[go: up one dir, main page]

JPS58167442A - Production of optical fiber parent material - Google Patents

Production of optical fiber parent material

Info

Publication number
JPS58167442A
JPS58167442A JP4730182A JP4730182A JPS58167442A JP S58167442 A JPS58167442 A JP S58167442A JP 4730182 A JP4730182 A JP 4730182A JP 4730182 A JP4730182 A JP 4730182A JP S58167442 A JPS58167442 A JP S58167442A
Authority
JP
Japan
Prior art keywords
base material
gas
parent material
glass
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4730182A
Other languages
Japanese (ja)
Other versions
JPS6055450B2 (en
Inventor
Shoichi Sudo
昭一 須藤
Hiroyuki Suda
裕之 須田
Motohiro Nakahara
基博 中原
Fumiaki Hanawa
文明 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4730182A priority Critical patent/JPS6055450B2/en
Publication of JPS58167442A publication Critical patent/JPS58167442A/en
Publication of JPS6055450B2 publication Critical patent/JPS6055450B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:One or both of the glass raw material gas and the flame gas are made to rotate spirally and blown out of the synthesis torch to increase the deposition efficiency of glass fine particles and permit easy and high-speed formation of optical fiber parent material. CONSTITUTION:In the production of optical fiber parent material by the VAD method, SiCl4 containing GeCl4 is blown out of the nozzle 23 as the glass raw material gas, while H2, O2, Ar are blown out of the nozzle 22 as the flame gas. One or both of them is made to rotate spirally as shown in the line 25 by the fan 28 to form the porous parent material 26. Thus, the flow of the glass fine particles is made to rotate, resulting in incerease in fine particle deposition efficiency on the growing surface of the porous parent material 26, thereby the high-speed production of the parent material is realized.

Description

【発明の詳細な説明】 本発明は、元ファイバ母材の#il造方法に[する。[Detailed description of the invention] The present invention is directed to a method for manufacturing an original fiber preform.

従来、VAD法では、5iOj、 、 G60j、 I
I/を含むガラス形成原料ガスおよびH,、O,、ムr
◆の火炎用ガスを合成トーチから吹龜出f&:際しては
、はぼ層流状態で前記原料ガスおよび前記火炎用ガスを
吹き出していた。111図(JL)は従来のVAD法に
おける多孔質母材の作製の説明図であり、第1図(0)
は第11i11(L)ムームIにおけるfIk面図であ
る。
Conventionally, in the VAD method, 5iOj, , G60j, I
Glass-forming raw material gas containing I/ and H,, O,, mr
Blowing out the flame gas f& from the synthesis torch: In some cases, the raw material gas and the flame gas were blown out in a nearly laminar flow state. Figure 111 (JL) is an explanatory diagram of the production of a porous base material in the conventional VAD method, and Figure 1 (0)
is a fIk plane view in the 11i11(L) Moom I.

第1egにおいて合成トーチ1の内のノスル8およびノ
スル8からは、それぞれ火炎用ガスおよびガラス原料ガ
スが層流状態で吹き出す。このため、火炎用ガスのIl
a焼によって形F!Lされる火炎流1および原料ガスの
火炎加水分解反応によって形成されるガラス微粒子流6
4同様に層流状Iの流れとなる。多孔質母材6は#記火
炎流4および前記微粒子流6の内での微粒子堆積によっ
て形fLされる。
In the first eg, flame gas and frit gas are blown out from the nostle 8 and the nostle 8 in the synthesis torch 1, respectively, in a laminar flow state. For this reason, Il of the flame gas
Shape F by a-yaki! A flame stream 1 that is produced by L and a glass particle stream 6 formed by a flame hydrolysis reaction of raw material gas.
Similarly to 4, the flow becomes laminar I. The porous matrix 6 is shaped by the flame stream 4 and the particle deposition within the particle stream 6.

