JP3118723B2 - Method for producing porous glass preform for optical fiber - Google Patents
Method for producing porous glass preform for optical fiberInfo
- Publication number
- JP3118723B2 JP3118723B2 JP02321223A JP32122390A JP3118723B2 JP 3118723 B2 JP3118723 B2 JP 3118723B2 JP 02321223 A JP02321223 A JP 02321223A JP 32122390 A JP32122390 A JP 32122390A JP 3118723 B2 JP3118723 B2 JP 3118723B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- glass
- raw material
- torch
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000005373 porous glass Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000013307 optical fiber Substances 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims description 78
- 239000011521 glass Substances 0.000 claims description 51
- 239000002994 raw material Substances 0.000 claims description 42
- 239000010419 fine particle Substances 0.000 claims description 15
- 238000007496 glass forming Methods 0.000 claims description 10
- 239000007858 starting material Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- 239000000567 combustion gas Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/08—Recessed or protruding ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/22—Inert gas details
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/24—Multiple flame type, e.g. double-concentric flame
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/30—For glass precursor of non-standard type, e.g. solid SiH3F
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/80—Feeding the burner or the burner-heated deposition site
- C03B2207/85—Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバ用多孔質ガラス母材の製造方法
に関し、特にガラス形成用原料ガスをガラス合成用トー
チに投入してガラス微粒子を合成しつつ出発材に堆積せ
しめる方法における原料収率を向上せしめる方法に関す
るものである。Description: TECHNICAL FIELD The present invention relates to a method for producing a porous glass preform for an optical fiber, and in particular, to feed a glass forming raw material gas into a glass synthesizing torch to synthesize glass fine particles. The present invention relates to a method for improving the yield of a raw material in a method of depositing a starting material while performing the method.
従来、ガラス合成トーチを用いた多孔質ガラス母材の
作製には、特公昭59−15092、同57−19059各号公報等に
示されるように、多重管トーチの中心にガラス原料ガス
を流し、これを取り囲むように可燃性ガス及び助燃性ガ
スを流して火炎を形成し、上記原料ガスを火炎加水分解
反応及び酸化反応することによりガラス微粒子を合成す
る方法が用いられている。このとき、可燃性ガスとして
は水素或いは炭化水素を、助燃性ガスとしては酸素が一
般的に用いられている。また、トーチの可燃性ガスと助
燃性ガス層の間には、両ガスの燃焼熱によりトーチが変
形するのを防ぐため、シールガス層が設けられ、シール
ガスとしては従来、例えばヘリウムやアルゴン等の不活
性ガスが用いられている。しかしながら、これら従来方
法においては、火炎の中心を流れていく原料ガスが外周
層を流れる火炎ガスと混合・反応し、更にガラス微粒子
が生成されるまでトーチの噴出口から長い距離を必要と
するため、ガラス微粒子の生成効率が低く、堆積収率が
低いという問題があった。Conventionally, in the production of a porous glass base material using a glass synthetic torch, as shown in JP-B-59-15092, JP-B-57-19059, etc., a glass raw material gas is flowed to the center of a multi-tube torch, A method is used in which a flame is formed by flowing a combustible gas and an auxiliary combustion gas so as to surround this, and the raw material gas is subjected to a flame hydrolysis reaction and an oxidation reaction to synthesize glass fine particles. At this time, hydrogen or hydrocarbon is generally used as the combustible gas, and oxygen is generally used as the auxiliary gas. In addition, a seal gas layer is provided between the combustible gas and the auxiliary gas layer of the torch in order to prevent the torch from being deformed by the combustion heat of both gases, and a conventional seal gas such as helium or argon is used. Inert gas is used. However, in these conventional methods, the raw material gas flowing in the center of the flame mixes and reacts with the flame gas flowing in the outer peripheral layer, and furthermore, it takes a long distance from the torch outlet until glass fine particles are generated. However, there is a problem that the generation efficiency of the glass fine particles is low and the deposition yield is low.
