[go: up one dir, main page]

JPS58171650A - Method and apparatus for quantitative analysis using kerr's spectroscopic method - Google Patents

Method and apparatus for quantitative analysis using kerr's spectroscopic method

Info

Publication number
JPS58171650A
JPS58171650A JP57054627A JP5462782A JPS58171650A JP S58171650 A JPS58171650 A JP S58171650A JP 57054627 A JP57054627 A JP 57054627A JP 5462782 A JP5462782 A JP 5462782A JP S58171650 A JPS58171650 A JP S58171650A
Authority
JP
Japan
Prior art keywords
substance
measured
light
reference substance
quantitative analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57054627A
Other languages
Japanese (ja)
Other versions
JPH0320705B2 (en
Inventor
Koichi Kajiyama
康一 梶山
Norio Moro
茂呂 則夫
Kazuaki Sajiki
桟敷 一明
Tadayoshi Yamaguchi
忠義 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP57054627A priority Critical patent/JPS58171650A/en
Priority to GB08307878A priority patent/GB2120779B/en
Priority to FR8305130A priority patent/FR2524635A1/en
Priority to DE3311335A priority patent/DE3311335C2/en
Priority to US06/480,482 priority patent/US4573792A/en
Publication of JPS58171650A publication Critical patent/JPS58171650A/en
Publication of JPH0320705B2 publication Critical patent/JPH0320705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable accurate quantitative analysis by using one measuring system and to reduce cost, by arranging the first system filled with the substance to be measured and the second system filled with a reference substance in series. CONSTITUTION:A measuring apparatus has a cell A as the first system to be filled with the substance to be measured and a cell B as the second system filled with a reference substance. For example, gaseous silane SiH4 as the substance to be measured, and carbon monooxide CO as the reference substance are used. In those cases, the peak (A) of silane SiH4 exists at 602.2nm wavelength, and the peak (B) of carbon monooxide CO exists at 600.4nm wavelength. The concn. of the substance to be measured can be obtained by measuring the intensity ratio of both peaks (A) and (B), permitting exact quantitative analysis at a reduced cost.

Description

【発明の詳細な説明】 この発明はカース分光法を用いた定量分析方法および装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative analysis method and apparatus using Kerse spectroscopy.

カース分光法は、高出力レーデおよびダイレーデの発達
にともなって進歩してきた非線形ラマン分光法の1種で
、通常のラマン分光法と比較して10−5倍程度の検出
感度を有していることからしてその応用面に多くの期待
かも九れている。
Kaas spectroscopy is a type of nonlinear Raman spectroscopy that has progressed with the development of high-power radars and dirades, and has a detection sensitivity that is about 10-5 times that of ordinary Raman spectroscopy. Therefore, there are many expectations regarding its application.

このカース分光法の原理を簡単に説明すると次のように
なる。第1図に示すように物質(ラマン活性分質) R
Mに振動数ωlの励起レーデ光と、物[RMのストーク
ス光と同じ振動数(ストークス振動数)ω、(=ω1−
Ω、ただしΩは物質RMの分子の固有振動数)のレーザ
光とを合せて照射すると、物質RMの反ストークス光(
振動数ω3=ω1+Ω)が共鳴的に極めて強力、かつビ
ーム状に発生する。この現象は第2図のエネルギーダイ
アダラムに示すように4光子過程としてとらえることが
できる。またこのときの反ストークス光の強度I3は l3oc112・I雪 ・N2  ・・・・・・・・・
・・・(1)(ただし、Nは物質RMの密度、■1は振
動数ωXのレーデ光の強度、I、は振動数ω、のレーザ
光の強度) で与えられる・したがって上記反ストークス光の強度■
3を検出すれば物質RMの濃度を検出することができる
。カース分光法は上記原理に本とづくもので、上記反ス
トークス光の強度工、を検出するととKよシ測定すべき
物質の濃度を求めるようにしている、。
The principle of this Kerse spectroscopy can be briefly explained as follows. As shown in Figure 1, the substance (Raman active substance) R
M has an excitation Radhe beam with a frequency ωl, and the same frequency as the Stokes beam of the object [RM (Stokes frequency) ω, (=ω1−
When irradiated with a laser beam of Ω, where Ω is the natural frequency of the molecules of the material RM, the anti-Stokes light of the material RM (
The vibration frequency ω3=ω1+Ω) is generated resonantly and extremely strongly in the form of a beam. This phenomenon can be viewed as a four-photon process, as shown in the energy diagram in Figure 2. Also, the intensity I3 of the anti-Stokes light at this time is l3oc112・Iyuki・N2 ・・・・・・・・・
...(1) (where N is the density of the material RM, 1 is the intensity of the Rede light with the frequency ωX, and I is the intensity of the laser light with the frequency ω) - Therefore, the above anti-Stokes light Strength of ■
3, the concentration of the substance RM can be detected. Kerse spectroscopy is based on the above principle, and when the intensity of the anti-Stokes light is detected, the concentration of the substance to be measured is determined.

