[go: up one dir, main page]

JPS59175036A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS59175036A
JPS59175036A JP4984483A JP4984483A JPS59175036A JP S59175036 A JPS59175036 A JP S59175036A JP 4984483 A JP4984483 A JP 4984483A JP 4984483 A JP4984483 A JP 4984483A JP S59175036 A JPS59175036 A JP S59175036A
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
film
width
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4984483A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4984483A priority Critical patent/JPS59175036A/en
Publication of JPS59175036A publication Critical patent/JPS59175036A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable formation of a magnetization film having excellent orientational property at a high speed in the stage of depositing by evaporation a vertical magnetization film on a substrate film moving along a rotary roll by making the width corresponding to the source for generating gaseous flow for vapor deposition larger than the width for the vapor deposition on the film plane in the moving direction thereof. CONSTITUTION:The vapor deposition of a vertical magnetization film of Co-Cr, etc. on a high polymer substrate or the non-magnetic underlying layer and soft magnetic underlying layer formed on said substrate while moving the substrate 1 in an arrow direction along a rotary support 2 is accomplished in such a way that the relation between the vapor deposition width Wd in the moving direction of the substrate film 1 and the width Wv corresponding to the vapor flow of the vapor deposition metal attains Wd:Wv=1:1.2-2. The aperture 14 of a stationary mask 5 along the support 2 is therefore provided in a way that the prescribed Wd is obtd. and the vapor flow 5 is generated by irradiating electron beams 8, 9 to a magnetic material 7 of an evaporating source. The vertical magnetization film having excellent orientational property is thus obtd. with good productivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は短波長域で損失の少ない垂直磁気記録媒体を大
量生産する製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method for mass producing perpendicular magnetic recording media with low loss in a short wavelength range.

従来例の構成とその問題点 短波長の記録特性の優れた磁気記録媒体なとして、垂直
磁気記録方式がある。この方式は、短波長記録になる程
、媒体内反磁界が減少するという面内磁化膜にない特長
を有していることが実験室規模で確かめられ、次世代の
磁気記録媒体として、光を利用した記録と競合できる素
質に大いに期待がかけられている。
Conventional Structures and Problems There is a perpendicular magnetic recording system as a magnetic recording medium with excellent short wavelength recording characteristics. It has been confirmed on a laboratory scale that this method has a feature not found in in-plane magnetized films, in that the demagnetizing field within the medium decreases as the wavelength becomes shorter. High expectations are placed on his ability to compete with the record he has used.

しかし、かかる方式の実用化には解決しなければならな
い多くの課題がある。
However, there are many problems that must be solved before such a system can be put into practical use.

そのひとつが媒体の製造技術である。One of these is media manufacturing technology.

従来、研究開発に用いられてきt:、垂直磁気記録媒体
は、ボリイ三ド基板やアル三ディスク上に高周波二極ス
ノ\・ツタリンク法でCo −Cr系合金膜を形成した
もので、その大きさも数イシチ径程度のものであった。
Conventionally, perpendicular magnetic recording media have been used in research and development, and are made by forming a Co-Cr based alloy film on a polyimide substrate or aluminum disc using the high-frequency bipolar snow-link method. It was about a few inches in diameter.

しかし、この技術の延長線上で媒体製造を組み立てるの
は、困難である。それは、スパッタリシタによる膜の形
成速度が遅いからである0 反面、スノ”+ツタリンク法によるCo−Cr膜の垂直
磁化膜としての性能は優れており、いかにして、蒸着法
の膜形成速度の大きい特長を殺さずに、高周波スパッタ
リンク法で得られると同等の膜性能を得るかが、当面の
重要課題である。
However, it is difficult to assemble media manufacturing as an extension of this technology. This is because the film formation rate by sputtering is slow.On the other hand, the performance of the Co-Cr film made by the Snow + Tsuta link method as a perpendicularly magnetized film is excellent, and how can the film formation rate by vapor deposition be faster? The important issue for the time being is whether to obtain film performance equivalent to that obtained by high-frequency sputter linking without sacrificing its features.

発明の目的 本発明は、垂直磁化膜の性能の目安となる配向性の改良
された媒体を、真空蒸着により製造する方法を提供する
ことを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing a medium with improved orientation, which is a measure of the performance of a perpendicularly magnetized film, by vacuum deposition.

発明の構成 本発明の製造方法は、回転支持体に沿って移動する基板
上に、連続して蒸着法により垂直磁化膜を得る際に、回
転支持体上で前記基板が蒸気流にさらされる領域の前記
基板移動方向の幅Wdよりも蒸゛気流の発生源の前記基
板移動方向に対応する幅Wvの方が大きい状態で蒸着し
て、配向性の優れた垂直磁化膜を得ることを特徴とする
Components of the Invention The manufacturing method of the present invention provides a method for producing a perpendicularly magnetized film on a substrate moving along a rotating support, in which a region of the rotating support is exposed to a vapor flow when a perpendicularly magnetized film is continuously obtained by vapor deposition on a substrate moving along the rotating support. The perpendicularly magnetized film with excellent orientation is obtained by performing evaporation in a state in which a width Wv of the vapor flow generation source corresponding to the substrate movement direction is larger than a width Wd of the vapor flow generation source in the substrate movement direction. do.

本発明で蒸着とは、電子ビーム蒸着、誘導加熱蒸着、イ
オンプレーテインク、電界蒸着などである。
In the present invention, vapor deposition includes electron beam vapor deposition, induction heating vapor deposition, ion plate ink, electric field vapor deposition, and the like.

回転支持体は、基板の裏面(蒸着される面に対してこう
呼ぶことが多い)に傷をつけず、且つ、熱劣化を防止す
るために、基板と密着し同一速度で運動゛するよう構成
されたもので、円筒状子Pン、或いは、エンドレスベル
ト等で具体化されるものである。
The rotating support is configured to be in close contact with the substrate and move at the same speed in order not to damage the back surface of the substrate (often referred to as the surface to be deposited) and to prevent thermal deterioration. It can be embodied as a cylindrical piece or an endless belt.

基板は、高分子基板単独のもの、高分子基板上に非磁性
下地層、軟磁性下地層を配したもののいずれ、でも良い
。高分子基板としては、ボリイ三ド、ボリア三ド、ポリ
エチレンナフタレート隻ポリエチレンテレフタレート等
が適してしする。
The substrate may be either a single polymer substrate or a polymer substrate with a nonmagnetic underlayer or a soft magnetic underlayer. Suitable polymeric substrates include polyhydride, polyhydride, polyethylene naphthalate, polyethylene terephthalate, and the like.

回転支持体上で、基板が蒸気流にさらされる領域の決定
は、通常、固定マスクで成される。固定マスクの・前記
基返方向の開孔部、の大きさに応じ−て、前記した基板
が蒸気流にさらされる領域が決るのであるが、開孔部の
大きさは生産性の面から大きくとる方が好ましいが、垂
直磁化膜を得るために、基板への蒸気の入射角が、はぼ
0°に近い方が良いことが知られているように、自ずか
ら制約はある。
On a rotating support, the determination of the area where the substrate is exposed to the vapor flow is usually made with a stationary mask. The area where the substrate is exposed to the vapor flow is determined depending on the size of the opening in the direction of return of the fixed mask, but the size of the opening should be large from the viewpoint of productivity. However, as it is known that in order to obtain a perpendicularly magnetized film, it is better for the angle of incidence of vapor on the substrate to be close to 0°, so there are limitations of course.

蒸気流の基板の移動方向と直交する方向の制限は侍にな
いが、広幅の基板に幅方向に均一な膜′厚を得るための
工夫は公知の範囲でなされるのは当然であるし、その範
囲では、本発明の有効性は変らない。
Although there is no restriction on the direction of vapor flow perpendicular to the direction of movement of the substrate, it is natural that methods known in the art can be used to obtain a uniform film thickness in the width direction on a wide substrate. Within that range, the effectiveness of the present invention remains unchanged.

Wdは固定マスクの開孔部の大きさによりほぼ幾可学的
に決定されるし、基板を臨時に固定して蒸着し、その幅
を測定すれば容易に知ることができるものである。
Wd is almost geometrically determined by the size of the opening in the fixed mask, and can be easily determined by temporarily fixing the substrate, performing vapor deposition, and measuring its width.

Wvは、例えばアルミ板を蒸発源に対して近ずけていき
ながら蒸着される領域を測定し、はぼその値を知ること
ができるし、電子ビーム蒸発源であれば集束された電子
ビームを2走査する範囲よりおよそ知ることができる。
For example, Wv can be determined by moving an aluminum plate closer to the evaporation source and measuring the area to be evaporated to find out the approximate value, or if it is an electron beam evaporation source, it can be determined by This can be roughly determined from the range of two scans.

Wdに対してWvが大きすぎると、蒸着効率の面から不
利となるので、Wdの1.2倍から高々2倍程度が充分
本発明の効果を得られることから、好ましい値を選ぶべ
きである。
If Wv is too large relative to Wd, it will be disadvantageous in terms of vapor deposition efficiency, so a preferable value should be selected from 1.2 times Wd to at most 2 times Wd, as this is sufficient to obtain the effects of the present invention. .

実施例の説明 以下、本発明の製造方法を具体的な一実施例に基づいて
説明する。
DESCRIPTION OF EMBODIMENTS The manufacturing method of the present invention will be described below based on a specific embodiment.

図面は、本発明の実施のために用いた巻取り蒸着装置の
一例である。実施例について説明する前に簡単に、前記
巻取り蒸着装置について説明する。
The drawing shows an example of a winding vapor deposition apparatus used for carrying out the present invention. Before describing embodiments, the winding vapor deposition apparatus will be briefly described.

基板(1)は、回転支持体(2)に沿って送り出し軸(
3)より巻取り軸(4)に移動する際、開孔部a菊を有
する固定マスク(5)により、入射角の限定された蒸気
流により、蒸着される。
The substrate (1) is attached to a delivery shaft (
3) When moving from the winding shaft (4) to the winding shaft (4), the vapor is deposited by a vapor flow with a limited incidence angle through a fixed mask (5) having an aperture (a).

固定マスク(5)と回転支持体(2)の距離を接近させ
れば開孔部°゛(2)の基板の移動方向の幅と、基板が
回転支持体上で蒸気にさらされる領域の幅Wdとはほぼ
一致する。
If the fixed mask (5) and the rotating support (2) are brought closer together, the width of the opening (2) in the direction of movement of the substrate and the width of the area where the substrate is exposed to steam on the rotating support will be reduced. It almost matches Wd.

回転支持体(2)の直下に対向して蒸発源が配設されて
いる。蒸発源は次のように構成されている。
An evaporation source is disposed directly below and opposite the rotating support (2). The evaporation source is configured as follows.

蒸発源容器(6)内に、垂直磁化膜を構成する磁性材料
(7)をチャージし、電子発生源@、<13からの電子
ビーム+8)、(9)により、前記磁性材料(7)を衝
撃加熱し気化せしめる。電子ビーム(8)、(9)は、
集束された状態で必要に応じて走査される。なお、蒸発
域の、基板の移動方向の幅Wvは、夫々の電子ヒームの
走査域により、おおむね決る量であって、ここではWd
(Wvに構成されている。
A magnetic material (7) constituting a perpendicularly magnetized film is charged in an evaporation source container (6), and the magnetic material (7) is Shock heats and vaporizes. The electron beams (8) and (9) are
It is scanned as needed in a focused state. Note that the width Wv of the evaporation region in the direction of movement of the substrate is approximately determined by the scanning region of each electron beam, and here Wd
(Configured in Wv.

これらの系は、真空槽αQの内部に構成され、真空槽a
*内部は、排気系(ロ)により排気される。
These systems are configured inside the vacuum chamber αQ, and the vacuum chamber a
*The inside is exhausted by the exhaust system (b).

実施例 直径5hの円筒中ヤシを回転支持体(2)とし、前記回
転支持体(2)の直下28ヒに、蒸発源容器(6)を配
した。電子ビーム(8) (9)は、直径6朋に集束し
た30■最大2への電子ビームガンを、磁界偏向による
走査する方法をとった。基板(1)は50側幅のボリエ
ヂレンテレフタレー) (10,5μm)を用い、真空
度IX 10−” To r rでC079%Cr21
%をQ、2μm蒸着した。
Example A cylindrical hollow palm with a diameter of 5 h was used as a rotating support (2), and an evaporation source container (6) was placed 28 times directly below the rotating support (2). For the electron beams (8) and (9), a method was used in which an electron beam gun focused to a diameter of 6 mm and a maximum of 2 mm was scanned by a magnetic field deflection. The substrate (1) is a polyethylene terephthalate (10.5 μm) with a side width of 50 mm, and is made of C079% Cr21 at a vacuum degree of IX 10-” Torr.
% was deposited with a thickness of 2 μm.

Wd、=1.0ctnWv=14c+++の条件で巻取
り速度は42m/1m1nであった。Co7’Cr膜の
X線回折により、 (002)面のロッ牛ンタカープの
半値幅(△θ50)は11度であった。前記半値幅とは
、配向分散を表わす物理量で、小さい程、いわゆる配向
性が良い膜といえるもので、実験室での検討の結果、こ
の値が18度以下であれば、垂直磁気記録媒体として、
良好な記録・再生特性を示すことが知られている量であ
る。
The winding speed was 42 m/1 m1n under the conditions of Wd, = 1.0 ctn, Wv = 14 c+++. X-ray diffraction of the Co7'Cr film revealed that the half-value width (Δθ50) of the rock intercarp of the (002) plane was 11 degrees. The half-width is a physical quantity that represents orientation dispersion, and the smaller the value, the better the orientation of the film.As a result of laboratory studies, if this value is 18 degrees or less, it can be used as a perpendicular magnetic recording medium. ,
This amount is known to exhibit good recording/reproducing characteristics.

実施例 〔実験例−1〕と同一の蒸着装置で、Co −Ni −
Crを蒸着した。Co 67%、 Ni 18%、Cr
2O%の成分比を用い、0.2 pmの蒸着を真空度1
.4 X 10−6Tor rで行った。用いた基板(
1)は、ボリア三ド(6μm、50cIn幅)上にあら
かじめ、パーマロイ蒸着膜を0.2μm蒸着したもので
、Wd=13cmv Wv=16αの条件で、巻取り速
度は55 m/rni n  であった。〔実験例−1
〕と同様にX線回折の結果、△θ5oは9.8度であっ
た。
Using the same vapor deposition apparatus as in Example [Experimental Example-1], Co - Ni -
Cr was deposited. Co 67%, Ni 18%, Cr
Using a component ratio of 20%, evaporation of 0.2 pm was performed at a vacuum degree of 1.
.. The test was carried out at 4×10 −6 Torr. The substrate used (
In 1), a permalloy vapor deposition film of 0.2 μm was pre-deposited on a boria trioxide (6 μm, 50 cIn width), and the winding speed was 55 m/rni n under the conditions of Wd = 13 cmv and Wv = 16 α. Ta. [Experiment example-1
] As a result of X-ray diffraction, Δθ5o was 9.8 degrees.

実施例 回転子ヤシの直下6c+++の位置に、水冷銅パイプで
構成した、16m X 60c1nの角型の高周波コイ
ル(1ターン)を配して、4X10 ’Torrで高周
波イオンづレーティングした。Co 79%Cr 21
%の組成比を用い、 50m4@のポリエチレンテレフ
タレー・ト基板(10,5μm)↓に、0.2μmの前
記組成比の垂直磁化膜を形成した。Wd= 15cm 
Wv= 18cInの条件下で、投入高周波電力は98
0ワツトで反射波は21ワツトであった。(烏波数5は
18.56RIh)巻取り速度は62m/minであっ
た。得られたCo−Cr膜の△θ5oは8度であった。
EXAMPLE A rectangular high frequency coil (1 turn) of 16 m x 60 c1n made of water-cooled copper pipe was placed directly below the rotor palm at a position 6c+++, and high frequency ionization was carried out at 4 x 10' Torr. Co 79%Cr 21
A perpendicularly magnetized film having a composition ratio of 0.2 μm was formed on a 50 m4 polyethylene terephthalate substrate (10.5 μm) using a composition ratio of 0.2 μm. Wd=15cm
Under the condition of Wv = 18 cIn, the input high frequency power is 98
At 0 watts, the reflected wave was 21 watts. (The Karasu wave number 5 was 18.56 RIh) and the winding speed was 62 m/min. The obtained Co--Cr film had a Δθ5o of 8 degrees.

他の実験例として、Co −V 、 Co −Mo 、
 Co−W、Co−Ru。
Other experimental examples include Co-V, Co-Mo,
Co-W, Co-Ru.

Co−Ni −V 、Co”Ni−Mo、Co−Ni 
−W  、Co −Ni −Ru iごついても△θ5
oが10度前後の垂直磁化膜が、本発明の方法によると
80m/minから80m/minの巻取り速度で得ら
れることが確められている。
Co-Ni-V, Co"Ni-Mo, Co-Ni
-W , Co -Ni -Ru i Even if it is rough, △θ5
It has been confirmed that a perpendicular magnetization film with o of about 10 degrees can be obtained by the method of the present invention at a winding speed of 80 m/min to 80 m/min.

又、高分子基板上にチタンやクロムを蒸着してから框直
磁化膜を形成する場合や、チタンやクロムの上に更にパ
ーマ0イ等の軟磁性薄膜を形成してから垂直磁化膜を本
発明により得る場合にも上述した性能は充分得られるこ
とも確かめている。
In addition, when titanium or chromium is vapor-deposited on a polymer substrate and then a perpendicularly magnetized film is formed, or when a soft magnetic thin film such as Perm 0 is further formed on titanium or chromium and then a perpendicularly magnetized film is formed. It has also been confirmed that the above-mentioned performance can be sufficiently obtained even when obtained by the invention.

上記各実験例の比較例として、蒸発源として市販の27
0°偏向型の16KW 電子銃を用いた場合に、はぼ本
発明と同一の性能を得ることの出来る条件と、高周波ス
バ・υタリンタの場合を取り上げた。  、〔比較例〕 〔実験例−1〕と同等の△θ5oを有するCo−Cr垂
直。
As a comparative example for each of the above experimental examples, commercially available 27
We discussed the conditions under which the same performance as that of the present invention can be obtained when using a 0° deflection type 16KW electron gun, and the case of a high-frequency suba/υ tarinter. , [Comparative Example] Co-Cr vertical having Δθ5o equivalent to [Experimental Example-1].

磁化膜を、高周波スパッタリンクにて得られる条件は1
ポリエチレンテレフタレート基板(10,5μm)では
、’ 1.4m/minと低速であり、ポリイー三ド基
板のように、高価な基板を用いても2.4 m/mi 
nでしか巻取れなかった。又、270’偏向型の電子ビ
ーム蒸発源では、同一の△θ5oのCo −Cr膜は得
ることができす逅った。尚、△σ、。が17度のCo−
Cr膜が得られた時の巻取り速度は12m/minであ
った。ちなみにこの時のWd = 2.5 cm 、 
Wv= 1.2 amであった。
The conditions for obtaining a magnetized film by high-frequency sputtering are 1.
A polyethylene terephthalate substrate (10.5 μm) has a slow speed of 1.4 m/min, and even if an expensive substrate such as a polyethylene terephthalate substrate is used, the speed is 2.4 m/min.
I could only wind it with n. Furthermore, it was found that a Co--Cr film having the same Δθ5o could be obtained using a 270′ deflection type electron beam evaporation source. In addition, △σ,. is 17 degrees Co-
The winding speed when the Cr film was obtained was 12 m/min. By the way, Wd at this time = 2.5 cm,
Wv=1.2 am.

なお、明記説明の図面に示された巻取蒸着装置を基礎に
して、基板(1)近傍に放電づロープを設けて、基板近
傍を放電状態にして蒸着したり、高周波コイルを回転支
持体(2)と蒸発源容器(6)との中間に挿入し、高周
波イオンづレーティングを実施することもできることは
勿論である。
In addition, based on the winding vapor deposition apparatus shown in the clearly explained drawing, a discharge rope is provided near the substrate (1) and vapor deposition is carried out while the vicinity of the substrate is in a discharge state. Of course, it is also possible to perform high-frequency ionization by inserting it between the evaporation source container (6) and the evaporation source container (6).

発明の詳細 な説明のように本発明の製造方法によると、前記した蒸
気流−にさらされる基板上での基板移動方向の幅(Wd
 )よりも、前記蒸気流の発生源の同じ方向の幅(Wv
 )の方が大きくなる条件を満足せしめて垂直磁化膜を
蒸着するため、従来法に比べて10倍以上の高い生産性
で配向性の良好な媒体が得られるものである。
According to the manufacturing method of the present invention as described in the detailed description of the invention, the width (Wd) in the substrate movement direction on the substrate exposed to the vapor flow described above is
) of the source of the vapor flow in the same direction (Wv
Since the perpendicularly magnetized film is deposited while satisfying the condition that the perpendicularly magnetized film is larger than that of the conventional method, a medium with good orientation can be obtained with productivity more than 10 times higher than that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面iま本発明の製造方法の具体的な一実施例の巻取り
蒸着装置の構成図である。゛  □(1)・・・基板、
(2)・・・回転支持体、C5)・・・固定マスク、(
6)・・・蒸発源容器、(7)・・・磁性材料、(8)
(9)・・電子ビーム、C41・・・開孔部、 Wd・
・・基板が蒸気流にさらされる領域の基板移動方向の幅
、Wv・・・蒸気床の発生源の基板移動方向に対応する
幅 代理人   森  本  義  弘
FIG. 1 is a configuration diagram of a winding vapor deposition apparatus according to a specific embodiment of the manufacturing method of the present invention.゛ □(1)...Substrate,
(2)...Rotating support body, C5)...Fixed mask, (
6)... Evaporation source container, (7)... Magnetic material, (8)
(9)...Electron beam, C41...Opening part, Wd.
...Width in the direction of substrate movement of the area where the substrate is exposed to the vapor flow, Wv... Width corresponding to the direction of substrate movement at the source of the vapor bed Agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] ■、 回転支持網に沿って移動する基板上に、連続して
蒸着法にて垂直磁化膜を得る際に、回転支持体上で前記
基板が蒸気流にさらされる領域の前記基板移動方向の幅
よりも蒸気流の発生源の前記基板移動方向に対応する幅
の方が大きい状態で、蒸着する磁気記録媒体の製造方法
(2) Width in the substrate movement direction of a region on the rotating support where the substrate is exposed to the vapor flow when a perpendicularly magnetized film is continuously obtained by vapor deposition on the substrate moving along the rotating support network. A method for manufacturing a magnetic recording medium in which the width of the vapor flow source corresponding to the substrate movement direction is larger than that of the vapor flow.
JP4984483A 1983-03-24 1983-03-24 Production of magnetic recording medium Pending JPS59175036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4984483A JPS59175036A (en) 1983-03-24 1983-03-24 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4984483A JPS59175036A (en) 1983-03-24 1983-03-24 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59175036A true JPS59175036A (en) 1984-10-03

Family

ID=12842374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4984483A Pending JPS59175036A (en) 1983-03-24 1983-03-24 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59175036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076024A (en) * 1983-10-01 1985-04-30 Ulvac Corp Manufacturing device of vertical magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076024A (en) * 1983-10-01 1985-04-30 Ulvac Corp Manufacturing device of vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
JPH0916960A (en) Information recording medium manufacturing equipment
JPS59175036A (en) Production of magnetic recording medium
JPS59175037A (en) Production of magnetic recording medium
JPH0334614B2 (en)
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH02148417A (en) Production of perpendicular magnetic recording medium
JPH0687306B2 (en) Method of manufacturing magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPH0411923B2 (en)
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS60201531A (en) Manufacture of magnetic recording medium
JPH07105045B2 (en) Method of manufacturing magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPH11161952A (en) Production of magnetic recording medium
JPH0799581B2 (en) Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor
JPS6267726A (en) Production of magnetic recording medium
JPH04337520A (en) Magnetic recording medium and production thereof
JPH06103571A (en) Method of manufacturing magnetic recording medium
JPS5916143A (en) Production for magnetic recording medium
JPS62146436A (en) Production of magnetic recording medium
JPS63251934A (en) Production of magnetic recording medium
JPH06111322A (en) Vapor deposition equipment
JPS59175035A (en) Production of magnetic recording medium