[go: up one dir, main page]

JPS58142508A - High speed rotating disc type strong magnetic field generating device - Google Patents

High speed rotating disc type strong magnetic field generating device

Info

Publication number
JPS58142508A
JPS58142508A JP57025517A JP2551782A JPS58142508A JP S58142508 A JPS58142508 A JP S58142508A JP 57025517 A JP57025517 A JP 57025517A JP 2551782 A JP2551782 A JP 2551782A JP S58142508 A JPS58142508 A JP S58142508A
Authority
JP
Japan
Prior art keywords
magnetic field
rotating disk
strong magnetic
slit
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57025517A
Other languages
Japanese (ja)
Other versions
JPH0159725B2 (en
Inventor
Kazuo Bessho
一夫 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAZAWA DAIGAKU
Original Assignee
KANAZAWA DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAZAWA DAIGAKU filed Critical KANAZAWA DAIGAKU
Priority to JP57025517A priority Critical patent/JPS58142508A/en
Publication of JPS58142508A publication Critical patent/JPS58142508A/en
Publication of JPH0159725B2 publication Critical patent/JPH0159725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a strong magnetic field generating device which is able to maintain and generate the continuous strong magnetic field of 20-30 tesla for several seconds by a method wherein two metallic rotating discs provided with a slit between both discs are closely arranged, also the same two metallic rotating discs having a slit which perpendicularly intersects with said slit are provided, while said discs are rotated at hith speed in the same direction, locating these slits between the N pole and the S pole of a magnet. CONSTITUTION:The first slit S1 is formed by arranging two metallic rotating disc 1 and disc 2 as each periphery part 1a and 2a are located to close each other on the same plane, also two metallic rotating disc 3 and disc 4 forming the second slit S2 which perpendicularly intersects with said slit S1 by similarly closely locating of the periphery 3a and 4a, are arranged under these disc 1 and disc 2, while a small hole H is formed in the axial direction of the disc 1-4. Then the hole H is located in the gap between the N pole and S pole of a direct current electromagnet 7, the direct current power supply is connected to the one of two coils wound around the magnet 7, thereby, the strong magnetic field is generated inside of the hole H.

Description

【発明の詳細な説明】 本発明は、強磁場を発生させるための装置に関する。[Detailed description of the invention] The present invention relates to a device for generating strong magnetic fields.

近年、物質の特性を調べるために、超高温や超低温ある
いは超高圧や超真空のほが超強磁場のような極限条件の
もとでの、いわゆる物性科学の研究が盛んに行なわれ、
更にこのような極限状態をつくり出す手段にも各種の提
案がなされている。
In recent years, in order to investigate the properties of materials, research in so-called condensed matter science has been actively conducted under extreme conditions such as ultra-high temperatures, ultra-low temperatures, ultra-high pressures, ultra-vacuum, and ultra-strong magnetic fields.
Furthermore, various proposals have been made for means of creating such extreme conditions.

/′ ところで、従来p強磁場発生手段としては、次のような
ものがある、すなわち瞬間的に強磁場を発生させるクネ
ール法や爆縮法があり、更には比較的時間の長いパルス
状の強磁場を発生させる多重層コイル方式(大阪大学方
式)やMIT方式(マサチューセッツ工科大学方式)が
あり、また連続的に強磁場を発生させる一伝導コイル方
式がある。
/' By the way, conventional p-strong magnetic field generation means include the following methods: the Quenelle method and the implosion method, which instantaneously generate a strong magnetic field, and the There are multilayer coil methods (Osaka University method) and MIT methods (Massachusetts Institute of Technology) that generate a magnetic field, and there is also a single conduction coil method that continuously generates a strong magnetic field.

クネール法は、第1図に示すように充電したコンデンサ
バンクC1により、スイッチSW1をWiじて、単巻き
コイルL1に大電流(約100万アンペア)を流し、そ
の電磁力により内部のライナー(アルミ管)aを圧縮し
て、その結果、ライナーa内部の磁束を濃縮して瞬間的
に強磁場を得る方法で壱り、この方法では約1o。
As shown in Figure 1, the Quenelle method uses a charged capacitor bank C1 to flow a large current (approximately 1 million amperes) through a single-turn coil L1 through a switch SW1, and the electromagnetic force causes the internal liner (aluminum A method is used to compress tube a, thereby concentrating the magnetic flux inside liner a and instantaneously obtaining a strong magnetic field.

百分の1秒の間だけ約2807(テスラ)の強磁場を発
生させることができる。
A strong magnetic field of about 2807 (Tesla) can be generated for only 1/100th of a second.

また爆縮法は、第2図に示すようにコンデンサバンクC
2により、スイッチSW2を閉じて、コイルL2に電流
を流し磁束を発生させ、次に火薬すを爆発させて磁束を
濃縮し、瞬間的に強磁場を得る方法で、この方法では約
100万分の1秒の間だけ約3007の強磁場を発生さ
せることができる。
In addition, the implosion method uses capacitor bank C as shown in Figure 2.
2, the switch SW2 is closed, a current is passed through the coil L2 to generate magnetic flux, and then the gunpowder is detonated to concentrate the magnetic flux and instantaneously obtain a strong magnetic field. A strong magnetic field of about 3007° can be generated for only 1 second.

さらに、多重層コイル方式(大阪大学方式)は、各層ご
とに独自な形状9寸法のコイルを用いて、各層に作用す
る電磁力を均一化し、その結果、数10万アンペアの電
流により非破壊型で、比較的時間の長いパルス状強磁場
を得ることがで終るようにしたもので、この方式では、
パルス幅100μs(マイクロ秒)で最大値100Tの
強磁場を得ることができる。
Furthermore, the multilayer coil method (Osaka University method) uses coils with unique shapes and nine dimensions for each layer to equalize the electromagnetic force acting on each layer, resulting in a non-destructive type with a current of several hundred thousand amperes. In this method, a relatively long pulsed strong magnetic field is obtained, and in this method,
A strong magnetic field of maximum value 100T can be obtained with a pulse width of 100 μs (microseconds).

また、MIT方式は、特別な形状のコイルを用いて、パ
ルス幅100μSで最大値40Tの強磁場を得ることが
できるようにしたものである。なお普通の鉄心入り電磁
石でも連続磁場が得られるが、その最大値は数T程度で
ある。
Furthermore, the MIT method uses a specially shaped coil to obtain a strong magnetic field with a maximum value of 40T with a pulse width of 100 μS. Note that a continuous magnetic field can be obtained even with an ordinary iron-core electromagnet, but its maximum value is about several T.

さらに超伝導コイル方式は、超伝導コイルに電流を流し
、連続した一定の強磁場を得る方法であり現在、15T
程度の強磁場を得ているが、理論的には17.27が上
限である。
Furthermore, the superconducting coil method is a method of passing a current through a superconducting coil to obtain a continuous and constant strong magnetic field, and currently, 15T
Although a strong magnetic field of about 17.27 is obtained, theoretically the upper limit is 17.27.

ここで、上記の各方式によって得られた強磁場を比較し
たグラフを第3図に示すが、この第3図において符号A
はクネール法により得られる特性、Bは爆縮法により得
られる特性、Cは多重層コイル方式により得られる特性
、DはMIT方式により得られる特性、Eは超伝導コイ
ル方式により得られる特性を示している。
Figure 3 shows a graph comparing the strong magnetic fields obtained by each of the above methods.
indicates the characteristics obtained by the Quenelle method, B indicates the characteristics obtained by the implosion method, C indicates the characteristics obtained by the multilayer coil method, D indicates the characteristics obtained by the MIT method, and E indicates the characteristics obtained by the superconducting coil method. ing.

しかしながら、従来の手段では次のような各種の問題点
がある。すなわちクネール法や爆縮法では、最高値はか
なり高いが、その持続時間が極めで短く、更にコイルや
試料が強磁場をかけるたびに破壊されるという問題点が
ある。
However, conventional means have the following various problems. In other words, in the Quenelle method and the implosion method, the maximum value is quite high, but the duration is extremely short, and there is also the problem that the coil and sample are destroyed every time a strong magnetic field is applied.

また、多重層コイル方式やMIT方式では、パルス幅が
比較的長く、非破壊型であるなど種々の特長を有してい
るが、研究課題によってはその持続時間が短く、また一
定の強磁場を得ることができないという問題点がある。
In addition, the multilayer coil method and the MIT method have various advantages such as relatively long pulse width and non-destructive properties, but depending on the research topic, the duration may be short and they may require a constant strong magnetic field. The problem is that it cannot be obtained.

さらに、超伝導コイル方式では、連続した一定の強磁場
を得ることはできるが、大規模な設備を要するわりには
、177以上の強磁場を得ることができないという問題
点がある。
Furthermore, although it is possible to obtain a continuous and constant strong magnetic field with the superconducting coil method, there is a problem in that it is not possible to obtain a strong magnetic field of 177 or more, although it requires large-scale equipment.

本発明は、これらの問題点を解決しようとするもの\ で、高速回転円板の有する運動エネルギーを電磁エネル
ギーに変換し、これまで実現が困難であった20〜30
Tの一定強磁場を数秒以上持続させて発生で終るように
した高速回転円板型強磁場発生装置を提供することを目
的とする。
The present invention aims to solve these problems by converting the kinetic energy of a high-speed rotating disk into electromagnetic energy, which has been difficult to achieve up to now.
It is an object of the present invention to provide a high-speed rotating disk-type strong magnetic field generator that can sustain a constant strong magnetic field of T for several seconds or more and end with generation.

このため、本発明の高速回転円板型強磁場発生装置は、
同一平面上で第1スリツトを形成すべく周縁部を近接し
で配設された2枚の金属製回転円板から成る第1回転円
板対と、上記平面とレベルの異なる他の平面における同
一レベル上で上記第1スリツトと直交する方向の第2ス
リツトを形成すべく周縁部を近接して配設された2枚の
金属製回転円板から成る第2回転円板対とをそなえると
ともに、上記第1および第2スリツトにより上記回転円
板の軸方向に対して形成される小ホールを磁極間に介在
させるように配設された磁石をそなえ、上記磁石による
磁場を上記小ホール中においで収束して強磁場を発生さ
せるべく、上記第1および第2回転円板対における各回
転円板を高速回転駆動しうる駆動装置が設けられたこと
を特徴としている。
For this reason, the high speed rotating disk type strong magnetic field generator of the present invention,
A first rotating disk pair consisting of two metal rotating disks disposed with their peripheral edges close to each other to form a first slit on the same plane, and a first rotating disk pair consisting of two metal rotating disks disposed with their peripheral edges close to each other to form a first slit, and a first rotating disk pair consisting of two metal rotating disks disposed with their peripheral edges close to each other so as to form a first slit. a second rotating disk pair consisting of two metal rotating disks disposed with their peripheral edges close to each other so as to form a second slit in a direction perpendicular to the first slit on the level; A magnet is provided so that a small hole formed in the axial direction of the rotating disk by the first and second slits is interposed between the magnetic poles, and a magnetic field from the magnet is directed into the small hole. The present invention is characterized in that a driving device is provided that can drive each rotating disk in the first and second rotating disk pair to rotate at high speed in order to converge and generate a strong magnetic field.

以下、図面により本発明の一実施例としての高速回転円
板型強磁場発生装置についで説明すると、第4図はその
第1および第2回転円板対の配置状態を説明するための
模式図、第5図はその全体の概略構成を#2回転円板対
を省略して示す説明図、第6図はその磁極部分を第2回
転円板対を省略して示す拡大図、第7図はその磁極部の
一部を更に詳細に示す拡大図、第8図はその作用を説明
するための模式図、第9,10図はそれぞれその作用を
説明するためのグラフ、#11図はその原理を説明する
ための模式図、第12図はその作用を説明するために磁
極部分を拡大して示す模式図、第13図(a)〜(c)
はそれぞれその作用を説明するためのグラフである。
Hereinafter, a high-speed rotating disk-type strong magnetic field generator as an embodiment of the present invention will be explained with reference to the drawings. FIG. 4 is a schematic diagram for explaining the arrangement of the first and second rotating disk pairs. , FIG. 5 is an explanatory diagram showing the overall schematic configuration with the #2 rotating disk pair omitted, FIG. 6 is an enlarged view showing the magnetic pole part with the second rotating disk pair omitted, and FIG. 7 is an enlarged view showing a part of the magnetic pole part in more detail, Figure 8 is a schematic diagram to explain its action, Figures 9 and 10 are graphs to explain its action, and Figure #11 is its A schematic diagram for explaining the principle, FIG. 12 is a schematic diagram showing the magnetic pole part enlarged to explain the action, and FIGS. 13(a) to (c)
are graphs for explaining their effects.

第4図に示すように、第1スリツ)81を形成すべく2
枚の金属製回転円板1.2が、同一平面上において、各
周縁部1a、2mを近接せしめられるようにして配設さ
れており、これらの回転円板1.2で第1回転円板対5
が構成される。
As shown in FIG.
Two metal rotating disks 1.2 are arranged on the same plane so that their peripheral edges 1a and 2m are close to each other, and these rotating disks 1.2 form a first rotating disk. versus 5
is configured.

また、第1スリツ)Slと直交する方向の#2入りッ)
82を形成すべく、2枚の金属製回転円板3,4が、上
記第1回(円板対配設平面に近接した下方平面上におい
で、各周縁部3a、4aを近接せしめられるようにして
配設されており、これらの回転円板3,4で第2回転円
板対6が構成される。
Also, #2 in the direction perpendicular to the first slit) Sl)
In order to form These rotating disks 3 and 4 constitute a second rotating disk pair 6.

これにより第1および第2回転円板対5,6が相互に直
交し且つ近接して設けられていることになり、その結果
路1および第2スリツ)Sl、S2により、回転円板1
〜4の軸方向に対して小ホールHが形成される。
As a result, the first and second pairs of rotating disks 5, 6 are disposed perpendicularly and close to each other, and as a result, the path 1 and the second slits) Sl, S2 allow the rotating disks 1
A small hole H is formed in the axial direction of ~4.

なお、回転円板2の周縁部2aは、第7図に示すごとく
、良導電材としての鋼材で構成されているが、他の回転
円板1,3.4の周縁部1a、3a、4aについても同
様である。
As shown in FIG. 7, the peripheral edge 2a of the rotating disk 2 is made of steel as a highly conductive material, but the peripheral edges 1a, 3a, 4a of the other rotating disks 1, 3.4 are The same applies to

また、回転円板1〜4の他の部分は十分な機械的強度を
有する鉄材で構成されている。
Further, other parts of the rotating disks 1 to 4 are made of iron material having sufficient mechanical strength.

ところで、第5.6図に示すごとく、小ホールHを磁極
N、Sのギャップ間に介在させるように、直流電磁石7
が設けられている。
By the way, as shown in Fig. 5.6, the DC electromagnet 7 is placed so that the small hole H is interposed between the gap between the magnetic poles N and S.
is provided.

なお、この電磁石7の成層鉄心(磁心)7aには、コイ
ル7bが巻回されており、このコイル7bにはスイッチ
SWを介して直流電源Eが接続されている。
A coil 7b is wound around a layered iron core (magnetic core) 7a of this electromagnet 7, and a DC power source E is connected to this coil 7b via a switch SW.

さらに、磁極N、Sは、その対向面が球状凹面形状を有
しでおり、また磁極N側に試料挿入穴8が形成されてい
る。
Furthermore, the opposing surfaces of the magnetic poles N and S have a spherical concave shape, and a sample insertion hole 8 is formed on the magnetic pole N side.

また第1および第2回転円板対5.6の各回転円板1〜
4を高速回転駆動しうる駆動装置19が設けられており
、この駆動装置9としでは、例えば誘導電動機が使用さ
れる。
In addition, each of the rotating disks 1 to 5 of the first and second rotating disk pairs 5.6
A drive device 19 capable of driving the motor 4 to rotate at high speed is provided, and an induction motor is used as the drive device 9, for example.

なお、駆動装置9による回転円板1〜4の回転方向は第
4〜6図に示すとおりである。
Note that the rotation directions of the rotating disks 1 to 4 by the drive device 9 are as shown in FIGS. 4 to 6.

上述の構成により、回転円板1〜4を高速回転させると
、電磁石7の鉄心7a中に生じた磁束φを、第6図に示
すように、磁極N。S闇では小ホールH中へ収束して、
この小ホールH中に強磁場を発生させることができるが
、その原理についで、以下説明する。
With the above-mentioned configuration, when the rotating disks 1 to 4 are rotated at high speed, the magnetic flux φ generated in the iron core 7a of the electromagnet 7 is shifted to the magnetic pole N as shown in FIG. In the S darkness, it converges into the small hall H,
A strong magnetic field can be generated in this small hole H, and the principle thereof will be explained below.

今、説明を簡単にするために、1枚の金属製回転円板(
この円板に代表して符号1を付ける。)による作用につ
き説明する。
Now, to simplify the explanation, we will use one metal rotating disk (
The symbol 1 is given to represent this disk. ) will be explained below.

さて、第11図に示すように、相対する半円弧状の極面
をもった電磁石7の磁極N。S間に、高速回転中の円板
1があるとして、この状態でスイッチSWを投入すると
、直流電源Eから直流電流iが流れて電磁石7が励磁さ
れ、磁極N。S開に磁束φが生じ、その結果回転中の円
板1には、うず電流が流れて制動力が生じる。
Now, as shown in FIG. 11, the magnetic pole N of the electromagnet 7 has opposing semicircular arc-shaped pole faces. Assuming that there is a disk 1 rotating at high speed between S and the switch SW is turned on in this state, a DC current i flows from the DC power source E, and the electromagnet 7 is excited, and the magnetic pole N is turned on. A magnetic flux φ is generated in the S-opening, and as a result, an eddy current flows through the rotating disc 1 and a braking force is generated.

しかし、この場合、磁極N、S間にある円板1の周辺速
度v(m/s)が十分に高速であると、円板1中のうず
電流により生じた磁束が、磁極N。S間の磁束φと方向
が反対で大きさが等しくなり、そのため磁極N。
However, in this case, if the peripheral velocity v (m/s) of the disk 1 between the magnetic poles N and S is sufficiently high, the magnetic flux generated by the eddy current in the disk 1 will move toward the magnetic pole N. The magnetic flux φ between S is opposite in direction and equal in magnitude, so the magnetic pole N.

8間の磁束は直進して円板1を貫くことができなくなっ
て、第12図に示すごとく、曲進して円板1の縁の外側
を通ることになる。
The magnetic flux between 8 and 8 is no longer able to travel straight through the disc 1, but instead travels in a curved manner and passes outside the edge of the disc 1, as shown in FIG.

そして、そのような状態は円板1の周辺速度v(m/s
)が十分に高い間続き、制動力により速度が低くなると
、磁束は直進して円板1を貫き、以後は単に制動力とし
て作用する。すなわち、円板1が高速回転し、大きな慣
性モーメントを持っていると、かなりの時間、磁極N。
In such a state, the peripheral velocity v (m/s
) continues for a sufficiently high time, and when the speed decreases due to the braking force, the magnetic flux goes straight and penetrates the disc 1, and thereafter acts simply as a braking force. In other words, when the disk 1 rotates at high speed and has a large moment of inertia, the magnetic pole N remains for a considerable period of time.

S間の磁束は曲進し、円板1の縁の外側を通る状態が続
くことになる。
The magnetic flux between S curves and continues to pass outside the edge of the disk 1.

なお、磁極N、Sにおける各寸法111n(第8図参照
)を適宜変えると、円板1の周辺速度v(、/S)に対
する通過磁束量および制動力はそれぞれ第9,10図に
示すよう1こなる。これらのグラフか呟通過磁束量は寸
法nが小さい程、小さい速度で磁束を曲進させることが
できることがわかり、制動力は、寸法mfJt大きいと
、比較的小さな速度で制動力にピークが生じ、このピー
クよりも大軽い速度で円板1を回せば、小さい制動力に
することが可能であることを示唆している。
If the dimensions 111n (see Fig. 8) of the magnetic poles N and S are changed appropriately, the amount of passing magnetic flux and braking force with respect to the peripheral velocity v (, /S) of the disk 1 will be as shown in Figs. 9 and 10, respectively. 1 stroke. It can be seen from these graphs that the smaller the dimension n is, the smaller the magnetic flux passing through the graphs is, the more the magnetic flux can be curved at a lower speed, and the braking force peaks at a relatively small speed when the dimension mfJt is large. This suggests that it is possible to reduce the braking force by rotating the disk 1 at a speed much lower than this peak.

したがって、磁極N、Sの寸法−,nを適宜の−に設定
すれば、小さな制動力の範囲でしかも磁束を曲げうろこ
とを示唆しているのである。
Therefore, if the dimensions of the magnetic poles N and S are set to appropriate values of - and n, it is possible to bend the magnetic flux within a small braking force range.

以上の動作は磁極N。S間に、4枚の高速回転円板1〜
4によって小ホールHを構成した場合にも変わらず、そ
の結果、第6図に示すように鉄心7a中では一様に分布
している磁束φが、磁極N、S間では小水−を発生する
結果になるのである。
The above operation is magnetic pole N. Between S, four high-speed rotating disks 1~
Even if the small hole H is configured by 4, as a result, as shown in FIG. The result is that

第13図は本装置による強磁場発生の経過を示したグラ
フであり、同図(a)はスイッ千人後投人後の電流iと
鉄心7a中の磁束φの変化を示し、同図(b)はうず電
流の制動作用による円板の回転速度の減衰状態を示す。
FIG. 13 is a graph showing the progress of strong magnetic field generation by this device, and FIG. b) shows the state of attenuation of the rotational speed of the disk due to the braking action of eddy currents.

この第13図(b)中のvo、1 は磁束を小ホールH
中に収束するために必要な最低速度であり、円板の周辺
速度がv、l、l  より低くなると磁束は円板中を直
進し、磁束の収束力が急速に低下するのである。第13
図(c)は小ホールH中に収束された磁束の密度特性で
あり、このグラフからスイッチ投入後、電流が増加して
鉄心7aが飽和する時刻1.から、円板の回転速度がν
や、7より低くなる時刻t、までの開、小ホールH中の
強磁場がほぼ一定値に保たれることがわかる。
vo, 1 in Fig. 13(b) directs the magnetic flux to the small hole H
This is the minimum speed required for convergence within the disk, and when the peripheral speed of the disk becomes lower than v, l, l, the magnetic flux travels straight through the disk, and the convergence power of the magnetic flux decreases rapidly. 13th
Figure (c) shows the density characteristics of the magnetic flux converged in the small hole H, and from this graph it can be seen that after the switch is turned on, the current increases and the iron core 7a saturates at time 1. Therefore, the rotational speed of the disk is ν
It can be seen that the strong magnetic field in the open small hole H is maintained at an approximately constant value until time t, when the value becomes lower than 7.

なお、実験装置用の各部材の寸法は第7図に示すように
設定された。すなわち、円板の直径は700alI11
であり、円板の銅製周縁部はその板厚が20mm=幅1
50mmである。
Note that the dimensions of each member for the experimental apparatus were set as shown in FIG. That is, the diameter of the disk is 700alI11
The thickness of the copper peripheral part of the disk is 20 mm = width 1
It is 50mm.

また磁極N、Sの断面は50X50(a+m2)で、球
状磁極面の内径は501mIIlである。
The cross sections of the magnetic poles N and S are 50×50 (a+m2), and the inner diameter of the spherical magnetic pole surface is 501 mIIl.

さらに、磁極と円板との最小距離は10關である。Furthermore, the minimum distance between the magnetic pole and the disc is 10 degrees.

また、円板回転速度は380Qrpm(周辺速度は13
2+a/s)であって、回転部分の重量は約450kg
である。
In addition, the disc rotation speed is 380 Qrpm (the peripheral speed is 13
2+a/s), and the weight of the rotating part is approximately 450 kg.
It is.

さらに、本発明によって得られる強磁場特性Fを、従来
の各種の手段によって得られる強磁場特性A−Eと比較
するために示すと、第3図のようになる。
Further, the strong magnetic field characteristics F obtained by the present invention are shown in FIG. 3 for comparison with the strong magnetic field characteristics A-E obtained by various conventional means.

なお、回転円板対は上下に亘って3組以上設けてもよく
、例えば4組の回転円板対の設ける場合は、第1および
第3回転円板対を同位相にしで設け、#2および第4回
転円板対を同位相にして設けると、第1および第3回転
円板対の円板回転軸を共通化できるとともに、第2およ
び第4回転円板対の円板回転軸を共通化できる。
Note that three or more pairs of rotating disks may be provided vertically. For example, when four pairs of rotating disks are provided, the first and third pairs of rotating disks are provided in the same phase, and #2 By providing the fourth pair of rotating disks in the same phase, the first and third pair of rotating disks can have a common disk rotation axis, and the second and fourth pair of rotating disks can have a common disk rotation axis. Can be shared.

また、回転円板の周縁部に良導電材を用いる代わりに、
車通磁率をもつ部材を用いてもよい。
Also, instead of using a highly conductive material on the periphery of the rotating disk,
A member having vehicle magnetic permeability may also be used.

さらに、うず電流の発生により円板が高温になるおそれ
がある場合は、適宜の冷却手段が使用される。
Furthermore, if there is a risk that the disc will become hot due to the generation of eddy currents, appropriate cooling means will be used.

以上詳述したように、本発明の高速回転円板型強磁場発
生装置によれば、次のような効果ないし利点が得られる
As detailed above, according to the high speed rotating disk type strong magnetic field generator of the present invention, the following effects and advantages can be obtained.

(1)  高速回転円板のもっている運動エネルギーを
電磁エネルギーに変換するだけですむため、従来手段の
ごとく大規模な電源設備は不要であり、例えば数秒間2
0〜30T程度の連続強磁場を得るために、数百アンペ
ア程度の電流で十分である。
(1) Since it is only necessary to convert the kinetic energy possessed by the high-speed rotating disk into electromagnetic energy, there is no need for large-scale power supply equipment as in conventional methods.
In order to obtain a continuous strong magnetic field of about 0 to 30 T, a current of about several hundred amperes is sufficient.

(2)  比較的長時間(数秒以上)一定の強磁場を保
つことができるため、瞬間的パルス状強磁場による物理
的研究のみならず、工学的研究も可能であり、例えば強
磁場中における溶解中の固体の再結晶や弱磁性体金属間
の摩擦現象等についての研究も可能となる。
(2) Since it is possible to maintain a constant strong magnetic field for a relatively long time (several seconds or more), it is possible to conduct not only physical research using instantaneous pulsed strong magnetic fields, but also engineering research, such as dissolution in a strong magnetic field. It will also be possible to study recrystallization of solids inside and friction phenomena between weakly magnetic metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図はそれぞれ従来の強磁場発生手段を説明する
ための模式図、第3図は各種方式によI)14)られる
強磁場特性を比較しで示すグラフであり、第4〜13図
は本発明の一実施例としての高速回転円板型強磁場発生
装置を示すもので、第4図はその第1および第2回転円
板対の配置状態を説明するための模式図、第5図はその
全体の概略構成を第2回転円板対を省略して示す説明図
、第6図はその磁極部分を第2回転円板対を省略して示
す拡大図、第7図はその磁極部の一部を更に詳細に示す
拡大図、第8図はその作用を説明するための模式図、第
9,10図はそれぞれその作用を説明するためのグラフ
、#11図はその原理を説明するための模式図、第12
図はその作用を説明するために磁極部分を拡大しで示す
模式図、第13図(a)〜(c)はそれぞれその作用を
説明するためのグラフである。 1〜4・・回転円板、la、2a=3m、4a・・回転
円板の周縁部、5・・第1回転円板対、6・・第2回転
円板対、7・・電磁石、7a・・鉄心、7b・・コイル
、8・・試料挿入穴、9・・駆動装置、E・・直流電源
、H・・小ホール、N、S・・磁極、Sl・・第1スリ
ツト、S2・・第2スリツト、SW・・スイッチ。 代理人 弁理士  飯 沼 義 彦 第1図 第2 図 第3 図 時間t(一体)→ 第4図 第5図 − 第6図 第7図 第9図 第10図 連1” V (mzs)−S 第11図 ′ip、12図
Figures 1 and 2 are schematic diagrams for explaining conventional strong magnetic field generating means, respectively. Figure 3 is a graph comparing the strong magnetic field characteristics generated by various methods. The figure shows a high-speed rotating disk-type strong magnetic field generator as an embodiment of the present invention, and FIG. 4 is a schematic diagram for explaining the arrangement of the first and second rotating disk pairs. Figure 5 is an explanatory diagram showing the overall schematic configuration with the second pair of rotating discs omitted, Figure 6 is an enlarged view of the magnetic pole portion with the second pair of rotating discs omitted, and Figure 7 is its An enlarged view showing a part of the magnetic pole part in more detail, Figure 8 is a schematic diagram to explain its action, Figures 9 and 10 are graphs to explain its action, and Figure #11 is an illustration of its principle. Schematic diagram for explanation, 12th
The figure is a schematic diagram showing the magnetic pole part enlarged to explain the effect, and FIGS. 13(a) to 13(c) are graphs for explaining the effect, respectively. 1 to 4... Rotating disk, la, 2a=3m, 4a... Periphery of rotating disk, 5... First rotating disk pair, 6... Second rotating disk pair, 7... Electromagnet, 7a...Iron core, 7b...Coil, 8...Sample insertion hole, 9...Driver, E...DC power supply, H...Small hole, N, S...Magnetic pole, Sl...1st slit, S2 ...Second slit, SW...switch. Agent Patent Attorney Yoshihiko Iinuma Figure 1 Figure 2 Figure 3 Figure Time t (integral) → Figure 4 Figure 5 - Figure 6 Figure 7 Figure 9 Figure 10 Ream 1" V (mzs) - S Figure 11'ip, Figure 12

Claims (5)

【特許請求の範囲】[Claims] (1)  同一平面上で第1スリツトを形成すべく周縁
部を近接して配設された2枚の金属製回転円板から成る
第1回転円板対と、上記平面とレベルの異なる他の平面
における同一レベル上で上記第1スリツトと直交する方
向の第2スリツトを形成すべく周縁部を近接して配設さ
れた2枚の金属製回転円板から成る第2回転円板対とを
そなえるとともに、上記#!1および第2スリツトによ
り上記回転円板の軸方向に対して形成される小ホールを
磁極間に介在させるように配設された磁石をそなえ、上
記磁石による磁場を上記小ホール中において収束して強
磁場を発生させるべく、上記第1および第2回転円板対
における各回転円板を高速回転駆動しうる駆動装置が設
けられたことを特徴とする、高速回転円板型強磁場発生
装置。
(1) A first rotating disk pair consisting of two metal rotating disks arranged with their peripheral edges close to each other so as to form a first slit on the same plane, and another rotating disk pair having a different level from the above plane. a second rotating disk pair consisting of two metal rotating disks disposed with their peripheral edges close to each other so as to form a second slit in a direction perpendicular to the first slit on the same level in a plane; Along with the # above! A magnet is provided so that a small hole formed in the axial direction of the rotating disk by the first and second slits is interposed between the magnetic poles, and the magnetic field by the magnet is focused in the small hole. A high-speed rotating disk type strong magnetic field generating device, characterized in that a drive device capable of driving each rotating disk in the first and second rotating disk pair to rotate at high speed is provided to generate a strong magnetic field.
(2)  上記第1および第2回転円板対における各回
転円板の周縁部が良導電材で構成された特許請求の範囲
第1項に記載の高速回転円板型強磁場発生装置。
(2) The high-speed rotating disk type strong magnetic field generating device according to claim 1, wherein the peripheral edge of each rotating disk in the first and second rotating disk pair is made of a highly conductive material.
(3)  上記第1および第2回転円板対が近接して設
けられた特許請求の範囲第1項に記載の高速回転円板型
強磁場発生装置。
(3) The high-speed rotating disk type strong magnetic field generating device according to claim 1, wherein the first and second rotating disk pairs are provided close to each other.
(4)  上記磁石の磁極面が 曲凹面を有している特
許請求の範囲第1項に記載の高速回転円板型強磁場発生
装置。
(4) The high speed rotating disk type strong magnetic field generator according to claim 1, wherein the magnetic pole surface of the magnet has a curved concave surface.
(5)  上記磁石が電磁石として構成された特許請求
の範囲第1項または第4項に記載の高速回転円板型強磁
場発生装置。
(5) A high-speed rotating disk-type strong magnetic field generator according to claim 1 or 4, wherein the magnet is configured as an electromagnet.
JP57025517A 1982-02-19 1982-02-19 High speed rotating disc type strong magnetic field generating device Granted JPS58142508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025517A JPS58142508A (en) 1982-02-19 1982-02-19 High speed rotating disc type strong magnetic field generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025517A JPS58142508A (en) 1982-02-19 1982-02-19 High speed rotating disc type strong magnetic field generating device

Publications (2)

Publication Number Publication Date
JPS58142508A true JPS58142508A (en) 1983-08-24
JPH0159725B2 JPH0159725B2 (en) 1989-12-19

Family

ID=12168247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025517A Granted JPS58142508A (en) 1982-02-19 1982-02-19 High speed rotating disc type strong magnetic field generating device

Country Status (1)

Country Link
JP (1) JPS58142508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879539A (en) * 1988-03-07 1989-11-07 Kanazawa University Laminated coil for an eddy-current type strong AC magnetic field generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879539A (en) * 1988-03-07 1989-11-07 Kanazawa University Laminated coil for an eddy-current type strong AC magnetic field generator

Also Published As

Publication number Publication date
JPH0159725B2 (en) 1989-12-19

Similar Documents

Publication Publication Date Title
US5841212A (en) Permanent magnet field type rotating machine
US6175178B1 (en) Low inductance electrical machine for flywheel energy storage
Kumagai et al. Development and control of a three DOF spherical induction motor
CN105591523B (en) The compound tray vortex brake apparatus of permanent-magnetism electromagnetic
JP3786420B2 (en) Magnetic bearing cell having a rotor and a stator
EP1226645A1 (en) Low inductance electrical machine for flywheel energy storage
US4252605A (en) Self-imploding liner system for magnetic field compression
Palagummi et al. Magnetic levitation and its application for low frequency vibration energy harvesting
JPS58501800A (en) Synchronous electric machine with superconducting inductor
US20220411895A1 (en) Compact coil assembly for a vacuum arc remelting system
JPS58142508A (en) High speed rotating disc type strong magnetic field generating device
GB2282708A (en) Electrical motor-generator
JPH0320888B2 (en)
US7592727B1 (en) Quiet load for motor testing
Weiduo et al. Electromagnetic shields of the air-core compulsator
JPH0320887B2 (en)
JP4279647B2 (en) Electromagnetic field line shielding mechanism
JPH05122896A (en) Thrust magnetic bearing device
Lawrance et al. Design and development of contactless electromechanical braking system for automotive applications
JPS61170546A (en) Forming of amorphous metal layer
JPH1098867A (en) Permanent magnet field retarder
JPH03261362A (en) Magnetic flux convergence type electromagnetic pump
WO2005099079A1 (en) Induction repulsion device
Bessho et al. High speed rotating disc type generator for high magnetic field
JPH0244482Y2 (en)