ところで、とのカース分光法による検出光は、実際には
励起レーデ光の強度の変動や光学系の条件等で大きく変
動するため、従来のカース分光法を用いた定量分析装置
(濃度測定装置)は既知の基準物質が入れられているレ
ファレンスセルからの信号を基準として被測定系からの
信噺強度を補正し、これによって濃度を測定するように
していた・ 第1図はかかる従来のカース分光法を用いた定量分析装
置を示すもので、セルAには被測定物質が充填され、セ
ルBには所定濃度の基準物質が充填されている。振動数
0重の励起レーデ光はミラー1で反射されてビームスプ
リッタ2に導かれ、また振動数ω富のレーデ光はビーム
スグリツタ2に加えられる。ビームスグリツタ2は振動
数ω1の励起レーデ光と振動数ω、のレーデ光を合成し
、この合成光を2分して、その1方をレンズ4、セルA
、レンズ5、プリズム6を介して分光器7に加え、他方
をミラー3、レンズ8、セルBルンズ9、プリズム10
を介して分光器11に加える。
By the way, the light detected by Kerss spectroscopy actually fluctuates greatly depending on the intensity of the excitation Radhe light and the conditions of the optical system. The signal from a reference cell containing a known reference substance was used as a standard to correct the intensity of the belief from the system being measured, and the concentration was measured based on this. Figure 1 shows such conventional Kerse spectroscopy. This shows a quantitative analysis device using the method, in which cell A is filled with a substance to be measured, and cell B is filled with a reference substance at a predetermined concentration. The excitation Rade light with a frequency of 0 is reflected by a mirror 1 and guided to a beam splitter 2, and the Rade light with a frequency of ω is applied to the beam splitter 2. The beam sgritter 2 combines the excitation Radhe light with a frequency of ω1 and the Rade light with a frequency of ω, divides this combined light into two parts, and sends one of them to the lens 4 and the cell A.
, lens 5, prism 6 to spectroscope 7, and the other side is connected to mirror 3, lens 8, cell B lens 9, prism 10.
is added to the spectrometer 11 via the.

分光器7.11にはそれぞれデテクタ7m、l1mが配
設されておシ、分光器7,11に加えられる光の強度が
電気信号として検出される。
The spectrometers 7 and 11 are each provided with a detector 7m and l1m, and the intensity of the light applied to the spectrometers 7 and 11 is detected as an electrical signal.

しかし、上記従来の方式は分光器7、デテクタ71を含
む第1の信号検出系と、分光器11、デテクタl1mを
含む第2信号検出系の2系統の信号検出系を必要とし、
また光軸調整も2系統で行わなければならないのでコス
ト的に高くなるとともに調整操作においても手間がかか
った。
However, the conventional method described above requires two signal detection systems: a first signal detection system including the spectrometer 7 and the detector 71, and a second signal detection system including the spectrometer 11 and the detector l1m.
Furthermore, since the optical axis adjustment had to be performed in two systems, the cost was high and the adjustment operation was time-consuming.

この発明は上述の点に鑑みてなされたもので、構成が簡
単でかつ調整箇所を半減したカース分光法を用いた定量
分析方法および装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a quantitative analysis method and apparatus using Kerse spectroscopy, which has a simple configuration and reduces the number of adjustment points by half.