この従来のVAD法において、ガラス微粒子堆積速度の
同上を図るために、ガラス原料供給瀘を増加すると、微
粒子堆積効率が低Fし、結果として、元ファイバ母材の
高速l1lftが困−になるという欠点があった。
In this conventional VAD method, if the glass raw material supply filter is increased in order to increase the glass particle deposition rate, the particle deposition efficiency becomes low, and as a result, high-speed l1lft of the original fiber base material becomes difficult. There were drawbacks.

本発明は、この欠点な除去するため、合成トーチからガ
ラス原料ガスおよび火炎用ガス【吹禽出スニーシて、ガ
ラス原料ガスおよび火炎用ガス(1)一方または両番を
流体的に回転しながら前記トーチから吹き出すこと七待
徽としたもので、その目的はVAD法における高速母材
1111#をi■#ピにすることにある。
The present invention aims to eliminate this disadvantage by extracting the frit gas and the flame gas (1) from the synthesis torch while fluidically rotating one or both of them. The purpose is to make the high-speed base material 1111# in the VAD method i■#pi.

第2図(a)は、本発明の一実施例図、第2図(b)は
第2図(a)のB −B’における断面図であって、2
1は合成トーチ、11Bは火炎用ガスの吹き出し口、2
8は原料ガスの吹き出し口、24は火炎流、25はガラ
ス微粒子流−126は多孔質母材、2フは回転機、18
は回転ファンである。
FIG. 2(a) is a diagram showing an embodiment of the present invention, and FIG. 2(b) is a cross-sectional view taken along line B-B' in FIG. 2(a).
1 is a synthetic torch, 11B is a flame gas outlet, 2
8 is a raw material gas outlet, 24 is a flame flow, 25 is a glass particle flow, 126 is a porous base material, 2F is a rotating machine, 18
is a rotating fan.

第8図において、吹自出し口jI8から吹自出すガラス
原料ガスには、回転するファン28によって、流体的回
転連動が与えられるので、火炎流24の内で合成される
ガラス微粒子流においても、rIIL4iiI2bに示
す流体的回転遣−が生じる。このガラス微粒子流の回転
運動は、多孔質母材成長面上への微粒子堆積効率を着し
く向上する効果を有するので、ガラス原料供i量を増加
した場合にも艦粒子堆積効率は低Fせず、母材の高速合
成を容易に実現でaる。
In FIG. 8, since the frit gas discharged from the blower outlet jI8 is fluidly rotated by the rotating fan 28, the flow of glass particles synthesized within the flame flow 24 also has the following effects: The fluidic rotation shown in rIIL4iiI2b occurs. This rotational movement of the glass particle flow has the effect of significantly improving the particle deposition efficiency on the growth surface of the porous base material, so even when the amount of glass raw material supplied is increased, the glass particle deposition efficiency remains low. First, high-speed synthesis of the base material can be easily achieved.

たとえば、第1611の実施例においてガラス原料ガス
として四塩化ゲルマニウム(Ge0j4) tl 0 
moti含む四塩化けい素+ 5iOj、 ) t 、
毎分5iuIL科ガス吹自出し口18から吹8出し、ま
た火炎用ガスとして水素ガスを毎分10ノ、酸素ガスt
m分107.アルゴンガスを毎分8ノ〜大炎用ガス吹自
出し口gsから吹龜出して、多孔質母材26を作製した
と1、回転7アン28の回転数に応じて責lに示すよう
なガラス微粒子堆積盪の増減が兇られた。
For example, in the 1611th embodiment, germanium tetrachloride (Ge0j4) tl 0 is used as the frit gas.
Silicon tetrachloride containing moti + 5iOj, ) t,
5 iuIL gas blow out from outlet 18 per minute, hydrogen gas as flame gas at 10 g/min, oxygen gas t
m min 107. The porous base material 26 was prepared by blowing argon gas from the large flame gas outlet gs at 8 rpm per minute. Increases and decreases in glass particle deposition were controlled.

