JPS58141319A - Manufacture of metal refining agent - Google Patents
Manufacture of metal refining agentInfo
- Publication number
- JPS58141319A JPS58141319A JP1969682A JP1969682A JPS58141319A JP S58141319 A JPS58141319 A JP S58141319A JP 1969682 A JP1969682 A JP 1969682A JP 1969682 A JP1969682 A JP 1969682A JP S58141319 A JPS58141319 A JP S58141319A
- Authority
- JP
- Japan
- Prior art keywords
- cao
- refining agent
- alloy
- flux
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007670 refining Methods 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 31
- 239000012298 atmosphere Substances 0.000 claims abstract description 8
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 6
- 238000006722 reduction reaction Methods 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 abstract description 39
- 229910000831 Steel Inorganic materials 0.000 abstract description 22
- 239000010959 steel Substances 0.000 abstract description 22
- 239000000203 mixture Substances 0.000 abstract description 17
- 238000001704 evaporation Methods 0.000 abstract description 13
- 230000008020 evaporation Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 9
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 4
- 230000003009 desulfurizing effect Effects 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- 238000001354 calcination Methods 0.000 abstract description 2
- 239000011575 calcium Substances 0.000 description 35
- 230000004907 flux Effects 0.000 description 22
- 239000000292 calcium oxide Substances 0.000 description 19
- 235000012255 calcium oxide Nutrition 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910000905 alloy phase Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 239000004484 Briquette Substances 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 5
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910004709 CaSi Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 241000981595 Zoysia japonica Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- -1 but for example Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- JFUIHGAGFMFNRD-UHFFFAOYSA-N fica Chemical compound FC1=CC=C2NC(C(=O)NCCS)=CC2=C1 JFUIHGAGFMFNRD-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は溶鋼などの溶融金属の脱酸、脱硫、脱燐などに
用いる精錬剤の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a refining agent used for deoxidizing, desulfurizing, dephosphorizing, etc. molten metal such as molten steel.
近年、極めて苛酷な環境条件において高度の信頼性を有
するいわゆる高清浄鋼に対する需要は一段と増大しつつ
ある。In recent years, the demand for so-called high-cleanliness steel, which has a high degree of reliability under extremely harsh environmental conditions, has been increasing further.
これら高清浄鋼は一般に溶銑段階で脱硫、脱燐精錬し、
さらに溶鋼を炉外精錬することにより製造される。溶鋼
炉外精錬の目的とするところは高度な脱硫と主としてh
itOs系介在物の除去による脱酸や介在物の形態制御
などにあり、さらに脱燐を目的に加える場合もある。These highly clean steels are generally refined by desulfurization and dephosphorization at the hot metal stage.
Furthermore, it is manufactured by refining molten steel outside the furnace. The purpose of outside-furnace refining is advanced desulfurization and mainly h
It is used for deoxidizing by removing itOs-based inclusions and controlling the morphology of inclusions, and may also be added for the purpose of dephosphorization.
このような炉外精錬に使用される精錬剤はその目的によ
って細部は異なるが、’CaOを主体とするいわゆるフ
ラックスとCa系金属添加剤の併用が一般的である。特
に介在物の形態制御には金属Caあるいはその合金の使
用が必須と云われている。Although the details of the refining agent used in such out-of-furnace refining differ depending on the purpose, it is common to use a combination of a so-called flux mainly composed of 'CaO and a Ca-based metal additive. In particular, it is said that the use of metallic Ca or its alloy is essential for controlling the form of inclusions.
金属Caあるいはその合金添加剤はCaS i合金と、
Ca又FiCa + AA’の鉄又はアルミのクラッド
ワイヤーが一般に用いられている。前者は比較的安価で
あるがCaの添加効率が悪く特にSi −1esS。Metallic Ca or its alloy additive is a CaSi alloy,
Ca or FiCa + AA' iron or aluminum clad wires are commonly used. The former is relatively inexpensive, but has poor Ca addition efficiency, especially Si-1esS.
Alキルド鋼には使えない欠点がある。一方クラッドワ
イヤーは添加効率は優れているが、高価なため使用に限
界がある。Al-killed steel has drawbacks that make it unusable. On the other hand, clad wire has excellent dosing efficiency, but its use is limited because it is expensive.
