脂におけるホウ素吸着量を飛躍的に増大せしめる方法を発明するに至ったものである。この場合第二塔に充填する陰イオン交換樹脂はI型若しくはII型強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂のいずれでもよい。またこのように処理したイオン交換水は高純度イオン交換水として工程のいずれの箇所においても再利用が可能である。
【0010】
【実施例】
以下本発明の実施例について図面を参照して具体的に説明する。
【0011】
[実施例1]
内径20mm、高さ500mmのアクリル製カラムを三塔用意し、図1に示すように、第一塔(4)にH型に調整した強酸性陽イオン交換樹脂75mLを、第二塔(5)にOH型に調整した弱塩基性陰イオン交換樹脂75mLを、第三塔(6)にOH型に調整したII型強塩基性陰イオン交換樹脂25mLを充填する。それぞれ充填した樹脂床にイオン交換水を流速500mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後表1に示す組成を有するニッケルめっき工程洗浄排水を流速500mL/Hrで第一塔(4)から第二塔(5)、第三塔(6)の順に通液した。第三塔(6)出口水の水質例は表2のとおりであり、第三塔(6)から漏出するホウ素の濃度曲線は図2のとおりである。処理水のホウ素漏出濃度が5mg/Lに至るまでに12,250mL通液出来た。この時点におけるホウ素吸着塔(II型強塩基性陰イオン交換樹脂)に吸着したホウ素量は8.0g/L−Rであった。
【0012】
【表1】

