JPS58167442A - Production of optical fiber parent material - Google Patents
Production of optical fiber parent materialInfo
- Publication number
- JPS58167442A JPS58167442A JP4730182A JP4730182A JPS58167442A JP S58167442 A JPS58167442 A JP S58167442A JP 4730182 A JP4730182 A JP 4730182A JP 4730182 A JP4730182 A JP 4730182A JP S58167442 A JPS58167442 A JP S58167442A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- gas
- parent material
- glass
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 27
- 239000013307 optical fiber Substances 0.000 title claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 17
- 239000000835 fiber Substances 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 238000007496 glass forming Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 14
- 239000010419 fine particle Substances 0.000 abstract description 6
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 abstract description 2
- 229910006113 GeCl4 Inorganic materials 0.000 abstract 1
- 229910003910 SiCl4 Inorganic materials 0.000 abstract 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/42—Assembly details; Material or dimensions of burner; Manifolds or supports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/46—Comprising performance enhancing means, e.g. electrostatic charge or built-in heater
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は、元ファイバ母材の#il造方法に[する。[Detailed description of the invention] The present invention is directed to a method for manufacturing an original fiber preform.
従来、VAD法では、5iOj、 、 G60j、 I
I/を含むガラス形成原料ガスおよびH,、O,、ムr
◆の火炎用ガスを合成トーチから吹龜出f&:際しては
、はぼ層流状態で前記原料ガスおよび前記火炎用ガスを
吹き出していた。111図(JL)は従来のVAD法に
おける多孔質母材の作製の説明図であり、第1図(0)
は第11i11(L)ムームIにおけるfIk面図であ
る。Conventionally, in the VAD method, 5iOj, , G60j, I
Glass-forming raw material gas containing I/ and H,, O,, mr
Blowing out the flame gas f& from the synthesis torch: In some cases, the raw material gas and the flame gas were blown out in a nearly laminar flow state. Figure 111 (JL) is an explanatory diagram of the production of a porous base material in the conventional VAD method, and Figure 1 (0)
is a fIk plane view in the 11i11(L) Moom I.
第1egにおいて合成トーチ1の内のノスル8およびノ
スル8からは、それぞれ火炎用ガスおよびガラス原料ガ
スが層流状態で吹き出す。このため、火炎用ガスのIl
a焼によって形F!Lされる火炎流1および原料ガスの
火炎加水分解反応によって形成されるガラス微粒子流6
4同様に層流状Iの流れとなる。多孔質母材6は#記火
炎流4および前記微粒子流6の内での微粒子堆積によっ
て形fLされる。In the first eg, flame gas and frit gas are blown out from the nostle 8 and the nostle 8 in the synthesis torch 1, respectively, in a laminar flow state. For this reason, Il of the flame gas
Shape F by a-yaki! A flame stream 1 that is produced by L and a glass particle stream 6 formed by a flame hydrolysis reaction of raw material gas.
Similarly to 4, the flow becomes laminar I. The porous matrix 6 is shaped by the flame stream 4 and the particle deposition within the particle stream 6.
この従来のVAD法において、ガラス微粒子堆積速度の
同上を図るために、ガラス原料供給瀘を増加すると、微
粒子堆積効率が低Fし、結果として、元ファイバ母材の
高速l1lftが困−になるという欠点があった。In this conventional VAD method, if the glass raw material supply filter is increased in order to increase the glass particle deposition rate, the particle deposition efficiency becomes low, and as a result, high-speed l1lft of the original fiber base material becomes difficult. There were drawbacks.
本発明は、この欠点な除去するため、合成トーチからガ
ラス原料ガスおよび火炎用ガス【吹禽出スニーシて、ガ
ラス原料ガスおよび火炎用ガス(1)一方または両番を
流体的に回転しながら前記トーチから吹き出すこと七待
徽としたもので、その目的はVAD法における高速母材
1111#をi■#ピにすることにある。The present invention aims to eliminate this disadvantage by extracting the frit gas and the flame gas (1) from the synthesis torch while fluidically rotating one or both of them. The purpose is to make the high-speed base material 1111# in the VAD method i■#pi.