そこで、この発明では振動数ω1の励起レーデ光ととも
に被測定物質に加える振動数ω、のレーデ光を線巾の広
い(広帯域の)ものとし、かつ基用い、更に被測定物質
を充填する第1のセルと基準物質を充填する第2のセル
とを入力レーザ光に対して直列に配設し、上記第1のセ
ルおよび第2のセルを通過したレーデ光を波長毎に異な
るチャンネルで同時に検出するマルチチャンネルのデテ
クタに加え、マルチチャンネルのデテクタのそれぞれ異
なるチャンネルに生じる前記被測定物質に対応する信号
出力と前記基準物質に対応する信号出力との強度比から
前記被測定物質の濃度を検出するようにし、1つの検出
系で濃度の正確な検ができるようにしている。
Therefore, in this invention, together with the excitation Raded light of frequency ω1, the Raded light of frequency ω applied to the substance to be measured has a wide linewidth (broadband) and is used as a base. A cell and a second cell filled with a reference substance are arranged in series with respect to the input laser beam, and the Rade light that has passed through the first cell and the second cell is simultaneously detected in different channels for each wavelength. The concentration of the substance to be measured is detected from the intensity ratio of the signal output corresponding to the substance to be measured and the signal output corresponding to the reference substance generated in different channels of the multi-channel detector. This enables accurate concentration detection with a single detection system.

以下、この発明の一実施例を添付図面を参照して詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第4図は、この発明の一実施例を示したもので、第3図
に示した装置と同様の機能を果す部分には説明の便宜上
同一の符号を付している。すなわち、セル人は被測定物
質充填用のセル、セルBは基準物質充填用のセルである
。この実施例では励起用レーデ光としてYAGレーザ光
(波長532 nm)YAGを用い、この励起用レーデ
光YAGとともに測定系に加える他のレーデ光として広
帯域のダイレーデ光Dyaを用いている。YAGレーデ
光YAG iミラー12で反射されてダイクロイックミ
ラー13に導かれ、またダイレーデ光Dysはダイクロ
イックミラー13にYAGレーデ光YAGと直角な方向
から加えられる。ダイクロイックミラー13はYAGレ
ーザ光YAGを反射させるとと本にダイレーデ光DF・
を透過させるもので、YAGレーザ光YAG 、!: 
/イレーザ光り、Φはこのダイクロイ、クミラー13に
よシ合成される。この合成光はレンズ14、セルA、レ
ンズ15、レンズ16、セルB、レンズ17、プリズム
18を介して分光器19に加えられ、デテクタ19mに
よって検出される。ここでデテクタ191Lは分光器1
9によって受光された光を各波長毎にそれぞれ異なるチ
ャンネルで同時に検出するいわゆるマルチチャンネルの
デテクタが用いられる。なお、レンズ14,15,16
゜17はレーデ光収束用または再収束用のレンズで、レ
ーデ光の収束性が保九れるのであれば必ずしも必要では
ない。
FIG. 4 shows an embodiment of the present invention, and parts that perform the same functions as those of the device shown in FIG. 3 are given the same reference numerals for convenience of explanation. That is, cell B is a cell for filling with a substance to be measured, and cell B is a cell for filling with a reference substance. In this embodiment, a YAG laser beam (wavelength: 532 nm) YAG is used as the excitation radar beam, and a broadband die radar beam Dya is used as another radar beam added to the measurement system together with the excitation radar beam YAG. The YAG radar light is reflected by the YAG i mirror 12 and guided to the dichroic mirror 13, and the dichroic mirror Dys is applied to the dichroic mirror 13 from a direction perpendicular to the YAG radar light YAG. The dichroic mirror 13 reflects the YAG laser beam YAG and the dichroic mirror 13 reflects the YAG laser beam YAG.
It transmits YAG laser light YAG,! :
/Eraser light and Φ are synthesized by this dichroic mirror 13. This combined light is applied to the spectrometer 19 via the lens 14, cell A, lens 15, lens 16, cell B, lens 17, and prism 18, and is detected by the detector 19m. Here, the detector 191L is the spectrometer 1
A so-called multi-channel detector is used that simultaneously detects the light received by the detector 9 for each wavelength on different channels. In addition, lenses 14, 15, 16
17 is a lens for converging or refocusing the Raded light, which is not necessarily necessary as long as the convergence of the Raded light can be maintained.