Figure 0003727212
【0013】
【表2】
Figure 0003727212
【0014】
参考例1
実施例1と同様、内径20mm、高さ500mmのアクリル製カラムを三塔用意し、第一塔にH型に調整した強酸性陽イオン交換樹脂75mLを、第二塔にOH型に調整した弱塩基性陰イオン交換樹脂75mLを、第三塔にH型に調整した強酸性陽イオン交換樹脂25mLとOH型に調整したII型強塩基性陰イオン交換樹脂25mLを混合して充填する。それぞれ充填した樹脂床にイオン交換水を流速500mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後表1に示す組成を有するニッケルめっき工程洗浄排水を流速500mL/Hrで第一塔から第二塔、第三塔の順に通液した。
【0015】
第三塔出口水の水質は実施例1と同様であり、第三塔から漏出するホウ素の濃度曲線は図2のとおりである。処理水のホウ素漏出濃度が5mg/Lに至るまでに12,750mL通液出来た。この時点におけるホウ素吸着塔に吸着したホウ素量は10.2g/L−Rであった。
【0016】
参考例2
実施例1と同様、内径20mm、高さ500mmのアクリル製カラムを三塔用意し、第一塔にH型に調整した強酸性陽イオン交換樹脂75mLを、第二塔にOH型に調整した弱塩基性陰イオン交換樹脂75mLを、第三塔に遊離型に調整したN−メチルグルカミン基を有するホウ素選択吸着樹脂25mLを充填する。それぞれ充填した樹脂床にイオン交換水を流速500mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後表1に示す組成を有するニッケルめっき工程洗浄排水を流速500mL/Hrで第一塔から第二塔、第三塔の順に通液した。第三塔出口水の水質は実施例1と同様であり、第三塔から漏出するホウ素の濃度曲線は図2のとおりである。処理水のホウ素漏出濃度が5mg/Lに至るまでに4,625mL通液出来た。この時点におけるホウ素吸着塔に吸着したホウ素量は3.5g/L−Rであった。
【0017】
[比較例]
実施例1と同様、内径20mm、高さ500mmのアクリル製カラムを二塔用意し、第一塔にH型に調整した強酸性陽イオン交換樹脂25mLを、第二塔にOH型に調整したII型強塩基性陰イオン交換樹脂25mLを充填する。それぞれ充填した樹脂床にイオン交換水を流速500mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後表1に示す組成を有するニッケルめっき工程洗浄排水を流速500mL/Hrで第一塔から第二塔の順に通液した。第二塔から漏出するホウ素の濃度曲線は図2のとおりである。処理水のホウ素漏出濃度が5mg/Lに至るまでに2,750mL通液出来た。この時点におけるホウ素吸着塔に吸着したホウ素量は1.4g/L−Rであった。
【0018】
これら実施例、比較例における、ホウ素漏出濃度5mg/Lまでにホウ素吸着塔に吸着したホウ素量を表3にまとめて示す。
【0019】
【表3】
Figure 0003727212
【0020】
【発明の効果】
以上説明したように、本発明によれば、イオン交換樹脂へのホウ素の吸着量を増加させることによりイオン交換樹脂塔の寿命を延ばし、かつ処理水を高純度のイオン交換水として再利用を行なうことができる。
【図面の簡単な説明】
【図1】本発明の実施例の装置を示すブロック図。
【図2】実施例1〜3及び比較例におけるホウ素漏出曲線を示す図。
【符号の説明】
1…表面処理槽、2…洗浄槽、3…ポンプ、4…陽イオン交換塔、5…陰イオン交換塔、6…ホウ素吸着塔、7…水質計、pH計等、8…水質計、pH計等。[0001]
BACKGROUND OF THE INVENTION
The present invention uses nickel plating process cleaning wastewater, aluminum surface treatment process cleaning wastewater, and metal or non-metal surface treatment process cleaning wastewater using a boron-containing surface treatment agent, or a factory that uses boron such as glass, glaze, and aluminum condenser. The present invention relates to an apparatus and a method for removing cations, anions, and boron in the treatment of process wastewater and reusing treated water as washing water or process water.
[0002]
[Prior art]
In general, a nickel plating solution or an aluminum surface treatment solution contains a boron compound (boric acid or the like), and wastewater containing boron is generated in factories that handle these. Wastewater containing boron is also generated in factories that use boron, such as glass, glaze, and aluminum condensers. Boron compounds are essential trace elements for plants, and it is well known that seawater contains about 4 to 5 mg / L. On the other hand, the effect of boron on the human body is not necessarily clear, but it has been pointed out that it may cause health problems such as reduced reproductive function when continuously ingested at low concentrations. In February 1999, 1 mg / L or less was announced as an environmental standard for boron, and it is expected that a drainage standard will be set later. Therefore, it is necessary to remove boron in process wastewater containing boron.
[0003]
As a boron removal method, a boron compound is separated and removed by coagulation precipitation using an aluminum compound and a calcium compound in boron-containing wastewater (Japanese Patent Publication Nos. 58-15193 and 59-24876) or nickel plating washing wastewater. A method of separating and removing boron by coagulating precipitation by adding a magnesium salt (1999 Tokyo Metropolitan Industrial Technology Research Institute Preliminary Proceedings p52) is known. However, in order to insolubilize boron, it is necessary to use a large amount of chemicals, and there is a problem that the amount of generated sludge is large and the treatment is difficult. In addition, a method of adsorbing boron-containing wastewater with an anion exchange resin or a boron selective adsorption resin is also known, but the boron adsorption power to these resins is very weak, and the amount of boron that can be adsorbed to the ion exchange resin is also low. Since there are few, there exists a problem that the lifetime of an ion exchange tower is short.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to obtain a treatment apparatus and method for extending the lifetime of an ion exchange resin tower by increasing the amount of boron adsorbed on the ion exchange resin and reusing treated water as high-purity ion exchange water. That is.
[0005]
[Means for Solving the Problems]
That is, in order to achieve this object, the present invention device is filled with a strongly acidic cation exchange resin adjusted to H-type in order from the inflow side of the wastewater containing boron, and the first ion exchange that adsorbs and removes cations. The column is filled with a weakly basic anion exchange resin adjusted to OH type or a strongly basic anion exchange resin (I type or II type) adjusted to OH type, and the anion other than boron is adsorbed and removed. An apparatus for treating wastewater containing boron, in which an ion exchange tower and a third ion exchange tower filled with an ion exchange resin for adsorbing and removing boron are disposed,
In the method of the present invention, the waste water containing boron is passed through a first ion exchange column filled with a strongly acidic cation exchange resin adjusted to H type to adsorb and remove cations, and the cations are adsorbed and removed. The waste water was passed through a second ion exchange tower packed with weakly basic anion exchange resin adjusted to OH type or strongly basic anion exchange resin (I type or II type) adjusted to OH type, and boron The process of adsorbing and removing anions except for and the wastewater from which all the ions except for boron are adsorbed and removed are passed through a third ion exchange tower filled with an ion exchange resin that adsorbs and removes boron and adsorbed and removed boron. And a process for treating wastewater containing boron.
[0006]
Here, the ion exchange resin filled into the third ion exchange column include the type I or type II strongly basic anion exchange resins was adjusted to OH type.
[0007]
Thus, the waste water from which the cation, the anion, and boron are removed can be guided to the cleaning process and used as the high-purity ion exchange water in the cleaning process.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0009]