第2図(a)は、本発明の一実施例図、第2図(b)は
第2図(a)のB −B’における断面図であって、2
1は合成トーチ、11Bは火炎用ガスの吹き出し口、2
8は原料ガスの吹き出し口、24は火炎流、25はガラ
ス微粒子流−126は多孔質母材、2フは回転機、18
は回転ファンである。FIG. 2(a) is a diagram showing an embodiment of the present invention, and FIG. 2(b) is a cross-sectional view taken along line B-B' in FIG. 2(a).
1 is a synthetic torch, 11B is a flame gas outlet, 2
8 is a raw material gas outlet, 24 is a flame flow, 25 is a glass particle flow, 126 is a porous base material, 2F is a rotating machine, 18
is a rotating fan.
第8図において、吹自出し口jI8から吹自出すガラス
原料ガスには、回転するファン28によって、流体的回
転連動が与えられるので、火炎流24の内で合成される
ガラス微粒子流においても、rIIL4iiI2bに示
す流体的回転遣−が生じる。このガラス微粒子流の回転
運動は、多孔質母材成長面上への微粒子堆積効率を着し
く向上する効果を有するので、ガラス原料供i量を増加
した場合にも艦粒子堆積効率は低Fせず、母材の高速合
成を容易に実現でaる。In FIG. 8, since the frit gas discharged from the blower outlet jI8 is fluidly rotated by the rotating fan 28, the flow of glass particles synthesized within the flame flow 24 also has the following effects: The fluidic rotation shown in rIIL4iiI2b occurs. This rotational movement of the glass particle flow has the effect of significantly improving the particle deposition efficiency on the growth surface of the porous base material, so even when the amount of glass raw material supplied is increased, the glass particle deposition efficiency remains low. First, high-speed synthesis of the base material can be easily achieved.
たとえば、第1611の実施例においてガラス原料ガス
として四塩化ゲルマニウム(Ge0j4) tl 0
moti含む四塩化けい素+ 5iOj、 ) t 、
毎分5iuIL科ガス吹自出し口18から吹8出し、ま
た火炎用ガスとして水素ガスを毎分10ノ、酸素ガスt
m分107.アルゴンガスを毎分8ノ〜大炎用ガス吹自
出し口gsから吹龜出して、多孔質母材26を作製した
と1、回転7アン28の回転数に応じて責lに示すよう
なガラス微粒子堆積盪の増減が兇られた。For example, in the 1611th embodiment, germanium tetrachloride (Ge0j4) tl 0 is used as the frit gas.
Silicon tetrachloride containing moti + 5iOj, ) t,
5 iuIL gas blow out from outlet 18 per minute, hydrogen gas as flame gas at 10 g/min, oxygen gas t
m min 107. The porous base material 26 was prepared by blowing argon gas from the large flame gas outlet gs at 8 rpm per minute. Increases and decreases in glass particle deposition were controlled.
11
責lに示すように、ファン回転数を100− □g
o o rpmとした場合、ガラス置粒子堆積量はフ
ァン回転数がOの場合に比べて、約8〜4倍撮度向上し
た。つまりファン回転数が0の場合のガラス撤粒子堆積
効率は、約god(ガラス原料中の5i(3j がす
べて810.になった場合:100%)番
であるのに対して、ファン回転数txoo〜200rp
mとすると、70〜80襲まで#記微粒子堆積効率が向
上し、本発明によって着しい改善効果が見られた。11 As shown in Section 1, set the fan rotation speed to 100-□g.
When the fan rotation speed was set to o o rpm, the amount of particles deposited on the glass was about 8 to 4 times higher than when the fan rotation speed was O. In other words, when the fan rotation speed is 0, the glass removal particle deposition efficiency is about God (5i in the glass raw material (if all 3j become 810.: 100%), whereas when the fan rotation speed is txoo ~200rp
m, the fine particle deposition efficiency improved up to 70 to 80 cycles, and a significant improvement effect was observed by the present invention.