また、例えば実公昭60−4979号公報に記載されるよう
に、トーチを、中央のガラス微粒子合成用火炎部を外周
に形成するガラス微粒子堆積面加熱用火炎部内に保持す
る構造(二重火炎形成用トーチ)として、反応及びガラ
ス微粒子生成を促進せしめるようにすることが提案され
ている。しかし、このトーチ構造においては、トーチ内
に保持している中央火炎からの加熱及び中心流より逸脱
したガラス微粒子の付着により、トーチが劣化するとい
う問題があった。Further, as described in, for example, Japanese Utility Model Publication No. Sho 60-4979, a structure in which a torch is held in a flame portion for heating a glass particle deposition surface where a central flame portion for synthesizing glass particles is formed on the outer periphery (double flame formation) It has been proposed that a reaction torch be used to promote the reaction and the production of glass particles. However, in this torch structure, there is a problem that the torch deteriorates due to heating from the central flame held in the torch and adhesion of glass particles deviating from the central flow.
更には、特開昭55−121922号公報には、高温加熱した
水蒸気のみで火炎を用いずに、ガラス形成用原料を加水
熱分解してガラス微粒子を形成する方法が提案されてい
るが、この方法では多孔質ガラス母材を形成するために
水蒸気の温度を数百度以上とする必要があり、これを実
現する装置が非常に複雑となる欠点があった。Further, JP-A-55-121922 proposes a method of forming glass fine particles by hydrolyzing a raw material for glass formation without using a flame with only steam heated at a high temperature. In the method, the temperature of water vapor needs to be several hundred degrees or more in order to form a porous glass base material, and there is a disadvantage that an apparatus for realizing this is very complicated.
本発明は上記した従来技術の諸問題の解決を課題とし
てなされたもので、多重管トーチを用いてガラス原料ガ
スを火炎加水分解又は酸化反応することによりガラス微
粒子を生成する方法を改善して、堆積効率、原料収率の
より向上した光ファイバ用多孔質ガラス母材の製造方法
を提供することを目的とするものである。The present invention has been made to solve the above-described problems of the prior art, and an improved method of producing glass fine particles by flame hydrolysis or oxidation reaction of a glass raw material gas using a multi-tube torch, An object of the present invention is to provide a method for producing a porous glass preform for an optical fiber with improved deposition efficiency and raw material yield.
本発明は上記課題を、多重管ガラス合成トーチの中心
噴出口から順番に外側噴出口に向かい、ガラス形成用原
料ガス又はガラス形成用原料ガスと可燃性ガスとの混合
ガス、可燃性ガス、助燃性ガスを記載の順に供給し、さ
らに前記助燃性ガスより内側のガラス形成用原料ガス流
に隣接するガス流に水蒸気ガスを供給して、ガラス微粒
子を合成しつつ出発材に堆積せしめて多孔質ガラス母材
とすることを特徴とする光ファイバ用多孔質ガラス母材
の製造方法により解決するものである。The present invention solves the above problem by sequentially moving from the center jet port of the multi-tube glass synthetic torch to the outer jet port, and mixing the raw material gas for forming glass or the raw material gas for forming glass with a flammable gas, flammable gas, And a steam gas is supplied to a gas flow adjacent to the glass forming raw material gas flow inside the auxiliary combustion gas to deposit glass particles on the starting material while synthesizing glass particles. The problem is solved by a method for producing a porous glass preform for optical fibers, which is characterized by using a glass preform.
また本発明は上記課題を、多重管ガラス合成トーチの
中心噴出口から順番にに外側噴出口に向かい、ガラス形
成用原料ガス又はガラス形成用原料ガスと可燃性ガスと
の混合ガス、可燃性ガス、水蒸気、助燃性ガスを記載の
順に供給して、ガラス微粒子を合成しつつ出発材に堆積
せしめて多孔質ガラス母材とすることを特徴とする光フ
ァイバ用多孔質ガラス母材の製造方法により解決するも
のである。Further, the present invention solves the above-mentioned problem by sequentially moving from the center jet port of the multi-tube glass composite torch to the outer jet port, and mixing the raw material gas for glass forming or the raw material gas for glass forming with the flammable gas, the flammable gas. , Water vapor, a combustible gas are supplied in the order described, and a method for producing a porous glass preform for an optical fiber, comprising synthesizing glass particles and depositing them on a starting material to form a porous glass preform. Is the solution.