CaOを主体とするフラックスに′1CaOにkllt
Ox、CaF2の1種又は2種を混合したものが一般
的である。ただし、フラックスのみでは介在物形態制御
ができないので、前記金属系添加剤と併用して使用され
る。For the flux mainly composed of CaO, kllt for 1CaO
Generally, one or a mixture of two of Ox and CaF2 is used. However, since flux alone cannot control the morphology of inclusions, it is used in combination with the metal additives mentioned above.
本発明は溶鋼中で高い蒸気圧を有するCaの蒸発損失を
できるだけ抑えることにより、効率よく溶鋼へ作用させ
脱酸、脱硫、脱燐および介在物の形態制御効果を高める
ことを目的とした金属精錬剤の製造法を提供するもので
ある。The present invention is a metal refining process aimed at increasing the effect of deoxidizing, desulfurizing, dephosphorizing, and controlling the form of inclusions by efficiently acting on molten steel by suppressing the evaporation loss of Ca, which has a high vapor pressure in molten steel. The present invention provides a method for producing the agent.
溶鋼へのCa添加の各種の実験の中でCa系合金とCa
Oを含むフラックスを結合させて精錬剤の個々の粒子あ
るいはブリケラ)t−構成し、この粒子あるいはブリケ
ットを溶鋼に添加した場合にはCaの蒸発損失を極端に
低く抑えることができること、またこの場合、粒子ある
いはブリケット中の合金相とフラックス相の混合均一度
を増せば増す程、Caの蒸発損失を抑える効果があるこ
とを知見するとともに、この均一混合度の高いCa系金
属−フラックス結合精錬剤はCaOのAl還元により容
易に製造することができることを見出し、本発明に至っ
た。In various experiments on Ca addition to molten steel, Ca-based alloys and Ca
When a flux containing O is combined to form individual particles or briquettes of a refining agent and these particles or briquettes are added to molten steel, the evaporation loss of Ca can be kept extremely low; It was discovered that the more homogeneous mixing of the alloy phase and flux phase in particles or briquettes, the more effective it is in suppressing evaporation loss of Ca, and that the Ca-based metal-flux bonding refining agent with a high degree of homogeneous mixing It has been found that it can be easily produced by reducing CaO with Al, leading to the present invention.
即ち、本発明はCaOを主体とする酸化物にMを主体と
する金属還元剤を配合し、ブリケット等に成形し、不活
性雰囲気のもとて焼成し、CaOの還元反応を行ない、
生成するCaをMと合金化することにより、Caの蒸発
逸散を抑制しなからCa−M合金、CaO1k1203
を主成分とする生成物を得、その生成物を所望する粒度
の粉・粒状ないしは塊状物にして、これを金属の精錬剤
とする方法である。That is, in the present invention, a metal reducing agent mainly composed of M is mixed with an oxide mainly composed of CaO, formed into a briquette or the like, and fired in an inert atmosphere to perform a reduction reaction of CaO.
By alloying the generated Ca with M, the evaporation and loss of Ca is suppressed, resulting in Ca-M alloy, CaO1k1203.
This is a method of obtaining a product containing as a main component, turning the product into powder, granules, or agglomerates of desired particle size, and using this as a metal refining agent.
従来、Ca−AJI合金の製造法はいくつか提案されて
いるが、例えばCaOとAA’tOaの電炉による炭素
還元は工業的規模での効率的操業は困難であるし、また
CaOとAlをブリケットにし、1500〜1600℃
の高温下で反応させ、Ca−41合金とスラグを溶融分
離する方法もあるが、高温かつ大気中であるため、Al
やCaの蒸発、酸化、窒化損失が大きく工業的規模での
実用化は困難であった。Several methods have been proposed for producing Ca-AJI alloys, but for example, carbon reduction of CaO and AA'tOa using an electric furnace is difficult to operate efficiently on an industrial scale, and to 1500-1600℃
There is also a method of melting and separating Ca-41 alloy and slag by reacting at high temperatures, but since the temperature is high and in the atmosphere, Al
The loss of evaporation, oxidation, and nitridation of Ca and Ca is large, making it difficult to put it into practical use on an industrial scale.