The present inventor has intensively studied the ion selectivity of various ions including boron (borate ions) with respect to an ion exchange resin, and has developed a method for efficiently adsorbing the amount of boron. In other words, boron appears to exist as an anion as H 2 BO 3 near pH 9 in a dilute solution, and an anion exchange resin (strongly basic anion exchange resin, weakly basic anion exchange resin) or It is adsorbed by a boron selective adsorption resin having an N-methylglucamine group. Usually, a weakly basic anion exchange resin is used as the anion exchange resin in view of ease of regeneration. However, when chloride ions other than boron or sulfate ions were included, it became clear that in a weakly basic anion exchange resin, boron quickly leaked to the same concentration as the inlet. Furthermore, since weakly basic anion exchange resins have the highest selectivity for OH ions, if cations such as Na are contained, the ion exchange resin becomes alkaline, and anions such as Cl are adsorbed. This phenomenon is more prominent because of its difficult nature. When an I-type or II-type strongly basic anion exchange resin is used as the anion exchange resin, boron is adsorbed as compared with the weakly basic anion exchange resin described in the previous section, but the boron adsorption amount is small. It was. A boron selective adsorption resin having an N-methylglucamine group has similar properties. As a result of intensive studies based on such a phenomenon, ions other than boron are adsorbed and removed by filling the first column with a cation exchange resin and filling the second column with an anion exchange resin. , I-type or II-type strongly basic anion exchange resin adjusted to OH type packed in the third ion exchange resin tower, strongly acidic cation exchange resin adjusted to H-type, and I-type or II-type adjusted to OH type The inventors have invented a method for dramatically increasing the amount of boron adsorbed in a mixed resin filled with a strongly basic anion exchange resin or in a boron selective adsorption resin adjusted to a free type. In this case, the anion exchange resin charged in the second column may be either a type I or type II strong base anion exchange resin or a weak base anion exchange resin. Moreover, the ion-exchange water processed in this way can be reused as high-purity ion-exchange water in any part of the process.
[0010]
【Example】
Embodiments of the present invention will be specifically described below with reference to the drawings.
[0011]
[Example 1]
Three columns of acrylic columns with an inner diameter of 20 mm and a height of 500 mm were prepared. As shown in FIG. 1, 75 mL of strongly acidic cation exchange resin adjusted to H type was added to the first column (4), and the second column (5) 75 mL of weakly basic anion exchange resin adjusted to OH type is charged to 25 mL, and 25 mL of type II strongly basic anion exchange resin adjusted to OH type is charged to the third tower (6). Ion exchange water is passed through each filled resin bed at a flow rate of 500 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, nickel plating process waste water having the composition shown in Table 1 was passed through the first tower (4), the second tower (5), and the third tower (6) in this order at a flow rate of 500 mL / Hr. Examples of water quality of the third tower (6) outlet water are as shown in Table 2, and the concentration curve of boron leaking from the third tower (6) is as shown in FIG. It was possible to pass 12,250 mL until the boron leakage concentration of the treated water reached 5 mg / L. At this time, the amount of boron adsorbed on the boron adsorption tower (type II strongly basic anion exchange resin) was 8.0 g / LR.
[0012]
[Table 1]
Figure 0003727212
[0013]
[Table 2]
Figure 0003727212
[0014]
[ Reference Example 1 ]
As in Example 1, three columns of acrylic columns with an inner diameter of 20 mm and a height of 500 mm were prepared, 75 mL of strongly acidic cation exchange resin adjusted to H type in the first column, and weakly adjusted to OH type in the second column. 75 mL of basic anion exchange resin is mixed and charged in the third column with 25 mL of strongly acidic cation exchange resin adjusted to H type and 25 mL of type II strongly basic anion exchange resin adjusted to OH type. Ion exchange water is passed through each filled resin bed at a flow rate of 500 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, the nickel plating process waste water having the composition shown in Table 1 was passed through the first tower, the second tower, and the third tower at a flow rate of 500 mL / Hr.
[0015]
The water quality of the third tower outlet water is the same as in Example 1, and the concentration curve of boron leaking from the third tower is as shown in FIG. It was possible to pass 12,750 mL until the boron leakage concentration of treated water reached 5 mg / L. At this time, the amount of boron adsorbed on the boron adsorption tower was 10.2 g / LR.
[0016]
[ Reference Example 2 ]
As in Example 1, three columns of acrylic columns with an inner diameter of 20 mm and a height of 500 mm were prepared, 75 mL of strongly acidic cation exchange resin adjusted to H type in the first column, and weakly adjusted to OH type in the second column. 75 mL of basic anion exchange resin is charged in 25 mL of boron selective adsorption resin having N-methylglucamine group adjusted to free type in the third column. Ion exchange water is passed through each filled resin bed at a flow rate of 500 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, the nickel plating process waste water having the composition shown in Table 1 was passed through the first tower, the second tower, and the third tower at a flow rate of 500 mL / Hr. The water quality of the third tower outlet water is the same as in Example 1, and the concentration curve of boron leaking from the third tower is as shown in FIG. It was possible to pass 4,625 mL until the boron leakage concentration of the treated water reached 5 mg / L. At this time, the amount of boron adsorbed on the boron adsorption tower was 3.5 g / LR.
[0017]
[Comparative example]
Similarly to Example 1, two acrylic columns having an inner diameter of 20 mm and a height of 500 mm were prepared, 25 mL of a strongly acidic cation exchange resin adjusted to H type in the first column, and II adjusted to OH type in the second column II Fill 25 mL of type strongly basic anion exchange resin. Ion exchange water is passed through each filled resin bed at a flow rate of 500 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, the nickel plating process washing wastewater having the composition shown in Table 1 was passed through the first tower to the second tower at a flow rate of 500 mL / Hr. The concentration curve of boron leaking from the second tower is as shown in FIG. It was possible to pass 2,750 mL until the boron leakage concentration of the treated water reached 5 mg / L. At this time, the amount of boron adsorbed on the boron adsorption tower was 1.4 g / LR.
[0018]
Table 3 summarizes the amounts of boron adsorbed to the boron adsorption tower up to 5 mg / L of boron leakage concentration in these examples and comparative examples.
[0019]
[Table 3]
Figure 0003727212
[0020]
【The invention's effect】
As described above, according to the present invention, the lifetime of the ion exchange resin tower is extended by increasing the amount of boron adsorbed on the ion exchange resin, and the treated water is reused as high-purity ion exchange water. be able to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing boron leakage curves in Examples 1 to 3 and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Surface treatment tank, 2 ... Cleaning tank, 3 ... Pump, 4 ... Cation exchange tower, 5 ... Anion exchange tower, 6 ... Boron adsorption tower, 7 ... Water quality meter, pH meter, etc. 8 ... Water quality meter, pH Total etc.