本発明による一具体例として、8重管トーチを用いて
多孔質シリカガラス母材をVAD法(Vapour phase Axial
Deposition method 気相軸付法)により合成する場合
について、第1図に示す概略図を参照して説明する。ト
ーチ1の中心層2(第1層)にはガラス原料ガスとして
四塩化珪素ガス、第2層3には水素ガス、第3層4には
水蒸気、第4層5には酸素ガスをそれぞれ供給し、中央
部火炎6を形成させる。次いで第5層7にはアルゴンガ
ス、第6層8には水素ガス、第7層9にはアルゴンガ
ス、第8層10には酸素ガスをそれぞれ供給して外縁火炎
部11を形成させる。トーチ1で合成されたガラス微粒子
12を、排気系13を有する容器14内で自軸を中心として回
転する出発材15の表面に堆積させ、出発材15を徐々に上
方に引き上げることにより多孔質ガラス母材16を形成し
ていく。このように、本発明では、ガラス原料ガスと可
燃性ガスを流している中心部(第1,2層)と、その外周
に流す助燃性ガス(第4層)の間に、水蒸気を用いる
(第3層)点に特徴がある。As one specific example according to the present invention, a porous silica glass preform is subjected to a VAD (Vapour phase Axial) method using an eight-tube torch.
The case of synthesizing by a deposition method (gas phase attachment method) will be described with reference to the schematic diagram shown in FIG. Silicon tetrachloride gas as a glass source gas is supplied to the central layer 2 (first layer) of the torch 1, hydrogen gas is supplied to the second layer 3, water vapor is supplied to the third layer 4, and oxygen gas is supplied to the fourth layer 5. Then, a central flame 6 is formed. Next, an outer flame portion 11 is formed by supplying an argon gas to the fifth layer 7, a hydrogen gas to the sixth layer 8, an argon gas to the seventh layer 9, and an oxygen gas to the eighth layer 10. Glass particles synthesized by torch 1
12 is deposited on the surface of a starting material 15 rotating around its own axis in a container 14 having an exhaust system 13, and a porous glass preform 16 is formed by gradually lifting the starting material 15 upward. . As described above, in the present invention, water vapor is used between the central portion (first and second layers) in which the glass raw material gas and the flammable gas are flowing and the auxiliary combustion gas (fourth layer) flowing in the outer periphery thereof ( (3rd layer).
なお、本発明におけるガラス形成用原料ガスとして
は、SiCl4,GeCl4等の塩化物ガラス原料ガスやSiHCl3等
のシラン系ガス、BBr3等の公知のガラス形成用原料ガス
を用いることができる。Incidentally, as a glass forming raw material gas in the present invention can be used SiCl 4, GeCl 4 silane-based gas such as chlorides glass raw material gas and SiHCl 3, such as, known glass-forming raw material gas such as BBr 3 .
また、可燃性ガスとしては、H2,CH4,C2H6,C3H8,C2H2
等の公知の可燃性ガスを使用できる。助燃性ガスとして
はO2を挙げることができる。Further, as the combustible gas, H 2 , CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 2
And other known combustible gases. O 2 can be cited as an example of the auxiliary gas.
本発明による原料収率の向上は以下のように説明され
る。塩化物ガラス原料ガスがガラス微粒子となり効率よ
く堆積して多孔質体となるためには、トーチから噴出し
出発材や堆積途中の多孔質体に到達するまでに、加水分
解反応や酸化反応することにより酸化物(酸化珪素)、
すなわちガラス微粒子となっていることが必要である。The improvement of the raw material yield according to the present invention is explained as follows. In order for the chloride glass raw material gas to become glass fine particles and efficiently deposit into a porous body, a hydrolysis reaction or an oxidation reaction must be performed before the gas is ejected from the torch and reaches the starting material or the porous body being deposited. Oxide (silicon oxide),
That is, it is necessary that the particles be glass fine particles.
従って、塩化物ガラス原料ガスがトーチから噴出した
後、加水分解反応や酸化反応に必要な水分や酸素ガス
と、より早期に混合させてやればそれだけガラス微粒子
の合成が促進でき、原料収率を向上させることができ
る。Therefore, if the chloride glass raw material gas is ejected from the torch and then mixed earlier with the water or oxygen gas required for the hydrolysis reaction or the oxidation reaction, the synthesis of the glass particles can be accelerated and the raw material yield can be increased. Can be improved.
ところで多重管トーチを使用する場合、層流状態でガ
スがトーチから噴出するため、ガス同士の混合が進みに
くく、従来技術では前述のような問題点が生じていた。By the way, when a multi-tube torch is used, the gas is ejected from the torch in a laminar flow state, so that mixing of the gases is difficult to progress, and the above-described problem has occurred in the prior art.