11 責lに示すように、ファン回転数を100−   □g
 o o rpmとした場合、ガラス置粒子堆積量はフ
ァン回転数がOの場合に比べて、約8〜4倍撮度向上し
た。つまりファン回転数が0の場合のガラス撤粒子堆積
効率は、約god(ガラス原料中の5i(3j  がす
べて810.になった場合:100%)番 であるのに対して、ファン回転数txoo〜200rp
mとすると、70〜80襲まで#記微粒子堆積効率が向
上し、本発明によって着しい改善効果が見られた。
11 As shown in Section 1, set the fan rotation speed to 100-□g.
When the fan rotation speed was set to o o rpm, the amount of particles deposited on the glass was about 8 to 4 times higher than when the fan rotation speed was O. In other words, when the fan rotation speed is 0, the glass removal particle deposition efficiency is about God (5i in the glass raw material (if all 3j become 810.: 100%), whereas when the fan rotation speed is txoo ~200rp
m, the fine particle deposition efficiency improved up to 70 to 80 cycles, and a significant improvement effect was observed by the present invention.

第1図に示した従来のVAD法、すなわち第2図の本発
明において回転ファン28t6り除いた場合の堆積効率
は、前記と同一の作製条件ドで、約25%であり、ファ
ン回転数が0の場合と同根度であった。
The deposition efficiency when the rotating fan 28t6 is removed in the conventional VAD method shown in FIG. 1, that is, in the present invention shown in FIG. The root degree was the same as in the case of 0.

前記実施例のほか、トーチから吹き出す火炎用ガスに前
記実施例と譲似した回転運動を4見なから、多孔質ガラ
ス母材【1lIilIijtシた場合にも、ガラス微粒
子堆積効率は着しく同上した。
In addition to the above embodiments, it was found that when the flame gas blown out from the torch was subjected to a rotational motion similar to that of the above embodiments, the glass fine particle deposition efficiency was significantly the same even when a porous glass base material was used. .

以上説明したように本発明の元ファイバ母材の!ll1
11ii方法は、ガラス原料ガスまたは火炎用ガスが合
成トーチから吹き出す際に、前記原料ガスおよび前記火
炎用−ガスの一方または両番に流体的な回転連動を与え
ることによって、ガラス微粒子堆積効率の同ht図るこ
とがで畠るので(待に高速母材合成時に、着しい改善効
果か見られる)、VAD法によるm趨母材製造を容易に
するという利点かある。
As explained above, the original fiber base material of the present invention! ll1
Method 11ii improves the glass particle deposition efficiency by providing fluid rotational interlocking to one or both of the raw material gas and the flame gas when the frit gas or the flame gas is blown out from the synthesis torch. This method has the advantage of making it easier to manufacture m-line base materials using the VAD method, since it is possible to increase the height of the base material (a significant improvement effect can be seen during high-speed base material synthesis).

さらに微粒子堆積効率が向上するので、光ファイバの低
−俗化を実現し易いという利点がある。
Furthermore, since the efficiency of fine particle deposition is improved, there is an advantage that it is easy to realize low-cost optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(L)は従来のVAD法における多孔質母材の作
−の説明図、1llI1図+1))は第1図(JL)の
ムーム′における断面図、 第2図(a)は本発明の一実施例図、第2図(b)は第
2図(JL)のB −B’における断面図であるO 1・・・合成トーチ、2・・・火炎用ガス吹き出し口、
8・・・ガラス原料吹IN員し口、番・・・火炎流、b
・・・ガラス微粒子流、6・・・多孔質母材、21・・
・合成トーチ、22・・火炎用ガス吹1ml出し口、g
8・・・ガラス原料ガス吹き出し口、24・・・火炎流
、25・・・ガラス微粒子流−126・・・多孔質母材
、27・・・回転機、28・・・回転ファン。 特許出願人 日本電信電話公社 第1図 (a)
Figure 1 (L) is an explanatory diagram of the creation of a porous base material in the conventional VAD method, 1llI1 Figure + 1)) is a cross-sectional view at Moum' in Figure 1 (JL), and Figure 2 (a) is the book. One embodiment of the invention, FIG. 2(b) is a sectional view taken along line B-B' in FIG. 2 (JL).
8... Glass raw material blowing IN member's opening, number... flame flow, b
...Glass particle flow, 6...Porous base material, 21...
・Synthetic torch, 22.・flame gas blower 1ml outlet, g
8... Frit gas outlet, 24... Flame flow, 25... Glass particle flow-126... Porous base material, 27... Rotating machine, 28... Rotating fan. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 1 (a)

