[go: up one dir, main page]

JPS58155520A - Manfuacture of magnetic recording medium - Google Patents

Manfuacture of magnetic recording medium

Info

Publication number
JPS58155520A
JPS58155520A JP3770482A JP3770482A JPS58155520A JP S58155520 A JPS58155520 A JP S58155520A JP 3770482 A JP3770482 A JP 3770482A JP 3770482 A JP3770482 A JP 3770482A JP S58155520 A JPS58155520 A JP S58155520A
Authority
JP
Japan
Prior art keywords
thin film
recording medium
magnetic recording
substance
durability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3770482A
Other languages
Japanese (ja)
Other versions
JPH0334612B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3770482A priority Critical patent/JPS58155520A/en
Publication of JPS58155520A publication Critical patent/JPS58155520A/en
Publication of JPH0334612B2 publication Critical patent/JPH0334612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic recroding medium excellent in durability, by making the formation speed of a thin film more speedy than the specific speed and increasing the amount of radiation heat to >=3 times as much as condensed heat, in a method for manufacturing a metallic thin magnetic recording medium by a vapor deposition method. CONSTITUTION:In forming a ferromagnetic substance thin film by applying a vapor of a ferromagnetic substance such as Co alloy directly to a plastic substrate moving along a rotary support (either cylindrical scan or endless belt) having controlled temperatuere, the average formation speed of this thin film is designated as 0.1mum/sec and the amount of radiation heat from the evaporation source to the evaporating substance, e.g., Co alloy is made to >=3 times as much as the condensed heat dissipated when the evaporation substance is deposited on the substrate. Thus, the magnetic recording medium excellent in durability is obtained easily.

Description

【発明の詳細な説明】 本発明は、蒸着法にて金属薄膜形磁気記録媒体を製造す
る方法に係り、耐久性の優れた媒体を得るための改良を
目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a metal thin film type magnetic recording medium by a vapor deposition method, and aims at improving the method to obtain a medium with excellent durability.

近年、磁気記録は民生分野で、記録波長1μmの高密度
化が実現され、コンピュータ分野では信頼性の面から、
民生用に比較すれば、まだ記録波長(或いはディ′ジタ
ル記録ではピットデンシティ−で表示され、通常インチ
当りの情報ビット数BPLであられされる)は長いが、
着実に記録密度は向上してきている。
In recent years, high-density magnetic recording with a recording wavelength of 1 μm has been achieved in the consumer field, and in the computer field, from the standpoint of reliability,
Compared to consumer use, the recording wavelength (or pit density in digital recording, usually expressed as the number of information bits per inch BPL) is still long, but
Recording density has been steadily improving.

最近GO合金系の磁性薄膜の一部の実用化を含めた新し
い動きは、記録密度の更に大幅な向上を月相したもので
あシ、特に広範な信号処理の必要なビデオ用に対する期
待は大きい。
Recent new developments, including the practical application of some GO alloy-based magnetic thin films, are expected to lead to even greater improvements in recording density, and expectations are particularly high for video applications that require extensive signal processing. .

しかし現在主流のヘリカル走査方式のビデオテープレコ
ーダに適用するには、薄膜の耐蝕性、耐久性の改良が重
要である。
However, in order to apply it to the currently mainstream helical scanning video tape recorder, it is important to improve the corrosion resistance and durability of the thin film.

短波長記録をおし進めるには、磁性層の上に耐久性改良
のための保護層、滑性付与層等を配することは得策では
ない。
In order to promote short wavelength recording, it is not a good idea to provide a protective layer for improving durability, a lubricity imparting layer, etc. on the magnetic layer.

従って薄膜そのものの改良が必要であシ、一方薄膜の物
性は製法依存性が強いだけに、安定に。
Therefore, it is necessary to improve the thin film itself, and on the other hand, the physical properties of the thin film are highly dependent on the manufacturing method, so it cannot be stabilized.

かつ大量に工業規模で改良された媒体を得る方法を見出
すことが重要である。
It is important to find ways to obtain improved media on an industrial scale and in large quantities.

本発明は電子ビーム蒸着法を採用し、温度制御された回
転支持体(円筒状キャン、又はエンドレスベルトのいず
れか)に沿って移動する。ポリエチレンテレフタレート
、ポリアミド、ポリイミド等のプラスチック基板に、直
接Go金合金の強磁性体の蒸気を差し向けて薄膜を形成
することを基本とし、膜形成速度〔連続的に変化するが
、ここでは平均的な値で評価する。〕をエネルギー換算
しテPoCW/−〕 とし、かつ、蒸発源からの輻射熱
をp 1(”/J 〕 とすると、P1≧3Poとする
ことが1本発明の重要な点である。但し、後述するよう
に、薄膜の形成速度は0.1μ”/sec以上である。
The present invention employs electron beam evaporation, moving along a temperature-controlled rotating support (either a cylindrical can or an endless belt). The basic method is to form a thin film by directing the vapor of ferromagnetic Go gold alloy onto a plastic substrate such as polyethylene terephthalate, polyamide, or polyimide. Evaluate with a value. ] is converted into energy as TePoCW/-], and the radiant heat from the evaporation source is p1(''/J), then it is an important point of the present invention to satisfy P1≧3Po.However, as described below, Thus, the thin film formation rate is 0.1 μ''/sec or more.

この条件は、蒸着時の真空度が8×1σ’Torr〜9
 X 1 o−”Torr 、雰囲気として、酸素、酸
素と不活性気体の混合気体等を用い、抗磁力が600(
Oe )〜2050(Oe)の得られる範囲の条件で磁
性体、基板の種類によらないものである。PlのPoと
の間の関係でPlは大きい程、効果の大きさが期待され
るが、これは基板の耐熱性と、蒸着時の冷却条件により
、適切な値を選択するべきである。
This condition is such that the degree of vacuum during evaporation is 8×1σ'Torr ~ 9
X 1 o-”Torr, the atmosphere is oxygen, a mixture of oxygen and an inert gas, etc., and the coercive force is 600 (
Oe) to 2050 (Oe), regardless of the type of magnetic material or substrate. Regarding the relationship between Pl and Po, it is expected that the larger Pl is, the greater the effect will be, but an appropriate value should be selected depending on the heat resistance of the substrate and the cooling conditions during vapor deposition.

PlとPoの関係について平均値で評価して充分である
ことについて現在はっきりしていないが恐らく、耐久性
、耐蝕性の優れた膜が形成されるのけ、入射角の大きい
所で成膜される時は、膜形成速度が小さいぷ、入射角が
小さくなり、膜形成速度が0.1μ”/’sec以上に
大きくなる時に急増する欠陥の生成が、蒸着膜に輻射熱
が吸収されることで、欠陥の生成過程と消滅(アニール
)過程が競合するようになシ、結果として、表面欠陥が
減少した膜ができることに起因していると考えられる。
It is currently not clear whether it is sufficient to evaluate the relationship between Pl and Po using the average value, but it is probably the case that a film with excellent durability and corrosion resistance is formed when the film is formed at a large angle of incidence. When the film formation rate is low, the incident angle becomes small, and when the film formation rate increases to 0.1 μ''/'sec or more, the formation of defects increases rapidly due to absorption of radiant heat by the deposited film. This is thought to be due to the fact that the defect generation process and defect annihilation (annealing) process compete with each other, resulting in a film with fewer surface defects.

従って、0.1μm/sec以下の速度で酸素雰囲気で
の膜形成についてはPlが3Po以下にも良好な条件が
得られることがあることは、輻射エネルギーの吸収効率
の差を反映していると考えられる。
Therefore, for film formation in an oxygen atmosphere at a rate of 0.1 μm/sec or less, good conditions can be obtained even when Pl is 3Po or less, which may reflect the difference in the absorption efficiency of radiant energy. Conceivable.

(後に説明の第・2図で黒丸表示しているのがこの場合
を示す。) しかし酸素雰囲気での膜形成であってもPlは3Po以
上にとる方が好ましい。
(This case is indicated by a black circle in FIG. 2, which will be explained later.) However, even if the film is formed in an oxygen atmosphere, it is preferable that Pl be 3Po or more.

第1図は本発明の実施例において用いた蒸着装置の主要
部を示すもので、基板1は、蒸発源2からの蒸気流3に
一部さらされるように真空槽(図示せず)内に構成され
る。第1図では回転支持体として円筒状キャン4が示さ
れている。蒸気流の制限を行うマスク6は、抗磁力の制
御の役目を果す。
FIG. 1 shows the main parts of a vapor deposition apparatus used in an embodiment of the present invention, in which a substrate 1 is placed in a vacuum chamber (not shown) so as to be partially exposed to a vapor flow 3 from an evaporation source 2. configured. In FIG. 1, a cylindrical can 4 is shown as a rotating support. The vapor flow restriction mask 6 serves to control the coercive force.

本発明での膜形成速度は、基板の移動速度をV〔う気〕
とし、薄膜の厚さをtO((m)とし1回転支持体の半
径をro(cWL〕とし、また第1図に示すように、蒸
気流にさらされる角度をα〔ラジアン〕とすると、 tO°v/r・α〔cIrL/seC〕で定義される量
である。
The film formation speed in the present invention is determined by the substrate movement speed V.
If the thickness of the thin film is tO ((m), the radius of the support for one revolution is ro (cWL), and the angle of exposure to the vapor flow is α [radian] as shown in Figure 1), then tO It is a quantity defined by °v/r·α [cIrL/seC].

又輻射熱は、蒸発源の温度分布を実測し、相対位置関係
により補正を加えたものである。
The radiant heat is obtained by actually measuring the temperature distribution of the evaporation source and correcting it based on the relative positional relationship.

比較(7)7’cメK、to・v/r、4〔crn/s
ec〕は材料固有の凝縮熱で換算してディメンジョンを
(W/、、! )とし、両者を合わせた。
Comparison (7) 7'c me K, to・v/r, 4 [crn/s
ec] was converted by the heat of condensation specific to the material, the dimension was set to (W/,,!), and both were combined.

なお第1図において6は基板の送シ出し軸、7は巻取り
軸である。
In FIG. 1, reference numeral 6 indicates a feeding shaft of the substrate, and reference numeral 7 indicates a winding shaft.

第1図に示した装置を用い表に示す条件で実施し形成し
た薄膜は、Aインチのテープを製造して、相対速度4.
6m/Seoで、フェライトヘッドを用い。
A thin film was formed using the apparatus shown in FIG. 1 under the conditions shown in the table, and a tape of A inch was manufactured at a relative speed of 4.
6m/Seo, using ferrite head.

スチルモードで耐久性を評価した。Durability was evaluated in still mode.

以下余白 評価結果は、 の3段階に分けて、第2図に示すようにPaとPlの座
標上に表示した。
The margin evaluation results below are divided into three stages and displayed on the coordinates of Pa and Pl as shown in FIG.

なお第2図には、上記表に示せなかった他の多くの実施
例も示している。
Note that FIG. 2 also shows many other embodiments that were not shown in the above table.

この図より明らかなように pl〉3 po  の範囲
のものは、耐蝕性が満足できるものであり、また許容さ
れる程度の厚みの保護層、滑性付与層との併用に於ても
何ら問題ないことが確認された。
As is clear from this figure, those in the range of pl>3 po have satisfactory corrosion resistance, and there are no problems when used in combination with a protective layer or a slipperiness imparting layer of an allowable thickness. It was confirmed that there was no.

以上の説明から明らかなように、本発明によると耐久性
のすぐれた磁気記録媒体を容易に得ることができ、本発
明の工業的有価値性は極めて大である。
As is clear from the above description, according to the present invention, a magnetic recording medium with excellent durability can be easily obtained, and the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において用いた蒸着装置の主要
部を示す図、第2図は本発明の詳細な説明するための図
で、形成条件の異なる磁性薄膜の耐久性の評価結果を示
す。 1・・・・・・基板、2・・・・・・蒸発源、4・・・
・・・円筒状キャン0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
811 第2図 PI)        (”/cm勺
Fig. 1 is a diagram showing the main parts of the vapor deposition apparatus used in the examples of the present invention, and Fig. 2 is a diagram for explaining the present invention in detail, and shows the results of evaluating the durability of magnetic thin films under different formation conditions. show. 1...substrate, 2...evaporation source, 4...
...Cylindrical can 0 Name of agent Patent attorney Toshio Nakao and 1 other person 1st
811 Figure 2 PI) (”/cm勺

Claims (1)

【特許請求の範囲】[Claims] 基板上に蒸発源からの蒸発物質を堆積せしめて強磁性体
薄膜を形成するに際し、上記薄膜の平均形成速度を0.
1μm/Secとし、かつ、上記蒸発物質の堆積部への
上記蒸発源からの輻射熱の入射量が、上記蒸発物質が上
記基板上に堆積する際に放出する凝縮熱量の3倍以上と
なるようにすることを特徴とする磁気記録媒体の製造方
法。
When forming a ferromagnetic thin film by depositing evaporated material from an evaporation source on a substrate, the average formation rate of the thin film is set to 0.
1 μm/Sec, and so that the amount of radiant heat incident from the evaporation source to the deposition part of the evaporative substance is at least three times the amount of condensation heat released when the evaporative substance is deposited on the substrate. A method of manufacturing a magnetic recording medium, characterized in that:
JP3770482A 1982-03-09 1982-03-09 Manfuacture of magnetic recording medium Granted JPS58155520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3770482A JPS58155520A (en) 1982-03-09 1982-03-09 Manfuacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3770482A JPS58155520A (en) 1982-03-09 1982-03-09 Manfuacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58155520A true JPS58155520A (en) 1983-09-16
JPH0334612B2 JPH0334612B2 (en) 1991-05-23

Family

ID=12504909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3770482A Granted JPS58155520A (en) 1982-03-09 1982-03-09 Manfuacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58155520A (en)

Also Published As

Publication number Publication date
JPH0334612B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
US4521481A (en) Magnetic recording medium
JPS6153770B2 (en)
US4536443A (en) Magnetic recording medium
JPS58155520A (en) Manfuacture of magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
US5908711A (en) Magnetic recording medium
US4735865A (en) Magnetic head core
JPH0227732B2 (en)
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
US5130878A (en) Thin film magnetic head comprising a protective layer
JPH0559570B2 (en)
JPS60201521A (en) Magnetic recording medium
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
KR900002611B1 (en) Magnetic recording medium
JPH0393024A (en) Metallic thin film type magnetic recording medium
JPS59203223A (en) Thin metallic film type magnetic recording medium
JPH0479043B2 (en)
JPS63117320A (en) Production of magnetic recording medium
JPS60160027A (en) Magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPS59175036A (en) Production of magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPH044648B2 (en)
JPS5873019A (en) Manufacture for magnetic recording medium