Claims (2)

ホウ素を含む排水の流入側から順に、H型に調整した強酸性陽イオン交換樹脂を充填し、排水中の陽イオンを吸着除去させる第一イオン交換塔と、OH型に調整した弱塩基性陰イオン交換樹脂若しくはOH型に調整した強塩基性陰イオン交換樹脂(I型若しくはII型)を充填し、排水中のホウ素を除く陰イオンを吸着除去させる第二イオン交換塔と、ホウ素を吸着除去させるイオン交換樹脂を充填した第三イオン交換塔を配置してなるホウ素を含む排水の処理装置であって、第三イオン交換塔に充填されるイオン交換樹脂は、OH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂である排水の処理装置。  In order from the inflow side of boron-containing wastewater, a first ion-exchange tower that is filled with an H-type strongly acidic cation exchange resin and adsorbs and removes cations in the wastewater, and an OH-type weakly basic anion. Filled with ion-exchange resin or OH-type strongly basic anion exchange resin (type I or type II), adsorbs and removes boron ions in the waste water, and removes boron. An apparatus for treating wastewater containing boron, in which a third ion exchange column filled with an ion exchange resin to be charged is disposed, and the ion exchange resin filled in the third ion exchange column is an I type adjusted to an OH type or Wastewater treatment equipment that is a type II strong basic anion exchange resin. ホウ素を含む排水を、H型に調整した強酸性陽イオン交換樹脂を充填した第一イオン交換塔に通水して陽イオンを吸着除去させる工程と、陽イオンが吸着除去された排水を、OH型に調整した弱塩基性陰イオン交換樹脂若しくはOH型に調整した強塩基性陰イオン交換樹脂(I型若しくはThe step of passing the waste water containing boron through a first ion exchange tower packed with a strongly acidic cation exchange resin adjusted to H type to adsorb and remove cations, and the waste water from which cations are adsorbed and removed to OH Weakly basic anion exchange resin adjusted to mold or strongly basic anion exchange resin adjusted to OH type (type I or IIII 型)を充填した第二イオン交換塔に通水してホウ素を除く陰イオンを吸着除去させる工程と、ホウ素を除くイオンが吸着除去された排水を、ホウ素を吸着除去させるイオン交換樹脂を充填した第三イオン交換塔に通水してホウ素を吸着除去する工程とを備えたホウ素を含む排水の処理方法であって、第三イオン交換塔に充填されるイオン交換樹脂は、OH型に調整したI型若しくはThe ion exchange resin that adsorbs and removes boron and the drainage from which ions other than boron are adsorbed and removed are filled with water by passing through a second ion exchange tower filled with mold) and adsorbing and removing anions excluding boron A process for treating wastewater containing boron, wherein the ion exchange resin filled in the third ion exchange tower is adjusted to an OH type. Type I or IIII 型強塩基性陰イオン交換樹脂である排水の処理方法。A method for treating wastewater, which is a strong basic anion exchange resin.
JP2000022785A 2000-01-31 2000-01-31 Apparatus and method for treating wastewater containing boron Expired - Fee Related JP3727212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022785A JP3727212B2 (en) 2000-01-31 2000-01-31 Apparatus and method for treating wastewater containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022785A JP3727212B2 (en) 2000-01-31 2000-01-31 Apparatus and method for treating wastewater containing boron