Claims (1)

【特許請求の範囲】 L 火炎流内においてガラス微粒子を合成・し、これを
出発材の軸方向に堆積することによって丸棒状の多孔質
母材を形成した後、この多孔質母材を高温に加熱、焼結
して、透明母材【傅る光7アイパ母材のmtT1方法す
なわち気相軸付は法において、合成トーチから吹き出す
ガラス形成原料ガスおよび火炎用ガスの一方または11
11ff者に流体的な回転運動を与えながら、多孔質母
材を形aすることを特徴とTる光フアイバ母材の11!
造方法。
[Claims] L After synthesizing glass particles in a flame stream and depositing them in the axial direction of the starting material to form a round rod-shaped porous base material, this porous base material is heated to a high temperature. In the mtT1 method, that is, the vapor phase attachment method of the transparent base material [Fueru Hikari 7 Aipah base material], one of the glass forming raw material gas and the flame gas blown out from the synthesis torch or 11 is heated and sintered.
11ff is an optical fiber base material characterized by forming a porous base material while imparting fluid rotational motion to the fiber.
Construction method.
JP4730182A 1982-03-26 1982-03-26 Manufacturing method of optical fiber base material Expired JPS6055450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4730182A JPS6055450B2 (en) 1982-03-26 1982-03-26 Manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4730182A JPS6055450B2 (en) 1982-03-26 1982-03-26 Manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS58167442A true JPS58167442A (en) 1983-10-03
JPS6055450B2 JPS6055450B2 (en) 1985-12-05

Family

ID=12771455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4730182A Expired JPS6055450B2 (en) 1982-03-26 1982-03-26 Manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS6055450B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369527A (en) * 1989-08-08 1991-03-25 Yazaki Corp Torch for synthesis of porous base material for optical fiber
WO2001005719A1 (en) * 1999-07-19 2001-01-25 Linde Gas Aktiengesellschaft Methods for producing highly pure silicon dioxide glass and burner for carrying out this method
CN113912279A (en) * 2020-07-10 2022-01-11 中天科技精密材料有限公司 Axial deposition doping device and preparation method of powder rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369527A (en) * 1989-08-08 1991-03-25 Yazaki Corp Torch for synthesis of porous base material for optical fiber
WO2001005719A1 (en) * 1999-07-19 2001-01-25 Linde Gas Aktiengesellschaft Methods for producing highly pure silicon dioxide glass and burner for carrying out this method
CN113912279A (en) * 2020-07-10 2022-01-11 中天科技精密材料有限公司 Axial deposition doping device and preparation method of powder rod
CN113912279B (en) * 2020-07-10 2023-03-31 中天科技精密材料有限公司 Axial deposition doping device and preparation method of powder rod

Also Published As

Publication number Publication date
JPS6055450B2 (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JP4043768B2 (en) Manufacturing method of optical fiber preform
JP2003226544A (en) Method of manufacturing optical fiber porous preform
JPH06247722A (en) Production of porous glass base material
JPS58167442A (en) Production of optical fiber parent material
JP2003313033A (en) Optical glass and method for manufacturing the same
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JP3154768B2 (en) Manufacturing method of preform preform for optical fiber
JP2938688B2 (en) Manufacturing method of preform for optical fiber
JP4053305B2 (en) Method for producing porous preform for optical fiber
JPS6253452B2 (en)
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JPH09118537A (en) Production of porous glass preform for optical fiber
JPS59128225A (en) Manufacture of base material for optical fibre
JPS61151031A (en) Production of optical fiber preform
JPH0339978B2 (en)
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH0761877B2 (en) Method for manufacturing glass particulate deposit
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPS6035298B2 (en) Glass particle synthesis torch
JPH04219339A (en) Production of preform for optical fiber
JPH0435429B2 (en)
JPH02145449A (en) Production of preform for optical fiber
JPS63123828A (en) Production of porous preform for optical fiber