第1図に示した従来のVAD法、すなわち第2図の本発
明において回転ファン28t6り除いた場合の堆積効率
は、前記と同一の作製条件ドで、約25%であり、ファ
ン回転数が0の場合と同根度であった。The deposition efficiency when the rotating fan 28t6 is removed in the conventional VAD method shown in FIG. 1, that is, in the present invention shown in FIG. The root degree was the same as in the case of 0.
前記実施例のほか、トーチから吹き出す火炎用ガスに前
記実施例と譲似した回転運動を4見なから、多孔質ガラ
ス母材【1lIilIijtシた場合にも、ガラス微粒
子堆積効率は着しく同上した。In addition to the above embodiments, it was found that when the flame gas blown out from the torch was subjected to a rotational motion similar to that of the above embodiments, the glass fine particle deposition efficiency was significantly the same even when a porous glass base material was used. .
以上説明したように本発明の元ファイバ母材の!ll1
11ii方法は、ガラス原料ガスまたは火炎用ガスが合
成トーチから吹き出す際に、前記原料ガスおよび前記火
炎用−ガスの一方または両番に流体的な回転連動を与え
ることによって、ガラス微粒子堆積効率の同ht図るこ
とがで畠るので(待に高速母材合成時に、着しい改善効
果か見られる)、VAD法によるm趨母材製造を容易に
するという利点かある。As explained above, the original fiber base material of the present invention! ll1
Method 11ii improves the glass particle deposition efficiency by providing fluid rotational interlocking to one or both of the raw material gas and the flame gas when the frit gas or the flame gas is blown out from the synthesis torch. This method has the advantage of making it easier to manufacture m-line base materials using the VAD method, since it is possible to increase the height of the base material (a significant improvement effect can be seen during high-speed base material synthesis).
さらに微粒子堆積効率が向上するので、光ファイバの低
−俗化を実現し易いという利点がある。Furthermore, since the efficiency of fine particle deposition is improved, there is an advantage that it is easy to realize low-cost optical fibers.
第1図(L)は従来のVAD法における多孔質母材の作
−の説明図、1llI1図+1))は第1図(JL)の
ムーム′における断面図、
第2図(a)は本発明の一実施例図、第2図(b)は第
2図(JL)のB −B’における断面図であるO
1・・・合成トーチ、2・・・火炎用ガス吹き出し口、
8・・・ガラス原料吹IN員し口、番・・・火炎流、b
・・・ガラス微粒子流、6・・・多孔質母材、21・・
・合成トーチ、22・・火炎用ガス吹1ml出し口、g
8・・・ガラス原料ガス吹き出し口、24・・・火炎流
、25・・・ガラス微粒子流−126・・・多孔質母材
、27・・・回転機、28・・・回転ファン。
特許出願人 日本電信電話公社
第1図
(a)Figure 1 (L) is an explanatory diagram of the creation of a porous base material in the conventional VAD method, 1llI1 Figure + 1)) is a cross-sectional view at Moum' in Figure 1 (JL), and Figure 2 (a) is the book. One embodiment of the invention, FIG. 2(b) is a sectional view taken along line B-B' in FIG. 2 (JL).
8... Glass raw material blowing IN member's opening, number... flame flow, b
...Glass particle flow, 6...Porous base material, 21...
・Synthetic torch, 22.・flame gas blower 1ml outlet, g
8... Frit gas outlet, 24... Flame flow, 25... Glass particle flow-126... Porous base material, 27... Rotating machine, 28... Rotating fan. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 1 (a)
Claims (1)
出発材の軸方向に堆積することによって丸棒状の多孔質
母材を形成した後、この多孔質母材を高温に加熱、焼結
して、透明母材【傅る光7アイパ母材のmtT1方法す
なわち気相軸付は法において、合成トーチから吹き出す
ガラス形成原料ガスおよび火炎用ガスの一方または11
11ff者に流体的な回転運動を与えながら、多孔質母
材を形aすることを特徴とTる光フアイバ母材の11!
造方法。[Claims] L After synthesizing glass particles in a flame stream and depositing them in the axial direction of the starting material to form a round rod-shaped porous base material, this porous base material is heated to a high temperature. In the mtT1 method, that is, the vapor phase attachment method of the transparent base material [Fueru Hikari 7 Aipah base material], one of the glass forming raw material gas and the flame gas blown out from the synthesis torch or 11 is heated and sintered.
11ff is an optical fiber base material characterized by forming a porous base material while imparting fluid rotational motion to the fiber.
Construction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4730182A JPS6055450B2 (en) | 1982-03-26 | 1982-03-26 | Manufacturing method of optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4730182A JPS6055450B2 (en) | 1982-03-26 | 1982-03-26 | Manufacturing method of optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58167442A true JPS58167442A (en) | 1983-10-03 |
JPS6055450B2 JPS6055450B2 (en) | 1985-12-05 |
Family
ID=12771455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4730182A Expired JPS6055450B2 (en) | 1982-03-26 | 1982-03-26 | Manufacturing method of optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6055450B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369527A (en) * | 1989-08-08 | 1991-03-25 | Yazaki Corp | Torch for synthesis of porous base material for optical fiber |
WO2001005719A1 (en) * | 1999-07-19 | 2001-01-25 | Linde Gas Aktiengesellschaft | Methods for producing highly pure silicon dioxide glass and burner for carrying out this method |
CN113912279A (en) * | 2020-07-10 | 2022-01-11 | 中天科技精密材料有限公司 | Axial deposition doping device and preparation method of powder rod |
-
1982
- 1982-03-26 JP JP4730182A patent/JPS6055450B2/en not_active Expired
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369527A (en) * | 1989-08-08 | 1991-03-25 | Yazaki Corp | Torch for synthesis of porous base material for optical fiber |
WO2001005719A1 (en) * | 1999-07-19 | 2001-01-25 | Linde Gas Aktiengesellschaft | Methods for producing highly pure silicon dioxide glass and burner for carrying out this method |
CN113912279A (en) * | 2020-07-10 | 2022-01-11 | 中天科技精密材料有限公司 | Axial deposition doping device and preparation method of powder rod |
CN113912279B (en) * | 2020-07-10 | 2023-03-31 | 中天科技精密材料有限公司 | Axial deposition doping device and preparation method of powder rod |
Also Published As
Publication number | Publication date |
---|---|
JPS6055450B2 (en) | 1985-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043768B2 (en) | Manufacturing method of optical fiber preform | |
JP2003226544A (en) | Method of manufacturing optical fiber porous preform | |
JPH06247722A (en) | Production of porous glass base material | |
JPS58167442A (en) | Production of optical fiber parent material | |
JP2003313033A (en) | Optical glass and method for manufacturing the same | |
JP3953820B2 (en) | Method for manufacturing optical fiber porous preform | |
JPS6048456B2 (en) | Method for manufacturing base material for optical fiber | |
JP3154768B2 (en) | Manufacturing method of preform preform for optical fiber | |
JP2938688B2 (en) | Manufacturing method of preform for optical fiber | |
JP4053305B2 (en) | Method for producing porous preform for optical fiber | |
JPS6253452B2 (en) | ||
JP3169409B2 (en) | Manufacturing method of preform for optical fiber | |
JP7399835B2 (en) | Method for manufacturing porous glass deposit for optical fiber | |
JPH09118537A (en) | Production of porous glass preform for optical fiber | |
JPS59128225A (en) | Manufacture of base material for optical fibre | |
JPS61151031A (en) | Production of optical fiber preform | |
JPH0339978B2 (en) | ||
JP3118723B2 (en) | Method for producing porous glass preform for optical fiber | |
JPH0761877B2 (en) | Method for manufacturing glass particulate deposit | |
JP3992970B2 (en) | Manufacturing method and apparatus for manufacturing glass preform for optical fiber | |
JPS6035298B2 (en) | Glass particle synthesis torch | |
JPH04219339A (en) | Production of preform for optical fiber | |
JPH0435429B2 (en) | ||
JPH02145449A (en) | Production of preform for optical fiber | |
JPS63123828A (en) | Production of porous preform for optical fiber |