第5図は、第4図に示した装置による測定例を示したも
のである。このグラフは横軸に波長を示し、縦軸に信号
強度を示す。この測定例では被測定物質としてシランが
ス5SU4(ラマン波数21901−1)基準物質とし
て一酸化炭素CQ (ラマン波数214351−’ )
を用σiΣ′。第5図に示すグラフにおいて、ピーク(
4)はシランガス5IH4によるもので、波長602.
2nmの位置に現われる。またピーク(B)は−酸化炭
素COによるもので、波長600.4nmの位置に現わ
れる。このピーク(A)と(B)の強度比から被測定物
質(この場合はシランがス5Sa4)の濃度を知ること
ができる。なお絶対濃度の校正は、別の方法で測定した
濃度既知の被測定物質を用いて基準物質との比を測定し
、この比を基準として行う。
FIG. 5 shows an example of measurement using the apparatus shown in FIG. This graph shows wavelength on the horizontal axis and signal strength on the vertical axis. In this measurement example, the measured substance is silane 5SU4 (Raman wave number 21901-1), and the reference substance is carbon monoxide CQ (Raman wave number 214351-').
for σiΣ′. In the graph shown in Figure 5, the peak (
4) is based on silane gas 5IH4 and has a wavelength of 602.
Appears at a position of 2 nm. The peak (B) is due to -carbon oxide CO and appears at a wavelength of 600.4 nm. The concentration of the substance to be measured (in this case, silane 5Sa4) can be determined from the intensity ratio of the peaks (A) and (B). Note that the absolute concentration is calibrated by measuring the ratio with a reference substance using a substance to be measured whose concentration is known and measured by another method, and using this ratio as a reference.

第6図は、プラズマ放電によるシランガス81!(。Figure 6 shows silane gas 81! caused by plasma discharge! (.

の濃度の変化を測定する装置にこの発明を適用した場合
の〜実施例を示したものである。プラズマチャンバ−2
0には弁21を介してシランガスSiH4が充填される
。そしてこのときのシランがス5in4の絶対圧が圧力
計22によって計測される。なお電極23m、23bF
i7”ラズマ用電極、弁24はプラズマチャンバー20
内のガス排出用の弁でアル。まタレファレンスセル25
にFiCoメンペ26から弁27.28を介して一酸化
炭素COが充填される。
This figure shows an embodiment in which the present invention is applied to an apparatus for measuring changes in the concentration of. Plasma chamber-2
0 is filled with silane gas SiH4 via a valve 21. Then, the absolute pressure of the 5 in 4 silane at this time is measured by the pressure gauge 22. In addition, electrode 23m, 23bF
i7” electrode for plasma, valve 24 is plasma chamber 20
Al with a valve for gas discharge inside. Mata reference cell 25
is filled with carbon monoxide CO from the FiCo membrane 26 via valves 27 and 28.

この林態でレーザ光(YAGレーデ光YAGとダイレー
デ光DYCの合成合光) &1 + V2をレンズ29
′″C収束してプラズマチャン/肴−2Q内に照射し、
プラズマチャンバー20を通過した光をレンズ30で再
収束させてレファレンスセル25に照射シ、レファレン
スセル25を通過し、レンズ31で収束された光のうち
反ストークス光に関するものはダイクロイ、クミラー3
2でレーデ光〆1+V2と分離され図示しない分光器に
導かれる。分光器ではiルチチャンネルで各波長毎の受
光強度を測定することによシ第5図に示すようなグラフ
を得る。
In this forest condition, laser light (combination of YAG Raded light YAG and Dyraded light DYC) &1 + V2 is combined with lens 29
'''C converges and irradiates inside the plasma chamber/appetizer-2Q,
The light that has passed through the plasma chamber 20 is refocused by the lens 30 and irradiated onto the reference cell 25. Of the light that has passed through the reference cell 25 and is converged by the lens 31, those related to anti-Stokes light are dichroic and Cumiller 3.
2, it is separated from the Rade light 1+V2 and guided to a spectrometer (not shown). The spectrometer measures the received light intensity for each wavelength using the i-multichannel, thereby obtaining a graph as shown in FIG.

このときの被測定物質(81H4)と基準物質(Co)
のピーク比が以下のシランガス濃度測定の基準となる。
The measured substance (81H4) and the reference substance (Co) at this time
The peak ratio of is the reference for the following silane gas concentration measurement.