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005204602A Division JP2005296953A (en) 2005-07-13 2005-07-13 Treating device for waste water containing boron and treating method therefor

Publications (2)

Publication Number Publication Date
JP2001212455A JP2001212455A (en) 2001-08-07
JP3727212B2 true JP3727212B2 (en) 2005-12-14

Family

ID=18549036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022785A Expired - Fee Related JP3727212B2 (en) 2000-01-31 2000-01-31 Apparatus and method for treating wastewater containing boron

Country Status (1)

Country Link
JP (1) JP3727212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013379A (en) * 2006-07-03 2008-01-24 Godo Shigen Sangyo Kk Iodine recovery from polarizing film manufacturing wastewater
JP2009142764A (en) * 2007-12-14 2009-07-02 Japan Organo Co Ltd Iodine recovery method and iodine recovery device from iodine-containing waste liquid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329030B (en) * 2011-09-06 2013-03-27 冯云香 Treatment method of chemical nickel-plating wastewater
JP6228471B2 (en) * 2014-01-24 2017-11-08 三菱ケミカルアクア・ソリューションズ株式会社 To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
CN104353440A (en) * 2014-11-28 2015-02-18 南京信息工程大学 Biomass resin based inorganic nano-oxide composite adsorbent and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815193B2 (en) * 1980-11-11 1983-03-24 栗田工業株式会社 How to treat boron-containing water
JP3200301B2 (en) * 1994-07-22 2001-08-20 オルガノ株式会社 Method and apparatus for producing pure or ultrapure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013379A (en) * 2006-07-03 2008-01-24 Godo Shigen Sangyo Kk Iodine recovery from polarizing film manufacturing wastewater
JP2009142764A (en) * 2007-12-14 2009-07-02 Japan Organo Co Ltd Iodine recovery method and iodine recovery device from iodine-containing waste liquid

Also Published As

Publication number Publication date
JP2001212455A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
Rahmani et al. Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite
US10472261B2 (en) Contaminants removal with simultaneous desalination using carbon dioxide regenerated hybrid ion exchanger nanomaterials
CN102001766B (en) Fluorine removal method for photovoltaic wastewater
US20050145572A1 (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
KR20190085936A (en) Ultrapure water production system and ultrapure water production method
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
JPS5815193B2 (en) How to treat boron-containing water
US2373632A (en) Removal of fluorine from water
JP2005296953A (en) Treating device for waste water containing boron and treating method therefor
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP2001104807A (en) Boron recovery method
JPH06285368A (en) Regenerating method of zeolite for removing ammonia
JP2018058010A (en) Purification method of boron eluent
JP2003053342A (en) Method and device for removing impurity in boron- containing solution
Schoeman Performance of a water defluoridation plant in a rural area in South Africa
JP2001335315A (en) Apparatus and method for refining boron eluent
JPS5830387A (en) Treatment of waste water containing amines
JP2003053341A (en) Method and device for treating waste water containing carbonic acid together with boron
JP2003047960A (en) Method and apparatus for treating nitrate ion-containing wastewater
JP4665279B2 (en) Method for treating boron-containing water
JP3976219B2 (en) Method and apparatus for treating borofluoride-containing wastewater
JP7105619B2 (en) Method for recovering boron from wastewater containing boron
JP2003094051A (en) Method for regenerating boron selective adsorption resin
JP3887767B2 (en) High purity boron-containing water recovery method and recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Ref document number: 3727212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees