[go: up one dir, main page]

JPH0320705B2 - - Google Patents

Info

Publication number
JPH0320705B2
JPH0320705B2 JP5462782A JP5462782A JPH0320705B2 JP H0320705 B2 JPH0320705 B2 JP H0320705B2 JP 5462782 A JP5462782 A JP 5462782A JP 5462782 A JP5462782 A JP 5462782A JP H0320705 B2 JPH0320705 B2 JP H0320705B2
Authority
JP
Japan
Prior art keywords
substance
laser beam
measured
concentration
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5462782A
Other languages
Japanese (ja)
Other versions
JPS58171650A (en
Inventor
Koichi Kajama
Norio Moro
Kazuaki Sajiki
Tadayoshi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP57054627A priority Critical patent/JPS58171650A/en
Priority to GB08307878A priority patent/GB2120779B/en
Priority to FR8305130A priority patent/FR2524635A1/en
Priority to DE3311335A priority patent/DE3311335C2/en
Priority to US06/480,482 priority patent/US4573792A/en
Publication of JPS58171650A publication Critical patent/JPS58171650A/en
Publication of JPH0320705B2 publication Critical patent/JPH0320705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 この発明はカース分光法を用いた定量分析方法
および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative analysis method and apparatus using Kerse spectroscopy.

カース分光法は、高出力レーザおよびダイレー
ザの発達にともなつて進歩してきた非線形ラマン
分光法の1種で、常のラマン分光法と比較して
105倍程度の検出感度を有していることからして
その応用面に多くの期待がもたれている。
Kerse spectroscopy is a type of nonlinear Raman spectroscopy that has progressed with the development of high-power lasers and dye lasers, and compared to conventional Raman spectroscopy,
Since it has a detection sensitivity of about 10 5 times, there are many expectations for its application.

このカース分光法の原理を簡単に説明すると次
のようになる。第1図に示すように物質(ラマン
活性物質)RMに振動数ω1の励起レーザ光と、物
質RMのストークス光と同じ振動数(ストークス
振動数)ω2(=ω1−Ω、ただしΩは物質RMの分
子の固有振動数)のレーザ光とを合せて照射する
と、物質RMの反ストークス光(振動数ω3=ω1
+Ω)が共鳴的に極めて強力、かつビーム状に発
生する。この現象は第2図のエネルギーダイアグ
ラムに示すように4光子過程としてとらえること
ができる。またこのときの反ストークス光の強度
I3は I3∝I1 2・I2・N2 ……(1) (ただし、Nは物質RMの密度、I1は振動数ω1
レーザ光の強度、I2は振動数ω2レーザ光の強度) で与えられる。したがつて上記反ストークス光
の強度I3を検出すれ物質RMの濃度を検出するこ
とができる。カース分光法は上記原理にもとづく
もので、上記反ストークス光の強度I3を検出する
ことにより測定すべき物質の濃度を求めるように
している。
The principle of this Kerse spectroscopy can be briefly explained as follows. As shown in Figure 1, an excitation laser beam with a frequency ω 1 is applied to the material (Raman active material) RM, and the same frequency (Stokes frequency) as the Stokes light of the material RM ω 2 (=ω 1 −Ω, where Ω is the natural frequency of the molecules of the material RM) .
+Ω) is generated resonantly and extremely strongly in the form of a beam. This phenomenon can be understood as a four-photon process, as shown in the energy diagram of Figure 2. Also, the intensity of the anti-Stokes light at this time
I 3 is I 3 ∝I 1 2・I 2・N 2 ……(1) (where, N is the density of the material RM, I 1 is the intensity of the laser beam with frequency ω 1 , and I 2 is the frequency ω 2 laser beam intensity). Therefore, by detecting the intensity I3 of the anti-Stokes light, the concentration of the substance RM can be detected. Kerse spectroscopy is based on the above principle, and the concentration of the substance to be measured is determined by detecting the intensity I 3 of the anti-Stokes light.

ところで、このカース分光法による検出は、実
際には励起レーザ光の強度の変動や光学系の条件
等で大きく変動するため、従来のカース分光法を
用いた定量分析装置(濃度測定装置)は既知の基
準物質が入れられているレフアレンスセルからの
信号を基準として被測定系からの信号強度を補正
し、これによつて濃度を測定するようにしてい
た。
By the way, detection by this Kerse spectroscopy actually varies greatly depending on fluctuations in the intensity of the excitation laser beam, optical system conditions, etc., so there are no known quantitative analyzers (concentration measuring devices) using conventional Kerse spectroscopy. The signal intensity from the system to be measured is corrected based on the signal from the reference cell containing the reference substance, and the concentration is thereby measured.

第3図はかかる従来のカース分光法を用いた定
量分析装置を示すもので、セルAには被測定物質
が充填され、セルBには所定濃度の基準物質が充
填されている。振動数ω1の励起レーザ光はミラ
ー1で反射されてダイクロイツクミラー2に導か
れ、また振動数ω2のレーザ光はダイクロイツク
ミラー2に加えられる。ダイクロイツクミラー2
は振動数ω1の励起レーザ光と振動数ω2のレーザ
光を合成し、この合成光をビームスプリツター
2′で2分して、その1方をレンズ4、セルA、
レンズ5、プリズム6を介して分光器7に加え、
他方をミラー3、レンズ8、セルB、レンズ9、
プリズム10を介して分光器11に加える。分光
器7,11にはそれぞれデテクタ7a,11aが
配設されており、分光器7,11に加えられる光
の強度が電気信号として検出される。
FIG. 3 shows a conventional quantitative analysis apparatus using Kerse spectroscopy, in which cell A is filled with a substance to be measured, and cell B is filled with a reference substance at a predetermined concentration. The excitation laser beam with the frequency ω 1 is reflected by the mirror 1 and guided to the dichroic mirror 2, and the laser beam with the frequency ω 2 is applied to the dichroic mirror 2. dichroic mirror 2
combines an excitation laser beam with a frequency of ω 1 and a laser beam with a frequency of ω 2 , splits this combined light into two by a beam splitter 2', and sends one of the beams to the lens 4, cell A,
In addition to the spectrometer 7 via the lens 5 and prism 6,
The other side is mirror 3, lens 8, cell B, lens 9,
It is applied to a spectrometer 11 via a prism 10. Detectors 7a and 11a are provided in the spectrometers 7 and 11, respectively, and the intensity of light applied to the spectrometers 7 and 11 is detected as an electrical signal.

しかし、上記従来の方式は分光器7、デテクタ
7aを含む第1の信号検出系と、分光器11、デ
テクタ11aを含む第2信号検出系の2系統の信
号検出系を必要とし、また光軸調整も2系統で行
わなければならないのでコスト的に高くなるとと
もに調整操作においても手間がかかつた。
However, the conventional method described above requires two signal detection systems: a first signal detection system including a spectrometer 7 and a detector 7a, and a second signal detection system including a spectrometer 11 and a detector 11a. Since the adjustment had to be performed in two systems, the cost was high and the adjustment operation was time-consuming.

この発明は上述の点に鑑みてなされたもので、
構成が簡単でかつ調整箇所を半減したカース分光
法を用いた定量分析方法および装置を提供するこ
とを目的とする。
This invention was made in view of the above points,
It is an object of the present invention to provide a quantitative analysis method and apparatus using Curse spectroscopy that has a simple configuration and reduces the number of adjustment points by half.

そこで、この発明では振動数ω1の励起レーザ
光とともに被測定物質に加える振動数ω2のレー
ザ光を発振振動数の線巾の広い(広帯域の)もの
とし、かつ基準物質として被測定物質とラマン振
動数が近いもの(上記線巾の広いレーザ光でカバ
ーできるもの)を用い、更に被測定物質を充填す
る第1のセルと基準物質を充填する第2のセルと
を入力レーザ光に対して直列に配置し、上記第1
のセルおよび第2のセルを通過したレーザ光を波
長毎に異なるチヤンネルで同時に検出するマルチ
チヤンネルのデテクタに加え、マルチチヤンネル
のデテクタのそれぞれ異なるチヤンネルに生じる
前記被測定物質に対応する信号出力と前記基準物
質に対応する信号出力との強度比から前記被測定
物質の濃度を検出するようにし、1つの検出系で
濃度の正確な検出ができるようにしている。
Therefore, in this invention, together with the excitation laser beam of frequency ω 1 , the laser beam of frequency ω 2 applied to the substance to be measured has a wide linewidth (broadband) of oscillation frequency, and the same as the substance to be measured is used as a reference material. A cell with a similar Raman frequency (one that can be covered by the wide laser beam described above) is used, and the first cell filled with the substance to be measured and the second cell filled with the reference substance are connected to the input laser beam. and the first
In addition to the multi-channel detector that simultaneously detects the laser light that has passed through the cell and the second cell in different channels for each wavelength, the signal output corresponding to the substance to be measured generated in each different channel of the multi-channel detector and the The concentration of the substance to be measured is detected from the intensity ratio with the signal output corresponding to the reference substance, so that the concentration can be accurately detected with one detection system.

以下、この発明の一実施例を添付図面を参照し
て詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第4図は、この発明の一実施例を示したもの
で、第3図に示した装置と同様の機能を果す部分
には説明の便宜上同一の付号を付している。すな
わち、セルAは被測定物質充填用のセル、セルB
は基準物質充填用のセルである。この実施例では
励起用レーザ光としてYAGレーザ光(波長
532nm)YAGを用い、この励起用レーザ光YAG
とともに測定系に加える他のレーザ光として広帯
域のダイレーザ光Dyeを用いている。YAGレー
ザ光YAGはミラー12で反射されてダイクロイ
ツクミラー13に導かれ、またダイレーザ光Dye
はダイクロイツクミラー13にYAGレーザ光
YAGと直角な方向から加えられる。ダイクロイ
ツクミラー13はYAGレーザ光YAGを反射させ
るとともにダイレーザ光Dyeを透過させるもの
で、YAGレーザ光YAGとダイレーザ光Dyeはこ
のダイクロイツクミラー13により合成される。
この合成光はレンズ14、セルA、レンズ15、
レンズ16、セルB、レンズ17、プリズム18
を介して分光器19に加えられ、デテクタ19a
によつて検出される。ここでデテクタ19aは分
光器19によつて受光された光を各波長毎にそれ
ぞれ異なるチヤンネルで同時に検出するいわゆる
マルチチヤンネルのデテクタが用いられる。な
お、レンズ14,15,16,17はレーザ光収
束用または再収束用のレンズで、レーザ光の収束
性が保たれるのであれば必ずしも必要ではない。
FIG. 4 shows an embodiment of the present invention, and parts that perform the same functions as the device shown in FIG. 3 are given the same reference numbers for convenience of explanation. That is, cell A is a cell for filling the substance to be measured, and cell B is a cell for filling the substance to be measured.
is a cell for filling the reference material. In this example, YAG laser light (wavelength
532nm) using YAG, this excitation laser beam YAG
In addition, a broadband dye laser beam Dye is used as another laser beam added to the measurement system. The YAG laser beam YAG is reflected by the mirror 12 and guided to the dichroic mirror 13, and the dye laser beam Dye
The YAG laser beam is applied to the dichroic mirror 13.
It is added from the direction perpendicular to YAG. The dichroic mirror 13 reflects the YAG laser beam YAG and transmits the dye laser beam Dye, and the YAG laser beam YAG and the dye laser beam Dye are combined by the dichroic mirror 13.
This combined light is transmitted through lens 14, cell A, lens 15,
Lens 16, cell B, lens 17, prism 18
is applied to the spectrometer 19 via the detector 19a.
detected by. Here, the detector 19a is a so-called multi-channel detector that simultaneously detects the light received by the spectroscope 19 in different channels for each wavelength. Note that the lenses 14, 15, 16, and 17 are lenses for converging or refocusing the laser beam, and are not necessarily necessary as long as the convergence of the laser beam is maintained.

第5図は、第4図に示した装置による測定例を
示したものである。このグラフは横軸に波長を示
し、縦軸に信号強度を示す。この測定例では被測
定物質としてシランガスSiH4(ラマン波数2190cm
-1)基準物質として一酸化炭素CO(ラマン波数
2143cm-1)を用いている。第5図に示すグラフに
おいて、ピーク(A)はシランガスSiH4によるもの
で、波長602.2nmの位置に現われる。またピーク
(B)は一酸化炭素COによるもので、波長600.4nm
の位置に現われる。このピーク(A)と(B)の強度比か
ら被測定物質(この場合はシランガスSiH4)の
濃度を知ることができる。なお絶対濃度の校正
は、別の方法で測定した濃度既知の被測定物質を
用いて基準物質との比を測定し、この比を基準と
して行う。
FIG. 5 shows an example of measurement using the apparatus shown in FIG. This graph shows wavelength on the horizontal axis and signal strength on the vertical axis. In this measurement example, silane gas SiH 4 (Raman wave number 2190cm
-1 ) Carbon monoxide CO (Raman wavenumber
2143cm -1 ) is used. In the graph shown in FIG. 5, the peak (A) is due to silane gas SiH 4 and appears at a wavelength of 602.2 nm. peak again
(B) is due to carbon monoxide CO, wavelength 600.4nm
appears at the position of The concentration of the substance to be measured (in this case, silane gas SiH 4 ) can be determined from the intensity ratio of peaks (A) and (B). Note that the absolute concentration is calibrated by measuring the ratio of the substance to a reference substance using a substance to be measured whose concentration is known and measured by another method, and using this ratio as a reference.

第6図は、プラズマ放電によるシランガス
SiH4の濃度の変化を測定する装置にこの発明を
適用した場合の実施例を示したものである。プラ
ズマチヤンバー20には弁21を介してシランガ
スSiH4が充填される。そしてこのときのシラン
ガスSiH4の絶対圧が圧力計22によつて計測さ
れる。なお電極23a,23bはプラズマ用電
極、弁24はプラズマチヤンバー20内のガス排
出用の弁である。またレフアレンスセル25には
COボンベ26から弁27,28を介して一酸化
炭素COが充填される。
Figure 6 shows silane gas generated by plasma discharge.
This figure shows an example in which the present invention is applied to an apparatus for measuring changes in the concentration of SiH 4 . Plasma chamber 20 is filled with silane gas SiH 4 via valve 21 . Then, the absolute pressure of the silane gas SiH 4 at this time is measured by the pressure gauge 22. Note that the electrodes 23a and 23b are plasma electrodes, and the valve 24 is a valve for discharging gas within the plasma chamber 20. Also, in reference cell 25
Carbon monoxide CO is filled from the CO cylinder 26 via valves 27 and 28.

この状態でレーザ光(YAGレーザ光YAGとダ
イレーザ光Dyeの合成合光)w1+w2をレンズ2
9で収束してプラズマチヤンバー20内に照射
し、プラズマチヤンバー20を通過した光をレン
ズ30で再収束させてレフアレンスセル25に照
射し、レフアレンスセル25を通過し、レンズ3
1で収束された光のうち反ストークス光に関する
ものはダイクロイツクミラー32でレーザ光w1
+w2と分離され図示しない分光器に導かれる。
分光器ではマルチチヤンネルのデテクタで各波長
毎の受光強度を測定することにより第5図に示す
ようなグラフを得る。このときの被測定物質
(SiH4)と基準物質(CO)のピーク比が以下の
シランガス濃度測定の基準となる。
In this state, the laser beam (combination of YAG laser beam YAG and dye laser beam Dye) w 1 + w 2 is connected to lens 2.
The light that has passed through the plasma chamber 20 is refocused by the lens 30 and is irradiated onto the reference cell 25.
Of the light converged by 1, the anti-Stokes light is converted into a laser beam w 1 by a dichroic mirror 32.
+w 2 and guided to a spectrometer (not shown).
The spectrometer uses a multi-channel detector to measure the received light intensity for each wavelength, thereby obtaining a graph as shown in FIG. The peak ratio of the measured substance (SiH 4 ) to the reference substance (CO) at this time becomes the standard for the following silane gas concentration measurement.

次にプラズマチヤンバー20の電極23a,2
3b間で放電を起し、このときの被測定物質
(SiH4)と基準物質(CO)ピーク比を測定する。
ところでプラズマチヤンバー内のシランガス濃度
は放電に変化するがレフアレンスセル内の一酸化
ガス濃度は変化していない。したがつて上記ピー
ク比からシランガスの濃度変化を測定することが
できる。
Next, the electrodes 23a, 2 of the plasma chamber 20
3b, and the peak ratio of the measured substance (SiH 4 ) to the reference substance (CO) at this time is measured.
By the way, the silane gas concentration in the plasma chamber changes due to discharge, but the monoxide gas concentration in the reference cell does not change. Therefore, the change in the concentration of silane gas can be measured from the peak ratio.

なお上記実施例ではプラズマ放電中におけるシ
ランガス濃度の変化の測定にこの発明を適用した
場合を示したが、これはあくまでも1例を示した
もので、この発明は種々の定量分析分野に適用で
きることを理解すべきである。例えばエンジン内
の燃焼過程の定量的分析にもこの発明は有効であ
る。
Although the above example shows the case where the present invention is applied to the measurement of changes in silane gas concentration during plasma discharge, this is just one example, and the present invention can be applied to various quantitative analysis fields. You should understand. For example, the present invention is also effective for quantitative analysis of the combustion process within an engine.

また第4図,第6図にも示した実施例において
いずれも入力レーザ光に対して被測定物質系(セ
ルAまたはプラズマチヤンバー20)、基準物質
系(セルBまたはレフアレンスセル25)の順に
配設したが、この逆にしてもよい。すなわち入力
レーザ光がまず基準物質系を通り、次に被測定物
質系に入力するように構成してもよい。
In addition, in the embodiments shown in FIGS. 4 and 6, both the measured material system (cell A or plasma chamber 20) and the reference material system (cell B or reference cell 25) are connected to the input laser beam. Although they are arranged in this order, they may be arranged in the reverse order. That is, the input laser beam may be configured to first pass through the reference material system and then input into the measured material system.

またこの発明で用いる基準物質としてはラマン
振動数が基準物質に充分近いもの(励起レーザ光
とともに加える他のレーザ光でカバーできるも
の)であればいかなるものでも使用できる。
Further, as the reference material used in this invention, any material can be used as long as the Raman frequency is sufficiently close to that of the reference material (it can be covered by other laser light added together with the excitation laser light).

以上説明したようにこの発明によれば1つの測
定系により正確な定量分析が可能となり、コスト
的に低くすることができるとともに調整可箇所も
減少し操作が簡単になるという効果がある。
As explained above, according to the present invention, accurate quantitative analysis can be performed using one measurement system, and the cost can be reduced, and the number of adjustable parts is reduced, making the operation easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図はこの発明で用いるカース分光
法の原理を説明する図、第3図はこの発明の従来
例を説明する図、第4図はこの発明の一実施例を
説明する図、第5図はこの発明による測定例を示
すグラフ、第6図はこの発明の他の実施例を示す
図である。 1,3,12…ミラー、2…ダイクロイツクミ
ラー、2′…ビームスプリツター、7,11,1
9…分光器、13,32…ダイクロイツクミラ
ー、20…プラズマチヤンバー、25…レフアレ
ンスセル、A,B…セル。
Figures 1 and 2 are diagrams explaining the principle of Kerse spectroscopy used in this invention, Figure 3 is a diagram explaining a conventional example of this invention, and Figure 4 is a diagram explaining an embodiment of this invention. , FIG. 5 is a graph showing a measurement example according to the present invention, and FIG. 6 is a diagram showing another embodiment of the present invention. 1, 3, 12... Mirror, 2... Dichroic mirror, 2'... Beam splitter, 7, 11, 1
9... Spectrometer, 13, 32... Dichroic mirror, 20... Plasma chamber, 25... Reference cell, A, B... Cell.

Claims (1)

【特許請求の範囲】 1 被測定物質が充填された第1の系に基準物質
が充填された第2の系を直列に配設するとともに
励起用の第1のレーザ光と前記被測定物質および
前記基準物質のストークス振動数をともに含む第
2のレーザ光とを合せて前記第1および第2の系
に加え、前記第1の系および第2の系を通過した
レーザ光を分光器に入射してマルチチヤンネルの
デテクタで検出し、該マルチチヤンネルのデテク
タのそれぞれ異なるチヤンネルに生じる前記被測
定物質に対応する信号出力と前記基準物質に対応
する信号出力との強度比から前記被測定物質の濃
度を検出するようにしたカース分光法を用いた定
量分析方法。 2 前記被測定物質はシランガスまたはジシラン
ガスであり、前記基準物質は一酸化炭素である特
許請求の範囲第1項記載のカース分光法を用いた
定量分析方法。 3 励起用の第1のレーザ光を発振する第1の手
段と、被測定物質および基準物質のストークス振
動数をともに含む第2のレーザ光を発振する第2
の手段と、前記第1のレーザ光および第2のレー
ザ光を合せて入力レーザ光を形成する第3の手段
と、前記被測定物質が充填された第1の室と、前
記入力レーザ光に対して前記第1の室に直列に配
設され、所定濃度の前記基準物質が充填された第
2の室と、前記第1の室および第2の室を通過し
たレーザ光を波長毎に異なるチヤンネルで検出す
るマルチチヤンネルのデテクタを有する分光器と
を具え、前記マルチチヤンネルのデテクタのそれ
ぞれ異なるチヤンネルに生じる前記被測定物質に
対応する信号出力と前記基準物質に対応する信号
出力との強度比から前記被測定物質の濃度を検出
するようにしたカース分光法を用いた定量分析装
置。
[Claims] 1. A second system filled with a reference substance is arranged in series with a first system filled with a substance to be measured, and a first laser beam for excitation and the substance to be measured and the second system filled with a reference substance are arranged in series. A second laser beam that both has the Stokes frequency of the reference material is added to the first and second systems, and the laser beam that has passed through the first system and second system is incident on a spectroscope. The concentration of the substance to be measured is determined from the intensity ratio between the signal output corresponding to the substance to be measured and the signal output corresponding to the reference substance generated in different channels of the multi-channel detector. A quantitative analysis method using Curse spectroscopy that detects 2. The quantitative analysis method using Kerse spectroscopy according to claim 1, wherein the substance to be measured is silane gas or disilane gas, and the reference substance is carbon monoxide. 3. A first means for oscillating a first laser beam for excitation, and a second means for oscillating a second laser beam that includes both the Stokes frequency of the substance to be measured and the reference substance.
a third means for combining the first laser beam and the second laser beam to form an input laser beam; a first chamber filled with the substance to be measured; On the other hand, a second chamber is arranged in series with the first chamber and filled with the reference substance at a predetermined concentration, and a laser beam that has passed through the first chamber and the second chamber is divided into different wavelengths. a spectrometer having a multi-channel detector for detection in channels, and from the intensity ratio of the signal output corresponding to the measured substance and the signal output corresponding to the reference substance occurring in different channels of the multi-channel detector. A quantitative analysis device using Curse spectroscopy, which detects the concentration of the substance to be measured.
JP57054627A 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method Granted JPS58171650A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57054627A JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method
GB08307878A GB2120779B (en) 1982-03-31 1983-03-22 Quantitative analysis in accordance with cars
FR8305130A FR2524635A1 (en) 1982-03-31 1983-03-29 METHOD AND APPARATUS FOR QUANTITATIVE ANALYSIS IN ACCORDANCE WITH THE PRINCIPLE OF "COHERENT ANTI-STOKES RAMAN SPECTROSCOPY"
DE3311335A DE3311335C2 (en) 1982-03-31 1983-03-29 Measuring method and device for the quantitative analysis of a sample material according to the principle of coherent anti-Stokes Raman spectroscopy
US06/480,482 US4573792A (en) 1982-03-31 1983-03-30 Method of and apparatus for quantitative analysis in accordance with CARS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054627A JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method

Publications (2)

Publication Number Publication Date
JPS58171650A JPS58171650A (en) 1983-10-08
JPH0320705B2 true JPH0320705B2 (en) 1991-03-20

Family

ID=12975982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054627A Granted JPS58171650A (en) 1982-03-31 1982-03-31 Method and apparatus for quantitative analysis using kerr's spectroscopic method

Country Status (1)

Country Link
JP (1) JPS58171650A (en)

Also Published As

Publication number Publication date
JPS58171650A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
CN105911020B (en) Method for simultaneously measuring multi-component gas based on cavity ring-down spectroscopy
US4531834A (en) Fluorimeter
Zhao et al. Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared
CN101644673A (en) Infrared cavity ring-down spectroscopy trace gas detection method based on quantum cascade laser
CN113777068B (en) A Multiband Cavity Enhanced Infrared Comb Spectroscopy Gas Detection System
CN109738162A (en) A device and method for measuring F-P etalon parameters using angle tuning
US11181423B2 (en) Birefringent interferometer for measuring photoluminescence properties of samples
Fisher et al. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm
US4573792A (en) Method of and apparatus for quantitative analysis in accordance with CARS
EP1120637A2 (en) Method and means for calibrating a grating monochromator
CN110411960A (en) An Optical Cavity Ring-Down Spectrometer System
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
US4208129A (en) Sensitive laser spectroscopy measurement system
CN105043559B (en) A kind of CARS spectrum temperature measuring devices based on bifocal lens
Grubbs et al. High resolution stimulated Brillouin gain spectrometer
Scholl et al. Broadband precision wavelength meter based on a stepping Fabry–Pérot interferometer
JPH0320705B2 (en)
CN111398215A (en) A portable mid-infrared high-sensitivity multi-component gas measurement and analysis system and its working method
JPH075400Y2 (en) Multi-channel curse measuring device
GB1564641A (en) Spectroscopic apparatus and method
KR100465965B1 (en) Apparatus for measuring the density of gas using laser multi-pass gas cell
JPS5910835A (en) Quantitative determinationof hydrogen concentration using kerr's spectroscopic method
JP2503164Y2 (en) Gas temperature measuring device
JPS60131428A (en) Cars spectroscopic apparatus