次にプラズマチャンバー20の電極23m、23b間で
放電を起し、このときの被測定物質(SiH4)と基準
物質(CO)ピーク比を測定する。ところで!ラズマチ
ャンパー内のシランガス濃度は放電に変化するがレファ
レンスセル内の一酸化ゴス濃度は変化していない、した
がって上記ピーク比からシランガスの濃度変化をIII
J定することができる。
Next, a discharge is generated between the electrodes 23m and 23b of the plasma chamber 20, and the peak ratio of the measured substance (SiH4) and the reference substance (CO) at this time is measured. by the way! The silane gas concentration in the plasma chamber changes due to discharge, but the Goss monoxide concentration in the reference cell does not change. Therefore, from the above peak ratio, the change in silane gas concentration can be calculated as
J can be determined.

なお上記実施例ではプラズマ放電中におけるシランガス
濃度の変化の測定にこの発明を適用した場合を示し九が
、これはあくまでも1例を示したもので、この発明は南
の定量分析分野に適用できることを理解すべきである。
The above example shows a case in which the present invention is applied to the measurement of changes in silane gas concentration during plasma discharge, but this is just one example, and the present invention can be applied to the field of quantitative analysis. You should understand.

例えばエンジン内の溶焼過程の定量的分析にもこの発明
は有効である。
For example, the present invention is also effective for quantitative analysis of the combustion process within an engine.

また第4図、第6図にも示した実施例においていずれ4
人力レーデ光に対して被測定物質系(セルAまたはプラ
ズマチャンバー20)、基準物質系(セルBtたはレフ
ァレンスセル25 ) 0IiK配設し九が、この逆に
してもよい。すなわち入力レーザ光がまず基準物質系を
通り、次に被測定物質系に入力するように構成してもよ
い。
In addition, in the embodiments shown in FIGS. 4 and 6,
Although a measured substance system (cell A or plasma chamber 20) and a reference substance system (cell Bt or reference cell 25) are arranged for the manual LED light, the reverse arrangement may be used. That is, the input laser beam may be configured to first pass through the reference material system and then input into the measured material system.

またこの発明で用いる基準物質としてはラマン振動数が
被測定物質に充分近いもの(励起レーザ光とともに加え
る他のレーデ光でカバーできるもの)であればいかなる
ものでも使用できる。
Further, as the reference material used in this invention, any material can be used as long as it has a Raman frequency sufficiently close to that of the substance to be measured (that can be covered by other Rade light added together with the excitation laser light).

以上説明し喪ようにこの発明によれば1つの測定系によ
り正確な定量分析が可能となり、コスト的に低くするこ
とができるとともに調整箇所も減少し操作が簡単になる
という効果がある。
As explained above, according to the present invention, accurate quantitative analysis is possible with a single measurement system, and the cost can be reduced, and the number of adjustment points is reduced, making the operation easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明で用いるカース分光法の原理
を説明する図、第3図はこの発明の詳細な説明する図、
第4図はこの発明の一実施例を説明する図、第5図はこ
の発明による測定例を示すグラフ、第6図はこの発明の
他の実施例を示す図である。 1.3.12・・・ミラー、2・・・ビームスグリ、タ
ー、7.11.19・・・分光器、13.32・・・ダ
イクロイックミラー、20・・・プラズマチャツノ=−
125・・・レファレンスセル、A、B・・・セル。 手続補正層 特許庁長官 殿 1、事何の表示 昭和57年特許願第54627号 2、発明の名称 カース分光法を用いた定量分析り法および装置3、補正
をする者 事件との関係  特許出願人 (123)株式会社 小松製作所 4、代理人 (〒104)東京都中央区銀座2丁目11番2号明細書
の特許請求の範囲の欄および発明の詳細な説明の間層 6、補正の内容 (11本願明細書の特許請求の範囲を別紙の通り訂正す
る。 (2)本願の明細書、第3ページ第3行のrlo−”J
をrlo”JK訂正する。 (3)同、第3ページ第7行の「活性分質」を「活性物
質」に訂正する。 (4)同、第4ページ第15行の「第1図」を「第3図
」K訂正する。 (sls第4ページ第19行、第20行及び第5ページ
第1行の「ビームスプリッタ」をそれぞれ「ダイクロイ
ックミラー」に訂正する。 (67同、!! 5 ヘ−V第3行の「を2分L−r 
J ヲrをビームスプリッタ−2′で2分して」に訂正
する。 (7)同、第6ページm2行の「を線巾の」を「を発振
振動数の線巾の」K訂正する。 (8) IWI、第6ページ第7行の「配役」を「配置
」K訂正する。 (91同、#I6ページ第14行の「な検が」を「な検
出が」K訂正する。 (lO)同、@9べ一9m12行のrDYc JerD
ye JK訂正する。 (11)同、第9ページ第20行の「チャンネルで」t
「チャンネルのデテクタで」に訂正する。 (12)同、第11ページ!!20行の「2・・・ビー
ムスプリンター」を「2・・・ダイクロイックミラー、
2′・・・ビームスプリッタ−」に訂正する。 (13)本願の図面の第1図及び第3図をそれぞれ別紙
のA9訂正する。 特許請求の範囲 0)被測定物質が充填されたmlの系に基準物質が充填
された第2の系を直列に配設するとともに励起用の第1
のレーザ光と前記被測定物質および前記基準物質のスト
ークス振動数をともに含む第2のレーザ光とを合せて前
記wJ1お工び第2の系に加え、前記第1の系お工びW
j2の糸全通過したレーザ光を±:九*KhHL1−マ
ルチチャンネルのデテクタで検出し、該マルチチャンネ
ルのデテクタのそれぞれ異なるチャンネルに生じるI]
紀被測定物質に対応する信号出力と前記基準物質に対応
する信号出力との強度比ヵ為ら前記被測定物質の濃度を
検出するようにしたカース分光法を用いた定量分析方法
。 (2前記被測定物質はシラ/ガスtfctニジシランガ
スであり、前記基準物質は一酸化炭素である特許請求の
範囲第1項記載のカース分光法を用いた定量分析方法。 (3)励起用の第1のレーザ光を発娠する第1の手段と
、被測定物質および基準物質のストークス振動番:i7
をともに含む躯2のレーザ光を覚振する第2の手段と、
前se@】のレーザ光および組2のレーザ光を合せて入
力レーザ光を形成する@3の手段と、前記被測定物質が
充填された第1の室と、前記入力レーザ光に対して前記
第1の室に直タリに配設でれ、所定濃度の前記基準物質
が充填された第2の室と、前記第1の室および第2の室
を通過したレーザ光を波長毎に異なるチャンネルで検出
するマルチチャンネルのデテクタe  f玄e西声とを
具え、前記マルチチャンネルのデテクタのそれぞれ異な
るチャンネルに生じる前記被測定物質に対応する信号出
力と前記基準物質に対応する信号出力との強煕比から前
記被測定物質の#I度を検出するようにしたカース分光
法を用いた定量分析装置t。
Figures 1 and 2 are diagrams explaining the principle of Kerse spectroscopy used in this invention, Figure 3 is a diagram explaining details of this invention,
FIG. 4 is a diagram for explaining one embodiment of the invention, FIG. 5 is a graph showing a measurement example according to the invention, and FIG. 6 is a diagram showing another embodiment of the invention. 1.3.12...Mirror, 2...Beam currant, tar, 7.11.19...Spectroscope, 13.32...Dichroic mirror, 20...Plasma chatuno=-
125...Reference cell, A, B...Cell. Procedural amendment layer Commissioner of the Patent Office 1. Indication of the matter Patent Application No. 54627 of 1982 2. Name of the invention Quantitative analysis method and apparatus using Kerse spectroscopy 3. Relationship with the person making the amendment Patent application Person (123) Komatsu Manufacturing Co., Ltd. 4, Agent (104) 2-11-2, Ginza, Chuo-ku, Tokyo Claims section of the specification and detailed explanation of the invention 6, Contents of amendments (11 The claims in the specification of the present application are corrected as shown in the attached sheet. (2) Specification of the present application, page 3, line 3, rlo-”J
(3) Correct "active substance" in line 7 of page 3 to "active substance". (4) In the same page, page 4, line 15, "Figure 1" is corrected to "Figure 3." (Correct "beam splitter" in lines 19 and 20 of sls page 4 and line 1 of page 5 to "dichroic mirror." 2 minutes L-r
Correct it to ``Divide Jor into two with beam splitter 2'.'' (7) Similarly, in the 6th page, line m2, "the line width" is corrected to "the line width of the oscillation frequency". (8) IWI, on page 6, line 7, ``Cast'' is corrected to ``Arrangement.'' (91 same, #I6 page, line 14, "nakenga" is corrected to "na detection ga". (lO) same, @9be19m12th line rDYc JerD
ye JK correction. (11) Same, page 9, line 20, “in the channel” t
Correct to "with channel detector." (12) Same, page 11! ! Change "2...beam splinter" in line 20 to "2...dichroic mirror,
2'...beam splitter". (13) Figures 1 and 3 of the drawings of this application are each revised in A9 of the attached sheet. Claim 0) A second system filled with a reference substance is arranged in series with a ml system filled with a substance to be measured, and a first system for excitation.
and a second laser beam that includes both the Stokes frequencies of the substance to be measured and the reference material are added to the wJ1 second system, and the first system W
The laser light that has completely passed through the thread j2 is detected by a multi-channel detector, and I is generated in each different channel of the multi-channel detector.
A quantitative analysis method using Kerse spectroscopy, in which the concentration of the substance to be measured is detected from the intensity ratio of the signal output corresponding to the substance to be measured and the signal output corresponding to the reference substance. (2) A quantitative analysis method using Kerse spectroscopy according to claim 1, wherein the substance to be measured is silane/gas tfct nitrogen silane gas, and the reference substance is carbon monoxide. A first means for emitting a laser beam of 1, and a Stokes vibration number of the measured substance and the reference substance: i7
a second means for oscillating the laser beam of the body 2, which includes both;
means @3 for combining the laser light of [se@] and the laser light of group 2 to form an input laser light; a first chamber filled with the substance to be measured; a second chamber disposed directly in the first chamber and filled with the reference substance at a predetermined concentration; and a second chamber that transmits the laser light that has passed through the first chamber and the second chamber to different channels for each wavelength. a multi-channel detector e f xuan e xiao for detection, and a signal output corresponding to the substance to be measured and a signal output corresponding to the reference substance occurring in different channels of the multi-channel detector; A quantitative analysis device t using Kaas spectroscopy, which detects the #I degree of the substance to be measured from the ratio.

Claims (3)

【特許請求の範囲】[Claims] (1)被測定物質が充填された第1の系に基準物質が充
填された第2の系を直列に配設するとともに励起用の第
1のレーザ光と前記被測定物質および前記基準物質のス
トークス振動数をともに含む第2のレーザ光とを合せて
前記第1および第2の系、に加え、前記第1の系および
第2の系を通過したレーザ光をマルチチャンネルのデテ
クタで検出し、該マルチチャンネルのデテクタのそれぞ
れ異なるチャンネルに生じる前記被測定物質に対応する
信号出力と前記基準物質に対応する信号出力との強度比
から前記被測定物質の濃度を検出するようにし九カース
分光法を用いた定量分析方法。
(1) A second system filled with a reference substance is arranged in series with a first system filled with a substance to be measured, and a first laser beam for excitation is used to stimulate the substance to be measured and the reference substance. In addition to the first and second systems together with a second laser beam that both includes a Stokes frequency, the laser beam that has passed through the first system and the second system is detected by a multi-channel detector. , the concentration of the analyte is detected from the intensity ratio of the signal output corresponding to the analyte and the signal output corresponding to the reference substance generated in different channels of the multi-channel detector, and nine-curse spectroscopy. Quantitative analysis method using
(2)  前記被測定物質はシランがスまたはジシラン
ガスであり、前記基準物質は一般化炭素である特許請求
の範囲第1項記載のカース分光法を用いた定量分析方法
(2) The quantitative analysis method using Kerse spectroscopy according to claim 1, wherein the substance to be measured is silane gas or disilane gas, and the reference substance is generalized carbon.
(3)  励起用の第1のレーデ光を発振する第1の手
段と、被測定物質および基準物質のストークス振動数を
ともに含む縞2のレーデ光を発振する第2の手段と、前
記第1のレーデ光および第2のレーデ光を合せて入力レ
ーデ光を形成する第3の手段と、前記被測定物質が充填
された第1の室と、前記入力レーデ光に対して前記第1
の室に直列に配設され、所定濃度の前記基準物質が充填
された第2の室と、前記第1の室および第2の室を通過
したレーデ光を波長毎に異なるチャンネルで検出するマ
ルチチャンネルのデテクタとを具え、前記1ルチチヤン
ネルのデテクタのそれぞれ異なるチャンネルに生じる前
記被測定物質に対応する信号出力と前記基準物質に対応
する信号出力との強度比から前記被測定物質の濃度を検
出するようにし九カース分光法を用いた定量分析装置。
(3) a first means for oscillating the first Rade light for excitation; a second means for oscillating the Rade light of fringe 2 including the Stokes frequency of both the measured substance and the reference substance; a first chamber filled with the substance to be measured;
a second chamber filled with the reference substance at a predetermined concentration; a channel detector, and detects the concentration of the analyte from the intensity ratio of the signal output corresponding to the analyte and the signal output corresponding to the reference substance generated in each different channel of the one multi-channel detector. A quantitative analysis device using nine-curse spectroscopy.
JP57054627A 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method Granted JPS58171650A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57054627A JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method
GB08307878A GB2120779B (en) 1982-03-31 1983-03-22 Quantitative analysis in accordance with cars
FR8305130A FR2524635A1 (en) 1982-03-31 1983-03-29 METHOD AND APPARATUS FOR QUANTITATIVE ANALYSIS IN ACCORDANCE WITH THE PRINCIPLE OF "COHERENT ANTI-STOKES RAMAN SPECTROSCOPY"
DE3311335A DE3311335C2 (en) 1982-03-31 1983-03-29 Measuring method and device for the quantitative analysis of a sample material according to the principle of coherent anti-Stokes Raman spectroscopy
US06/480,482 US4573792A (en) 1982-03-31 1983-03-30 Method of and apparatus for quantitative analysis in accordance with CARS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054627A JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method

Publications (2)

Publication Number Publication Date
JPS58171650A true JPS58171650A (en) 1983-10-08
JPH0320705B2 JPH0320705B2 (en) 1991-03-20

Family

ID=12975982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054627A Granted JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method

Country Status (1)

Country Link
JP (1) JPS58171650A (en)

Also Published As

Publication number Publication date
JPH0320705B2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
US3995960A (en) Method and apparatus for background signal reduction in opto-acoustic absorption measurement
US9019507B2 (en) Optical apparatus
Rousseau et al. Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator
CN104903704B (en) Carry out the tunable diode laser absorption spectroscopy of steam measure
CN105911020A (en) Method for simultaneously measuring multi-component gas based on cavity ring-down spectroscopy
CN206656801U (en) Compact ccd array spectrometer and Raman spectrum detection system
CN109765185A (en) A laser photoacoustic spectroscopy detection device using a single photoacoustic cell to measure multi-component gases
CN102735674A (en) Non-linear raman spectroscopy apparatus, non-linear raman spectroscopy system, and non-linear raman spectroscopy method
US4573792A (en) Method of and apparatus for quantitative analysis in accordance with CARS
Grilli et al. Trace measurement of BrO at the ppt level by a transportable mode-locked frequency-doubled cavity-enhanced spectrometer
AU2015327741A1 (en) Cavity enhanced spectroscopy using off-axis paths
EP1120637A2 (en) Method and means for calibrating a grating monochromator
Al-Mualem et al. BoxCARS 2D IR spectroscopy with pulse shaping
Sears Observation of the ν 2 (bending) fundamental of the HN2+ ion at 14.6 micrometers
JPS58171650A (en) Method and apparatus for quantitative analysis using kerr's spectroscopic method
Chollet et al. High-information infrared spectroscopy of unstable molecules
CN105043559B (en) A kind of CARS spectrum temperature measuring devices based on bifocal lens
HU226449B1 (en) Method and device for selective determining contaminating components of a gaseous sample on photoacoustic principle using distant exciting wavelengths
JP7567112B2 (en) Differential detection conjugate compensation CARS measurement device
CN111398215A (en) A portable mid-infrared high-sensitivity multi-component gas measurement and analysis system and its working method
Limbach Development of a virtually imaged phase array (VIPA) spectrometer for diagnostic applications
JPS5910835A (en) Quantitative determinationof hydrogen concentration using kerr's spectroscopic method
Olbrich et al. A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution
CN111964780B (en) A single-shot terahertz transient spectroscopy system
KR100465965B1 (en) Apparatus for measuring the density of gas using laser multi-pass gas cell