これに対し、本発明によれば、酸素ガス流の内側のよ
り原料ガス流に近いガス流れに、従来技術のような不活
性ガスではなく水蒸気流を配置させるので、より早期に
ガラス原料ガスが水蒸気流と混合し、ガラス微粒子を合
成させることができ、原料収率を向上させることができ
る。On the other hand, according to the present invention, since the steam flow is arranged in the gas flow closer to the raw material gas flow inside the oxygen gas flow, instead of the inert gas as in the related art, the glass raw material gas is earlier. By mixing with a steam flow, glass fine particles can be synthesized, and the raw material yield can be improved.
本発明の具体的な条件等は以下の実施例に示される
が、本発明はこれに限定されるものではない。Specific conditions of the present invention are shown in the following examples, but the present invention is not limited to these examples.
(実施例1) 第1図に示した構成により、8重管トーチの各々の層
に下記表1に示すガスを供給し、生成したガラス微粒子
を、自軸を中心として回転するシリカ棒(出発材)の下
端に堆積させ、シリカ棒を徐々に引き上げて、外径145m
m、長さ600mmの多孔質シリカガラス母材を作製した。四
塩化珪素ガス及び水蒸気は、第2図に概略を示す加圧蒸
発装置17を用いて各々発生させ、トーチに導いた。(Example 1) According to the configuration shown in Fig. 1, the gas shown in the following Table 1 is supplied to each layer of the octuple tube torch, and the produced glass fine particles are rotated by a silica rod (starting) around its own axis. Material), and gradually raise the silica rod to an outer diameter of 145m.
A porous silica glass base material having a length of m and a length of 600 mm was produced. The silicon tetrachloride gas and water vapor were generated using a pressurized evaporator 17 schematically shown in FIG. 2 and led to a torch.
本実施例では原料収率〔(多孔質シリカガラス母材内
のSi重量分/総供給SiCl4中のSi重量分)×100(%)〕
は86%であった。また、本実施例で得られた多孔質シリ
カガラス母材は外径が均一で良好なものであった。In this embodiment, the raw material yield [(weight of Si in porous silica glass base material / weight of Si in total supplied SiCl 4 ) × 100 (%)]
Was 86%. Further, the porous silica glass base material obtained in this example had a uniform outer diameter and was excellent.
以上で得られた多孔質シリカガラス母材を、5%の塩
素ガスを含むヘリウムガス雰囲気とした1050℃の炉の中
で脱水処理した後、1600℃で加熱して透明ガラス化し
た。これにより得られた中実のガラス母材を延伸し、次
いでシリコーン樹脂で被覆しつつプラスチッククラッド
ファイバに紡糸した。得られたファイバの伝送損失は波
長1.3μmで4.5dB/kmと良好であった。The porous silica glass base material obtained as described above was dehydrated in a furnace at 1050 ° C. in a helium gas atmosphere containing 5% chlorine gas, and then heated at 1600 ° C. to form a transparent glass. The resulting solid glass preform was drawn and then spun into a plastic clad fiber while being coated with a silicone resin. The transmission loss of the obtained fiber was as good as 4.5 dB / km at a wavelength of 1.3 μm.
(比較例1) 実施例1と同様に、但しガス条件を表1に示すよう
に、第3層目を水蒸気ではなくアルゴンガスの供給とし
て、多孔質シリカガラス母材を作製した。本比較例では
原料収率は65%と低かった。得られた多孔質母材の表面
には高さ2ないし3mmの樹状に成長したガラス微粒子が
一面に見られ、実施例1と同様に透明化した後も、細か
な表面不整として残り、ファイバ化するに耐えなかっ
た。このガラス微粒子の樹状成長は原料収率が低いこと
により、多孔質母材として堆積せず容器内に浮遊した微
粒子が、多孔質母材の表面に付着成長したものと考えら
れた。Comparative Example 1 A porous silica glass base material was produced in the same manner as in Example 1 except that the gas conditions were as shown in Table 1, and the third layer was supplied with argon gas instead of steam. In this comparative example, the raw material yield was as low as 65%. On the surface of the obtained porous preform, glass fine particles grown in a tree shape having a height of 2 to 3 mm can be seen on one side, and even after being made transparent as in Example 1, it remains as a fine surface irregularity, and fiber Did not endure. It was considered that the dendritic growth of the glass microparticles was due to the low raw material yield, and the microparticles that did not accumulate as the porous base material and floated in the container adhered and grew to the surface of the porous base material.