これに対し本発明の方法におけるCaOのAlによる還
元反応では合金相とフラックス(スラグ)相とを分離す
る必要がなく、しかも生成するCa −Mの量は精錬剤
として有効な含有量とすればよいので、還元反応も比較
的低温で容易に進行させることができる。そして溶鋼中
に介在しているM2O。On the other hand, in the reduction reaction of CaO with Al in the method of the present invention, there is no need to separate the alloy phase and the flux (slag) phase, and moreover, the amount of Ca-M produced can be set to an effective content as a refining agent. Therefore, the reduction reaction can be easily carried out at a relatively low temperature. and M2O present in the molten steel.
とCaOの混合組成のフラックスをCa−Am!合金と
併せて一挙に得ることができるのは本発明の製造法の大
きな利点である。A flux with a mixed composition of Ca-Am! and CaO is used as Ca-Am! A great advantage of the manufacturing method of the present invention is that it can be obtained all at once together with the alloy.
る金属還元剤である。前者はCaO単独又はこれに後述
する酸化物、塩化物、弗化物等を混合したもの、後者は
Al単独又は後述する8i、Mg等をAlに混合、又は
Mと合金にして用いる。これらを粉末にし、ブリケット
にして反応させるが、反応時Mが溶融し、酸化物に浸透
するので、再原料とも粒度はあま9重要でないが、1w
1以下程度が好ましい。ブリケットにするにはブリケッ
トマシン等で圧縮成形してもよく、また澱粉、CMC等
の1次結合剤を加えて造粒してもよい。従って、本発明
におけるブリケット成形にはこれら粒状、塊状等すべて
の成形体を含む。ブリケットの大きさは特に制限ないが
、5〜50m5+の範囲が適当である。It is a metal reducing agent. The former uses CaO alone or a mixture of oxides, chlorides, fluorides, etc., which will be described later, and the latter uses Al alone or a mixture of 8i, Mg, etc., which will be described later, with Al or alloyed with M. These are powdered, made into briquettes, and reacted.During the reaction, M melts and penetrates into the oxide, so the particle size is not very important for re-raw materials, but 1w
It is preferably about 1 or less. To make briquettes, compression molding may be performed using a briquette machine or the like, or granulation may be performed by adding a primary binder such as starch or CMC. Therefore, briquette molding in the present invention includes all of these granular, block-like, and other molded products. The size of the briquettes is not particularly limited, but a range of 5 to 50 m5+ is appropriate.
酸化物と還元剤の配合は目的とする精錬剤の組成に応じ
、次の反応式に基すいて定める。The composition of the oxide and reducing agent is determined based on the following reaction formula depending on the composition of the intended refining agent.
3CaO+2# →3Ca + ATOs =・・
(1)反応は完全には進まないので生成したCaは原料
klと合金に、M2O,はCaOと結合してフラックス
になる。Ca t−Alと合金化することによt) C
aの蒸発逸散が抑制される。3CaO+2# →3Ca + ATOs =...
(1) Since the reaction does not proceed completely, the generated Ca becomes an alloy with the raw material kl, and M2O combines with CaO to become a flux. By alloying with Ca t-Al) C
Evaporation and loss of a is suppressed.
このようにして得られた本発明の精錬剤はCa−M合金
、Cab、 I’−1120sを主成分とし、これらが
一体に結合している。そしてこれら王者の含量が70チ
(重量%、以下同じ)以上含有していることが好ましい
。残りの成分として含有させることができる代表的なも
のはCaF2であり、3(l以下の範囲で用いるのがよ
い。The refining agent of the present invention obtained in this way has Ca-M alloy, Cab, and I'-1120s as main components, which are bonded together. It is preferable that the content of these champions is 70% by weight or more (the same applies hereinafter). A typical component that can be contained as the remaining component is CaF2, which is preferably used in a range of 3 (1) or less.
CaF2はフラックス相中では独立して存在するが、C
aO/A120gが大きくなるに従がい、その含有量を
増すのが効果的である。CaF、は溶鋼への添加時、フ
ラックス相の滓化促進に有効に作用する。しかし30チ
を越えて添加しても効果が飽和してしまうため30俤以
下で使用するのがよい。CaF2 exists independently in the flux phase, but C
It is effective to increase the content as the aO/A 120g increases. CaF, when added to molten steel, effectively acts to promote slag formation of the flux phase. However, since the effect will be saturated if it is added in excess of 30 g, it is better to use less than 30 g.
以上望ましい成分範囲を示せばCa−IJ合金20〜5
0%、CaO+A7!20,80〜50%、 CaF
2@ 〜30チである。If the desirable component range is shown above, Ca-IJ alloy 20-5
0%, CaO+A7!20, 80~50%, CaF
2@~30chi.
そしてCa−Al合金中のCa含有量は20〜50%、
フラックス相中のCaO/Al2O3重量比は0.9〜
5.0の間とするのが最も適する。And the Ca content in the Ca-Al alloy is 20-50%,
The CaO/Al2O3 weight ratio in the flux phase is 0.9~
A value between 5.0 and 5.0 is most suitable.
CaF2を除いて上記の望ましい組成の精錬剤を得るに
は原料のCaOとMの配合比は、前記(1)式及び多少
のCaの蒸発を考慮してCa9M重量比を0.5〜4.
0の範囲で用いればよい。In order to obtain a refining agent having the above-mentioned desired composition excluding CaF2, the mixing ratio of the raw materials CaO and M should be set to a Ca9M weight ratio of 0.5 to 4.0, taking into account the above formula (1) and some evaporation of Ca.
It may be used within the range of 0.
なお、本発明による精錬剤の組成の好ましい理由は以下
の通りである。Ca−AA!合金が20%未満ではこの
合金による精錬効果が下が9、精錬剤の使用量が増える
。また50%を越えるとフラックスの量が相対的に減る
ことによるCaの蒸発抑制作用が低下する。The reason why the composition of the refining agent according to the present invention is preferable is as follows. Ca-AA! If the alloy content is less than 20%, the refining effect of this alloy will be reduced9 and the amount of refining agent used will increase. Moreover, when it exceeds 50%, the effect of inhibiting Ca evaporation due to a relative decrease in the amount of flux decreases.
Ca合金中のCa含有量は20〜50%が特に適する理
由はCaが20俤より低くなると付随して入るM量が多
くなり、精錬剤としで使用した場合、鋼中にMが多く残
留したり、また精錬効果が下るので好ましくなく、また
50%を越えると製造が困難になるばかりでなく、Ca
の蒸気圧が高くなるからである。The reason why a Ca content of 20 to 50% in a Ca alloy is particularly suitable is that when the Ca content is lower than 20 yen, the amount of accompanying M increases, and when used as a refining agent, a large amount of M remains in the steel. It is undesirable because the refining effect decreases, and if it exceeds 50%, it not only becomes difficult to manufacture, but also reduces the refining effect.
This is because the vapor pressure of
CaO/Al2O3重量比が0.9〜5.0が特に適す
る理由は0.9未満だと脱硫に効(CaO成分が少なく
な9、脱硫率が下り、また5、0を越えると融点が高過
ぎて滓化が阻害される。The reason why a CaO/Al2O3 weight ratio of 0.9 to 5.0 is particularly suitable is that when it is less than 0.9, it is effective for desulfurization (CaO component is small9, and the desulfurization rate decreases, and when it exceeds 5.0, the melting point becomes high). If too much, slag formation is inhibited.
本発明方法によって得られる精錬剤は上記のようにCa
−Al合金、CaO%)J20sを主成分とし、さらに
好ましくはこれに一定量以下でCaF2を含有させたも
のであるが、さらにこの外に少量のCaC1,、Na2
O%8i、 Mg%Ba、 Ni、希土類等の元素又は
これら元素の酸化物を含有させることができる。これら
の少量の成分は含量で10%以下とするのがよい。Ca
F2及びこれら少量の成分を精錬剤に含有させるには原
料にそれらを添加しておけばよい。The refining agent obtained by the method of the present invention has Ca
-Al alloy, mainly composed of J20s (CaO%), more preferably containing CaF2 in a certain amount or less, but in addition to this, a small amount of CaC1, Na2
It can contain elements such as O%8i, Mg%Ba, Ni, and rare earths, or oxides of these elements. The content of these small amounts of components is preferably 10% or less. Ca
In order to make the refining agent contain F2 and small amounts of these components, they may be added to the raw materials.
酸化物の場合加熱過程で1部kl或いはCaにより還元
されるものがあっても、生成した金属が目的とする精錬
剤において・有害でない限り支障はない。In the case of oxides, even if some of them are reduced by Kl or Ca during the heating process, there is no problem as long as the metal produced is not harmful to the intended refining agent.
これらは金属の場合は主としてCa−AA!と合金に、
化合物はフラックス成分となる。In the case of metals, these are mainly Ca-AA! and alloy,
The compound becomes a flux component.
還元反応のための焼成は850〜1350℃、好ましく
は1000〜1200℃でアルゴンなどの不活性雰囲気
下で行なうのがよい。大気中や窒素雰囲気でも不可能で
はないが窒化アルミ等が生成したシして反応が抑制され
るのであまり好ましくない。Calcination for the reduction reaction is preferably carried out at 850 to 1350°C, preferably 1000 to 1200°C, under an inert atmosphere such as argon. Although it is possible to conduct the reaction in the air or in a nitrogen atmosphere, it is not very preferable because aluminum nitride and the like will be generated and the reaction will be suppressed.
850℃未満では反応が起らず、1350℃を越えても
反応上の利点がないばかりかCaの蒸発が多くなる。If the temperature is lower than 850°C, no reaction will occur, and if the temperature exceeds 1350°C, not only will there be no advantage in terms of the reaction, but a large amount of Ca will evaporate.
雰囲気の圧力は反応促進の面からある程度減圧したり、
Caなどの蒸発を抑える目的で着干加圧することもでき
る。The pressure of the atmosphere may be reduced to some extent to promote the reaction.
Drying and pressurizing can also be performed for the purpose of suppressing evaporation of Ca and the like.
焼成炉は雰囲気の実質的コントロールができればその形
式は特に制限されない。例えば横型台車炉、竪型シャフ
ト炉、レトルト炉などいずれでもよいし、反応促進や連
続操業などの目的のために転動などの手段で原料を移動
させることもできる。The type of firing furnace is not particularly limited as long as the atmosphere can be substantially controlled. For example, a horizontal bogie furnace, a vertical shaft furnace, a retort furnace, etc. may be used, and the raw material may be moved by means such as rolling for the purpose of promoting the reaction or continuous operation.
焼成後のブリケットはそのままでも精錬剤として使用で
きるが、破砕して粒状とし、或いはさらに粉砕して粒子
粉末にして使用することができる。The briquettes after firing can be used as they are as a refining agent, but they can also be crushed into granules or further crushed into granular powder.
粉砕しても各粒子は合金相とフラックス相が一体となっ
て結合している。Even after pulverization, each particle has an alloy phase and a flux phase bonded together.
これを光学顕微鏡、X線マイクロアナライザーなどで調
査すると極めて微細なCa漏やCakJl、などのCa
−A1合金相と12 CaO−7Aft O,やCaO
などのフラックス相が複雑に混ざり合っているのが認め
られる。When this is investigated using an optical microscope or an X-ray microanalyzer, extremely fine Ca leakage, CakJl, etc.
-A1 alloy phase and 12 CaO-7Aft O, or CaO
A complex mixture of flux phases is observed.
本発明による精錬剤においてフラックス相の重要な役割
は精錬剤を溶鋼に添加した場合、Ca−A41合金相の
溶鋼への溶解を適度に制御することである。即ち、フラ
ックス相はCa−Al合金が添加された際瞬時に溶鋼へ
作用することによる急激な蒸発揮散を起させることなく
、徐々に溶鋼へ溶解せしめることによシ充分効率よ(C
aを作用させる役割を持つものである。またフラックス
相は脱硫及び溶鋼中に介在しているA&Oa等の脱酸生
成物を効果的に捕捉し、除去するものである。The important role of the flux phase in the refining agent according to the present invention is to appropriately control the dissolution of the Ca-A41 alloy phase into the molten steel when the refining agent is added to the molten steel. In other words, when the Ca-Al alloy is added, the flux phase does not act on the molten steel instantaneously and cause rapid evaporation, but is gradually dissolved into the molten steel, thereby achieving sufficient efficiency (C
It has the role of acting on a. Further, the flux phase effectively captures and removes deoxidation products such as A&Oa present in desulfurization and molten steel.
本発明による精錬剤は固液還元法によって製造されたも
のであるため、合金相とフラックス相は混ざ9合って焼
結、拡散等により一体に結合しており、溶鋼に添加した
場合、合金相が急激に溶鋼と接触するのを抑制するので
、十分に上記の役悸を果すことができる。またその効果
も、例えば合金粉末とフラックス粉末の単なる混合物か
らなる精錬剤に比べて、はるかに大きなものである。Since the refining agent according to the present invention is manufactured by a solid-liquid reduction method, the alloy phase and flux phase are mixed and bonded together by sintering, diffusion, etc., and when added to molten steel, the alloy phase Since the phase is prevented from coming into sudden contact with the molten steel, the above-mentioned role can be fully fulfilled. Moreover, its effect is far greater than, for example, a refining agent consisting of a simple mixture of alloy powder and flux powder.
実施例
原料として1m以下に粉砕したCa097.5%を含有
する生石灰670部、A190%を含有するM合金のダ
ライ粉330部を十分に混合しアーモンド状ブリケット
に成型した。このブリケットを密閉可能な内熱式横形台
車炉に装入し、Arl気圧に置換の後、1100℃迄昇
温し、3Hr保持し焼成した。炉冷後、炉より排出した
ブリケットを化学分析にて態別定量を試みた結果、重量
でCa 16.7%、A122.5%、(’ao 37
.0 %、A&Os 21.5%から成っていた。X線
回折によればCaA7.、CaO112CaO57M^
の明確なピークが認められた。メタル相のCa含有量は
40チ程度と推定される。更にこのブリケットをインジ
ェクションで用いる60メツシュ全通迄微粉砕した後、
採取した粉末単一粒子を顕微鏡、X線マイクロアナライ
ザーで調査した結果全てメタル相とフラックス相が混合
した組織が認められた。Example Raw materials: 670 parts of quicklime containing 97.5% Ca and 330 parts of M alloy powder containing 190% A were thoroughly mixed and molded into almond-shaped briquettes. This briquette was charged into a sealable internally heated horizontal bogie furnace, and after the atmosphere was replaced with Arl atmospheric pressure, the temperature was raised to 1100° C. and maintained for 3 hours for firing. After the furnace was cooled, we attempted to quantify the briquettes discharged from the furnace by chemical analysis, and found that Ca 16.7%, A122.5%, ('ao 37
.. 0%, A&Os 21.5%. According to X-ray diffraction, CaA7. , CaO112CaO57M^
A clear peak was observed. The Ca content of the metal phase is estimated to be about 40 inches. Furthermore, after pulverizing this briquette to a total of 60 meshes used for injection,
When the collected powder single particles were examined using a microscope and an X-ray microanalyzer, a structure in which a metal phase and a flux phase were mixed was observed in all of the particles.
次にこの微粉末粒子を溶鋼の精錬剤に使用した結果を示
す。Next, we will show the results of using this fine powder particle as a refining agent for molten steel.
高周波誘導炉(電融マグネシャライニング)中で、30
Kfのl’J −Si キルド鋼を博製し、アルゴン雰
囲気下にて前記精錬剤及び比較例として表1に示す精錬
剤を溶鋼重量に対し0.8%添加し、15分後に溶鋼を
金型に鋳造した。In a high frequency induction furnace (electrofused magnesia lining), 30
A Kf l'J -Si killed steel was prepared, and the refining agent and the refining agent shown in Table 1 as a comparative example were added at 0.8% based on the weight of the molten steel under an argon atmosphere.After 15 minutes, the molten steel was converted into gold. Cast into a mold.
なお、精錬剤の添加情況の観察で、本発明のもの ・
旨は添加後ヒユームの突発的な発生が見られず、Caの
急激な蒸発が抑えられていることが認められた。In addition, by observing the addition situation of the refining agent, it was found that the present invention.
In fact, no sudden generation of fume was observed after the addition, indicating that rapid evaporation of Ca was suppressed.
表1
表中、本発明のものと比較例はCa−Alの組成、Ca
−8i 、 CaO、k12Qlの含有量については
同一とした。また表中O印は微細なカルシウムアルミ化
願 人 昭和電工株式会社
代理人 菊地精−
手貌補正書(自Jl)
昭和57年9月lμ日
特許庁長官 苦杉 和夫謄
1、事件の表示
昭和57年特許■餉19696号
2、発明の名称
金属精鐸剤の製造法
3、補正をする者
事件との関係 特許出願人
住所 東京−措区芝大門一丁目13書9号名称 C20
0) 昭和電工株式会社代表者 洋本 泰延
番1代理人
1FJf 東京igui区芝大門−丁1113番9号
昭和電工株式会社内
〒105 置 03−432−5111 (代表)6
、補正の内容
本−1IJII書の記載を繊下のとおり補正します。Table 1 In the table, the composition of the present invention and the comparative example are Ca-Al composition, Ca
The contents of -8i, CaO, and k12Ql were the same. In addition, the O mark in the table indicates fine calcium aluminization.Applicant: Sei Kikuchi, agent of Showa Denko Co., Ltd. Hand appearance correction form (self-Jl) Date of September 1980: Kazuo Kusugi, Commissioner of the Patent Office, 1, Indication of the case Showa 1957 Patent ■Cei 19696 No. 2, Name of the invention Method for manufacturing metal seitaku agent 3, Relationship with the case of the person making the amendment Patent applicant address No. 9, 1-13 Shiba Daimon, Sei-ku, Tokyo Name C20
0) Showa Denko Co., Ltd. Representative Yomoto Yasunobu Number 1 Agent 1FJf Showa Denko Co., Ltd. 1113-9 Shiba Daimon-cho, Igui-ku, Tokyo 105 03-432-5111 (Representative) 6
, Contents of Amendment - 1 The description in Book 1IJII is amended as shown below.
(1)第5頁1行、FAI、0.Jの後にr等の捕捉能
が大きいフラックス組成、即ち12CaO・7人m、
O3Jを加入すゐ。(1) Page 5, line 1, FAI, 0. J followed by a flux composition with a large trapping ability such as r, i.e. 12CaO 7 m,
I'm joining O3J.
(2)第5頁2行、rcaoの混合組成」′とあるのを
rcaoとの混合組成」と補正する。(2) On page 5, line 2, ``Mixed composition of RCAO'' has been corrected to ``Mixed composition with RCAO''.
(3)第5買12行、「再MIRJとあるのをr両層料
」と補正する。(3) 5th purchase, 12th line, corrected "re-MIRJ" to "r-bi-tier fee."
(4)第11頁15〜16行にかけCrl!lCaO,
7A1.O,Jとあゐのをr12caoe7AIL O
,Jと補正する。(4) Crl! on page 11, lines 15-16! lCaO,
7A1. O, J and Aino r12caoe7AIL O
, J.
(5)@13W表1 ノ17) 2行ILAるrca−
31」を削除すゐ。(5) @13W Table 1 No. 17) 2 rows ILA rca-
Delete "31".
Claims (2)
金属還元剤を配合し、ブリケットにして不活性雰囲気の
もとで焼成し、 CaOの還元反応精錬剤の製造法。(1) A method for producing a CaO reduction reaction refining agent by blending an oxide mainly consisting of CaO with a metal reducing agent mainly consisting of M, making it into briquettes, and firing it in an inert atmosphere.
範囲第1項記載の金属精錬剤の製造法。(2) The method for producing a metal refining agent according to claim 1, wherein the firing temperature is 850 to 1350°C.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1969682A JPS58141319A (en) | 1982-02-12 | 1982-02-12 | Manufacture of metal refining agent |
GB08303495A GB2118209B (en) | 1982-02-12 | 1983-02-08 | Refining agent of molten metal and methods for producing the same |
FR8302447A FR2521593B1 (en) | 1982-02-12 | 1983-02-10 | MOLTEN METAL REFINING AGENT AND PROCESS FOR PRODUCING THE AGENT |
CA000421358A CA1204596A (en) | 1982-02-12 | 1983-02-10 | Refining agent of molten metal and methods for producing the same |
SE8300707A SE459339B (en) | 1982-02-12 | 1983-02-10 | REFINING MATERIAL FOR METAL AND PROCEDURES FOR ITS PREPARATION |
DE19833304762 DE3304762A1 (en) | 1982-02-12 | 1983-02-11 | FINISHING AGENT FOR METALS AND METHOD FOR THE PRODUCTION THEREOF |
US06/466,188 US4435210A (en) | 1982-02-12 | 1983-02-14 | Refining agent of molten metal and methods for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1969682A JPS58141319A (en) | 1982-02-12 | 1982-02-12 | Manufacture of metal refining agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58141319A true JPS58141319A (en) | 1983-08-22 |
JPH0125367B2 JPH0125367B2 (en) | 1989-05-17 |
Family
ID=12006420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1969682A Granted JPS58141319A (en) | 1982-02-12 | 1982-02-12 | Manufacture of metal refining agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58141319A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62222034A (en) * | 1986-03-24 | 1987-09-30 | Furukawa Alum Co Ltd | Method for adding ca to aluminum alloy |
JPH0347910A (en) * | 1989-07-14 | 1991-02-28 | Nippon Steel Corp | Method of deoxidizing molten steel |
CN102071286A (en) * | 2011-01-26 | 2011-05-25 | 天津钢铁集团有限公司 | Compound aluminum reducing agent for steelmaking and refining |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319697A (en) * | 1976-08-07 | 1978-02-23 | Idemitsu Kosan Co | Air spray fire extingyishing liquid |
-
1982
- 1982-02-12 JP JP1969682A patent/JPS58141319A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319697A (en) * | 1976-08-07 | 1978-02-23 | Idemitsu Kosan Co | Air spray fire extingyishing liquid |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62222034A (en) * | 1986-03-24 | 1987-09-30 | Furukawa Alum Co Ltd | Method for adding ca to aluminum alloy |
JPH0347910A (en) * | 1989-07-14 | 1991-02-28 | Nippon Steel Corp | Method of deoxidizing molten steel |
CN102071286A (en) * | 2011-01-26 | 2011-05-25 | 天津钢铁集团有限公司 | Compound aluminum reducing agent for steelmaking and refining |
Also Published As
Publication number | Publication date |
---|---|
JPH0125367B2 (en) | 1989-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1043661C (en) | Process for smelting titanium steel and obtained titanium steel | |
JPS6025483B2 (en) | Molten iron desulfurization method | |
US4435210A (en) | Refining agent of molten metal and methods for producing the same | |
US3591367A (en) | Additive agent for ferrous alloys | |
JPH06145836A (en) | Production of alloy utilizing aluminum slag | |
US4361442A (en) | Vanadium addition agent for iron-base alloys | |
JPS58141319A (en) | Manufacture of metal refining agent | |
JPS6179744A (en) | Continuous production of silicon base composite alloyed iron | |
KR102282018B1 (en) | Composite deoxidizer for steel making and cast steel and manufacturing method | |
US4053307A (en) | Process for manufacture of high-chromium iron alloy | |
JPS58141320A (en) | Metal refining agent | |
US4445932A (en) | Method of recovering ferronickel from oxidated nickel ores | |
JPH0237415B2 (en) | ||
JPS609816A (en) | Production of metal refining agent | |
JPS645083B2 (en) | ||
JP2001040412A (en) | Method for adding titanium into molten steel and titanium additive | |
KR101460197B1 (en) | Flux ane the method thereof | |
KR101403581B1 (en) | Flux and the method thereof | |
US1346187A (en) | Process of producing chromium-containing alloys | |
RU2094518C1 (en) | Mixture for melting of ferrosilicium | |
JPH09118911A (en) | Granular state complex refining material | |
JPH07252518A (en) | Method for raising temperature of molten steel and temperature raising agent | |
GB2142656A (en) | Process for the manufacture of ferrosilicon or silicon alloys containing strontium | |
JPH0135889B2 (en) | ||
SU1458414A1 (en) | Composition for alloying steel |