(実施例2) 第1図に示した構成において、8重管トーチの各々の
層に下記表2に示すガスを供給し、生成したガラス微粒
末を、自軸を中心として回転しつつ自軸方向に往復運動
する出発材の周囲に堆積させた。出発材には中心部にゲ
ルマニアを含有させて周辺部よりも0.3%高屈折率とし
た外径15mm、長さ600mmのシリカガラスロッドを用い
た。多孔質ガラス母材が外径120mmになるまで堆積を行
った。本実施例の原料収率は82%であった。 (Example 2) In the configuration shown in Fig. 1, the gas shown in the following Table 2 was supplied to each layer of the octuple tube torch, and the generated fine glass powder was rotated while rotating around its own axis. Deposited around the starting material reciprocating in the direction. As a starting material, a silica glass rod having an outer diameter of 15 mm and a length of 600 mm, which contains germania in the center and has a higher refractive index than the periphery by 0.3%, was used. Deposition was performed until the porous glass base material had an outer diameter of 120 mm. The raw material yield of this example was 82%.
(比較例2) 実施例2と同様に、但しガス条件を表2に示すよう
に、3層目を水蒸気ではなくアルゴンガスの供給とし
て、多孔質シリカガラス母材を作製した。本比較例の原
料収率は62%であった。(Comparative Example 2) A porous silica glass preform was produced in the same manner as in Example 2, except that the gas conditions were as shown in Table 2, except that the third layer was supplied with argon gas instead of steam. The raw material yield of this comparative example was 62%.
以上の実施例及び比較例の結果から、本発明の方法が
原料収率を飛躍的に向上でき、しかも良質の多孔質ガラ
ス母材を製造できることがわかる。 From the results of the above Examples and Comparative Examples, it is understood that the method of the present invention can dramatically improve the raw material yield and can produce a high quality porous glass base material.
なお、以上の説明や実施例では8重管トーチを例に挙
げたが、本発明はこれに限定されるものでないことは勿
論である。In the above description and the embodiments, the eight-tube torch is taken as an example, but it goes without saying that the present invention is not limited to this.
また、VAD法のみでなく、塩化物ガラス原料ガスを火
炎加水分解反応及び/又は酸化反応を利用してガラス微
粒子を生成せしめて多孔質ガラス体を得る方法のいずれ
にも、適用することができる。Further, the present invention can be applied not only to the VAD method but also to any method of producing glass fine particles by using a flame hydrolysis reaction and / or an oxidation reaction of a chloride glass raw material gas to obtain a porous glass body. .
以上の説明のように本発明によれば、多重管合成トー
チを使用してガラス原料ガスの火炎加水分解反応又は酸
化反応によるガラス微粒子の合成をより早期に進めるこ
とができ、これにより原料収率を非常に向上することが
できる。また、上述においては、塩化物ガラス原料ガス
として四塩化珪素を使用した例に基づいて本発明を説明
したが、より分子量が大きいため混合の起こりにくいガ
ラス形成用原料ガス、例えばGeCl4、BBr3等を用い、原
料ガスの隣層に可燃性ガスを流す構成による場合に、本
発明を適用して非常に有効である。As described above, according to the present invention, the synthesis of glass fine particles by a flame hydrolysis reaction or an oxidation reaction of a glass raw material gas can be advanced earlier by using a multi-tube synthesis torch, whereby the raw material yield can be improved. Can be greatly improved. Further, in the above description, the present invention has been described based on an example in which silicon tetrachloride is used as a chloride glass raw material gas, but a glass forming raw material gas such as GeCl 4 , BBr 3 which has a higher molecular weight and is less likely to be mixed. The present invention is very effective when the present invention is applied to a configuration in which a combustible gas is caused to flow in a layer adjacent to a raw material gas by using such a method.
第1図はVAD法を用いた本発明による一具体例の概略説
明図、第2図は実施例での水蒸気、原料ガス蒸気の発生
装置の概略説明図である。FIG. 1 is a schematic explanatory view of a specific example according to the present invention using the VAD method, and FIG. 2 is a schematic explanatory view of a steam and raw material gas vapor generating apparatus in the embodiment.
Claims (2)
順番に外側噴出口に向かい、ガラス形成用原料ガス又は
ガラス形成用原料ガスと可燃性ガスとの混合ガス、可燃
性ガス、助燃性ガスを記載の順に供給し、さらに前記助
燃性ガスより内側のガラス形成用原料ガス流に隣接する
ガス流に水蒸気ガスを供給して、ガラス微粒子を合成し
つつ出発材に堆積せしめて多孔質ガラス母材とすること
を特徴とする光ファイバ用多孔質ガラス母材の製造方
法。1. A multi-tube glass composite torch, in order from a central jet port to an outer jet port, a raw material gas for forming a glass or a mixed gas of a raw material gas for forming a glass and a flammable gas, a flammable gas, and an auxiliary gas. Are supplied in the order described, and a steam gas is supplied to a gas flow adjacent to the glass-forming raw material gas flow inside the auxiliary combustion gas, and is deposited on the starting material while synthesizing glass fine particles to form a porous glass matrix. A method for producing a porous glass preform for an optical fiber, comprising:
順番に外側噴出口に向かい、ガラス形成用原料ガス又は
ガラス形成用原料ガスと可燃性ガスとの混合ガス、可燃
性ガス、水蒸気、助燃性ガスを記載の順に供給して、ガ
ラス微粒子を合成しつつ出発材に堆積せしめて多孔質ガ
ラス母材とすることを特徴とする光ファイバ用多孔質ガ
ラス母材の製造方法。2. A multi-tubular glass composite torch, in order from a central jet port to an outer jet port, to a glass forming raw material gas or a mixed gas of a glass forming raw material gas and a flammable gas, a flammable gas, water vapor, and an auxiliary fuel. A method for producing a porous glass preform for an optical fiber, characterized in that a reactive gas is supplied in the order described, and glass fine particles are synthesized and deposited on a starting material to form a porous glass preform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02321223A JP3118723B2 (en) | 1990-11-27 | 1990-11-27 | Method for producing porous glass preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02321223A JP3118723B2 (en) | 1990-11-27 | 1990-11-27 | Method for producing porous glass preform for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04193728A JPH04193728A (en) | 1992-07-13 |
JP3118723B2 true JP3118723B2 (en) | 2000-12-18 |
Family
ID=18130184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02321223A Expired - Fee Related JP3118723B2 (en) | 1990-11-27 | 1990-11-27 | Method for producing porous glass preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3118723B2 (en) |
-
1990
- 1990-11-27 JP JP02321223A patent/JP3118723B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04193728A (en) | 1992-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4367085A (en) | Method of fabricating multi-mode optical fiber preforms | |
JP3543537B2 (en) | Method for synthesizing glass fine particles and focus burner therefor | |
GB2128982A (en) | Fabrication method of optical fiber preforms | |
JP4043768B2 (en) | Manufacturing method of optical fiber preform | |
JP3557070B2 (en) | Equipment for manufacturing porous glass preform for optical fiber | |
JPS6168340A (en) | Manufacturing method of glass base material for optical fiber | |
JPS6126532A (en) | Method for manufacturing base material for optical fiber | |
CN206680383U (en) | The blowtorch of preform | |
JP3118723B2 (en) | Method for producing porous glass preform for optical fiber | |
AU646490B2 (en) | Method for producing glass article | |
JP4530687B2 (en) | Method for producing porous glass preform for optical fiber | |
JPS6041627B2 (en) | Manufacturing method of optical fiber base material | |
JPS61183140A (en) | Production of base material for optical fiber | |
JPH059035A (en) | Production of soot base material for optical fiber | |
JP3176949B2 (en) | Method for producing porous silica preform | |
JPS6126527A (en) | Production of porous quartz glass base material | |
JP2502617Y2 (en) | Reaction vessel for growing porous optical fiber preform | |
JPS6243934B2 (en) | ||
JPS59152234A (en) | Preparation of parent material for optical fiber | |
JPH05345621A (en) | Production of glass article | |
JPH0583499B2 (en) | ||
JPH0561210B2 (en) | ||
JPH1053428A (en) | Preform for optical fiber and method of manufacturing the same | |
JPH0435429B2 (en) | ||
JPH0563417B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |