[go: up one dir, main page]

JPS58140400A - Vapor growth method of gallium arsenide - Google Patents

Vapor growth method of gallium arsenide

Info

Publication number
JPS58140400A
JPS58140400A JP57022149A JP2214982A JPS58140400A JP S58140400 A JPS58140400 A JP S58140400A JP 57022149 A JP57022149 A JP 57022149A JP 2214982 A JP2214982 A JP 2214982A JP S58140400 A JPS58140400 A JP S58140400A
Authority
JP
Japan
Prior art keywords
gallium
compds
arsenic
gallium arsenide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57022149A
Other languages
Japanese (ja)
Inventor
Takatoshi Nakanishi
中西 隆敏
Takashi Udagawa
隆 宇田川
Tokuji Tanaka
篤司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57022149A priority Critical patent/JPS58140400A/en
Publication of JPS58140400A publication Critical patent/JPS58140400A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To vapor-grow gallium arsenide of n type having low electron concns. with reduced consumption of arsenic compds. by contg. traces of silicon compds. beforehand in either of org. gallium or arsenic compds. and causing the thermal decomposition reaction of the org. gallium and the arsenic compds. CONSTITUTION:Traces of silicon compds. such as tetraethyl silane are beforehand mixed with org. gallium such as trimethyl gallium and the mixture is diluted with gaseous hydrogen and is fed into a reaction chamber. Arsenic compds. such as arsine and impurities such as hydrogen sulfide are diluted respectively with gaseous hydrogen and are introduced into the reaction chamber, where these materials are heated and GaAs is vapor-grown on a GaAs substrate by thermal decomposition reaction. The molar ratio for inversion to low p-n is realized by the addition of traces of silicon compds. according to the above- mentioned method and while the consumption of the arsenic compd. is reduced in this state, the GaAs of the n type growth layer of low electron concns. is grown.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、有機ガリクふと砒素化合物との熱分解反応
管利用して、態形低電子a度0砒化ガリクム(GaAa
) を気相成長させる砒化ガリウム気相成長方法Kll
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention utilizes a thermal decomposition reaction tube for organic gallic acid and an arsenic compound to produce galicum arsenide (GaAa
) Gallium arsenide vapor phase growth method Kll
do.

(*明の技術的背景〕 電子濃度が1θ14 161ン#111度のII形砒化
ガ呻りム気相成長層は、4〜200Hz帯Gsxaoダ
イオードの能動層として一般に実用されている。ζ0よ
うな能動層を再現性よく形成するKFi、まずパツクダ
ラクンド即ちアンドープ状態でのキャリア濃度を充分に
低い状態に保ち、この状態で例えば硫黄等■族不純物t
ドービンダすることにより、所値電子換直の能動層を砒
化ガリウム結晶基板上に所望厚さ成長させる・このアン
ド−1状態での成長層O命ヤリア濃度は、第1図に示す
ように一定成長温度では出発原料である砒素化合物と有
機ガリウムのモル比(〔ムsl/[Ga])によって変
化する。
(*Technical background of Ming) A type II arsenide gas phase growth layer with an electron concentration of 1θ14 161 degrees and #111 degrees is generally used as an active layer of a Gsxao diode in the 4-200 Hz band. In KFi, which forms the active layer with good reproducibility, first, the carrier concentration in the undoped state is kept sufficiently low, and in this state, for example, group III impurities such as sulfur are added.
By dobindering, an active layer with a desired electron exchange rate is grown to a desired thickness on a gallium arsenide crystal substrate. In this AND-1 state, the concentration of the grown layer is constant as shown in Figure 1. The temperature varies depending on the molar ratio ([Musl/[Ga]) between the arsenic compound and organic gallium that are the starting materials.

そして低モル北側では成長層はp形、高モルルーでは態
形を示し、そO中間O毫ル比(p−m反転モル比)では
高抵抗層が形成されることが知られてiる・従って低バ
ツクグラウンド會得るためには、〔ム@′3/CGa)
 t p −m反転モル比近傍に遺ぶ必要がある・そし
て断値の電子濃度を得るために、!−0p−a反転4ル
比近傍で他の不純物にくらべて制御性の良−硫黄(8)
をドーピングすることが一般に行われているコ 〔背景技術の問題点〕 よく知られているように有機ガリウムとして例えばトリ
メチルガリウム((CHI)l Gl % TMG ’
)會、又砒素化合物としてアルシンガス(五aHs )
を用いる場合、通常の成長温度である620〜750℃
におiてp−n反転モル比は10から30にも達し、砒
素化合一の#1とんどが無駄に使用され、反応炉内に砒
素粉塵として堆積した夛、アルシン廃ガス吸収装置に吸
収され、反応炉の汚染管ひどくするとと4に、廃ガス徴
収装置に負担金かける等の欠点がある0 【発@@目的〕 仁の発W14は上記の欠点を除去し砒素化合一を有効に
消費して行う砒化ガリウム気相成長方法を提供するもの
である。
It is known that the growth layer exhibits the p-type in the north of the low molar ratio, the p-type in the high molar ratio, and that a high-resistance layer is formed at the intermediate o-molar ratio (p-m inverted molar ratio). Therefore, in order to obtain a low background meeting, [Mu@'3/CGa]
It is necessary to remain near the t p -m inversion molar ratio and to obtain the electron concentration at the cutoff value,! - Good controllability compared to other impurities near 0p-a inversion 4 ratio - Sulfur (8)
[Problems with the background art] As is well known, organic gallium, for example, trimethyl gallium ((CHI)l Gl % TMG'
) and arsine gas (5aHs) as an arsenic compound.
is used, the normal growth temperature is 620-750℃.
The p-n inversion molar ratio reached as high as 10 to 30, and most of the #1 arsenic compound was wasted, and the arsenic dust accumulated in the reactor was lost to the arsine waste gas absorption device. If it is absorbed and the reactor's contaminated tube gets worse, 4. has disadvantages such as having to pay for the exhaust gas collection device. [Purpose] Jin's W14 removes the above disadvantages and makes arsenic compounding effective. The purpose of the present invention is to provide a method for vapor phase growth of gallium arsenide, which is performed by consuming a large amount of gallium arsenide.

〔発明の概要〕[Summary of the invention]

このようなこの発明は、有機ガリウム又は砒素化合物例
えばアルシンガス中に微量のケイ素(s&)化合物を含
有させることにより、p一層反転モル比がケイ素を添加
しない場合に比較していちじるしく小さくできるという
実験的知見を得てなされえものである・即ちこの発明の
気相成長方法はこの事実を応用することにより、従って
有機ガリウム又は砒素化合物に予しめ微量の8i化合物
會添加しておくことによ〉、低炉1膳反転モル比1*現
し、この状態で砒素化合物消費量【低減させ乍ら低電子
濃度の態形成長層を成長させるように改良されたのであ
る・ 〔発Wi4の実施例〕 以下トリメチルガリウム(1G)とアルシン(ムsH@
)ガスと音便用し、熱分解法によってX帯(100Hz
帯)−闘ダイオード用烏形砒化ガリクムを気相成長させ
た実施例について述べるO第2図はこの実施例で使用し
た気相成長装置の模式図である。原料ガス希釈用水−ガ
スは精製装置(1)を通して希釈して使用し、その一部
をトリメチルガリクムTMG會充填し0℃に保持したス
テンレスパッツ(2)に4亀、一定量のトリメチルガリ
ウム蒸気會含ませたのち反応容器(勢に供給する・又ア
ルシンガスは、水素ガスによって10饅に希釈しである
為圧容器(3)から直接供給するO同様に態形ドーピン
グのための不純物源硫化水素(UtS)は、水素ガスに
よ)10 ppnl fC希釈して充填しである高圧容
器(4)かG直後供給する。以上のガスを流量針(5)
、(L (7)、(8)でそれぞれ所定の流量に制御し
、反応容器(9)に導く・これらのガスは高周波加熱に
より加熱された加熱台輪の近くで熱分解し、加熱台員上
に載置しである砒化ガリウム基板上に硫黄を添加された
砒化ガリウム層として堆積する0 (110)方向に2°#li−た(100)面である0
なお成長温度tj650℃に、総ガス流量は1047m
  に設定した。
This invention is based on an experimental finding that by incorporating a trace amount of a silicon (S&) compound into an organic gallium or arsenic compound such as arsine gas, the p-inversion molar ratio can be significantly reduced compared to when no silicon is added. The vapor phase growth method of the present invention can be achieved by applying this fact, and by adding a small amount of 8i compound to the organic gallium or arsenic compound in advance. The low furnace inversion molar ratio is 1*, and in this state it has been improved to grow a morphological growth layer with a low electron concentration while reducing the consumption of arsenic compounds. [Example of development Wi4] Below Trimethylgallium (1G) and arsine (MusH@
) using gas and sound, and using the pyrolysis method to generate X-band (100Hz
(B) - Describes an example in which gallium arsenide for combat diodes was grown in a vapor phase. FIG. 2 is a schematic diagram of a vapor phase growth apparatus used in this example. Water for diluting the raw material gas - The gas is diluted through the purification device (1), and a portion of it is filled with trimethyl gallium TMG and kept at 0°C in stainless steel pats (2). Arsine gas is diluted to 10% with hydrogen gas and is then supplied directly from the pressure vessel (3). Similarly, hydrogen sulfide, an impurity source for morphological doping, is supplied directly from the pressure vessel (3). (UtS) is diluted with 10 ppnl fC (with hydrogen gas) and supplied directly from the high pressure vessel (4) filled with G. Flow rate needle (5)
, (L (7), (8) respectively control the flow rate to a predetermined flow rate and guide it to the reaction vessel (9).・These gases are thermally decomposed near the heating architrave heated by high frequency heating, and the heating architrave is heated by high frequency heating. A layer of gallium arsenide doped with sulfur is deposited on a gallium arsenide substrate placed on the 0 (100) plane tilted 2° in the (110) direction.
The growth temperature tj is 650℃, and the total gas flow rate is 1047m.
It was set to

図 第31%1は、ガンダイオード用成長層の形成の予備冥
験として、アンドーグ状謬のパックグツクンドキャリア
濃度の[Asl/[Ga]モル比依存性【示したもので
ある0図中曲線(鳳)は無添加のトリメチルガリウムを
用いた場合、11111(b)はトリメチルガリウム中
の1!1度がaoppmになるようにテトラエチルシラ
ン((C,)(、)481 、!18)?添加した場合
を示す0図から明らかなように微量のケイ素化合物を添
加することにより、無添加の場合的20であったp”?
4反転篭モル比約1/15の約4Kまで小さくなってい
ることが判る。
Figure 31%1 shows the dependence of the [Asl/[Ga] molar ratio of the packed carrier concentration in the Andog-like state as a preliminary experiment for the formation of the growth layer for the Gunn diode. The curve (Otori) is when additive-free trimethyl gallium is used, and 11111 (b) is tetraethylsilane ((C,)(,)481,!18) so that 1!1 degree in trimethylgallium becomes aoppm. As is clear from Figure 0, which shows the case with addition, by adding a trace amount of silicon compound, p''?
It can be seen that the value is reduced to about 4K, which is about 1/15 of the 4-inversion cage molar ratio.

第4図はテトラエチルシランを添加したトリメチルガリ
ウムを用い、p一層反転モル比近傍で硫化水素上添加し
た場合の成長層電子濃度と硫化水素添加量との関係會示
す・電子濃度Fi4X10”から3X1G”/aI”の
範囲でよく制御されている・硫化水素流量を33 ml
/winに設定し、X帯Gunnダイオード用成長層、
電子濃度目標値9±I X 10”/cxx”、厚さ1
0J1!11會連続51g1成長させた場合の電子S度
の成長回数に対するばらつきを第5図に示す・ばらつき
は目標値の範囲内に再現性よく収まっている・なか、前
記実施例では、トリメチルガリク^とアルシンを用いた
砒化ガリ・りム熱分解気相成長について述べたが他の有
機ガリウム及び砒素化合物を用いた場合にもこの発Ij
+1會適用することができる・ 又、ケイ素化合物としては、テトラエチルシランに限ら
ず他Oケイ素化合物てあってもよい◎貴にトリメチルガ
リウムに代りアル7ン中に微量のケイ素化合物ttませ
てもよいコ 〔発明の効果〕 以上述べたようにこの発明によれば tQj4〜10”
/ys”の低電子濃度を有する砒化ガリウム気相成長層
を成長させるにあ九り、従来の方法に比較してp″′n
反転毫ル比を減少できる結果、アルシンlスが格段に少
い消費量でn形低電子濃度層金成長でき、しかも[4E
%第5図に示したように成長層の電子濃度O制御性、再
現性上良好にする0
Figure 4 shows the relationship between the electron concentration in the growth layer and the amount of hydrogen sulfide added when trimethyl gallium added with tetraethylsilane is added on top of hydrogen sulfide at a p-layer inversion molar ratio.・Electron concentration Fi4X10" to 3X1G"・Hydrogen sulfide flow rate: 33 ml
/win, X-band Gunn diode growth layer,
Electron concentration target value 9±I X 10"/cxx", thickness 1
0J1! Figure 5 shows the variation in electron S degree with respect to the number of growth times when 51g1 was grown for 11 consecutive sessions. - The variation is within the target value range with good reproducibility. - In the above example, trimethyl gallic Although we have described the pyrolytic vapor phase growth of gallium arsenide using arsine and arsine, this phenomenon also occurs when other organic gallium and arsenic compounds are used.
+1 can be applied. Also, the silicon compound is not limited to tetraethylsilane, but other silicon compounds may also be used. ◎You may also add a small amount of silicon compound in argon instead of trimethyl gallium. [Effect of the invention] As stated above, according to this invention, tQj4~10''
In order to grow a gallium arsenide vapor phase epitaxy layer with a low electron concentration of /ys'', it is possible to grow a gallium arsenide vapor phase epitaxy layer with a low electron concentration of
As a result of being able to reduce the inversion ratio, n-type low electron concentration layer gold can be grown with much less consumption of arsine, and [4E
% As shown in Figure 5, the electron concentration in the grown layer is 0, which improves controllability and reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、アンドープ成長層のキャリア濃度と、砒素化
合物/有機ガリウムモル比〔ムsl/(Ga)との関係
を示す曲線図、第2図は、この発明に使用した気相成長
装置の一例について示す模式的配置図、第3図は、アン
ドープ状態のバックグラウンドキャリア一度の〔A%V
CG m ’3モル比依存性會示す線図、但し曲m(b
)はこの発明方法に従い1I11度30ppmのテトフ
エチルシランtm加したトリメチルガリウムを用いた例
、曲l/II!A(、)はテトラエチルシランを添加し
ないt\のトリメチルガリウムを用いた例、第4図は、
成長層電子濃度と硫化水素6加菫との関係を示す線図、
第5図は、成長層電子濃度と成長回数との関係【示す点
図であるO 第2図で (1)−ff 製[t     (5) 〜(81−a
 jI It(2)・・・ステンレス製バプラ  (9
)・・・反応容器(3)・・・AsH−ガス高圧容器 
俣ト・・扉熱台(4)・・・H,8ガス高圧容器aυ・
・・Ga人sj!板代理人 弁理士 井 上 −男 第  1  図 0
FIG. 1 is a curve diagram showing the relationship between the carrier concentration of the undoped growth layer and the arsenic compound/organic gallium molar ratio [Musl/(Ga), and FIG. 2 is an example of the vapor phase growth apparatus used in the present invention. The schematic layout diagram shown in FIG. 3 shows the undoped background carrier [A%V
CG m '3 Diagram showing molar ratio dependence, provided that curve m(b
) is an example using trimethyl gallium to which 1I11 degree 30 ppm of tetophethylsilane tm was added according to the method of this invention, track 1/II! A (,) is an example using t\ trimethylgallium without adding tetraethylsilane, and Figure 4 is
A diagram showing the relationship between the growth layer electron concentration and hydrogen sulfide hexagonal,
FIG. 5 is a dot diagram showing the relationship between the growth layer electron concentration and the number of growth times.
jI It(2)...Stainless steel spring (9
)...Reaction container (3)...AsH-gas high pressure container
Matata...Door heating stand (4)...H, 8 gas high pressure container aυ...
...Ga person sj! Board agent Patent attorney Inoue - Male No. 1 Figure 0

Claims (1)

【特許請求の範囲】[Claims] 有機ガリウムと砒素化合物との熱分解反応によ)砒化ガ
リウム會気相成長させるに際し、有機ガリウム又は砒素
化合物にあらかじめ微量のケイ素化合物を含有させ、p
m1反転モル比管小さく保つようにすること1*黴とす
る砒化ガリウム気相成長方法
When performing vapor phase growth of gallium arsenide (by thermal decomposition reaction between organic gallium and an arsenic compound), organic gallium or an arsenic compound is pre-contained with a trace amount of a silicon compound, and p
Try to keep the m1 inversion molar ratio small 1. Gallium arsenide vapor phase growth method using mold
JP57022149A 1982-02-16 1982-02-16 Vapor growth method of gallium arsenide Pending JPS58140400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022149A JPS58140400A (en) 1982-02-16 1982-02-16 Vapor growth method of gallium arsenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022149A JPS58140400A (en) 1982-02-16 1982-02-16 Vapor growth method of gallium arsenide

Publications (1)

Publication Number Publication Date
JPS58140400A true JPS58140400A (en) 1983-08-20

Family

ID=12074799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022149A Pending JPS58140400A (en) 1982-02-16 1982-02-16 Vapor growth method of gallium arsenide

Country Status (1)

Country Link
JP (1) JPS58140400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278287A (en) * 1985-09-30 1987-04-10 住友化学工業株式会社 Method for cleaning colored textile materials with reactive dyes
JPS6278815A (en) * 1985-09-30 1987-04-11 Sumitomo Chem Co Ltd Vapor phase growth method
JPS6278814A (en) * 1985-09-30 1987-04-11 Sumitomo Chem Co Ltd Vapor phase growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278287A (en) * 1985-09-30 1987-04-10 住友化学工業株式会社 Method for cleaning colored textile materials with reactive dyes
JPS6278815A (en) * 1985-09-30 1987-04-11 Sumitomo Chem Co Ltd Vapor phase growth method
JPS6278814A (en) * 1985-09-30 1987-04-11 Sumitomo Chem Co Ltd Vapor phase growth method

Similar Documents

Publication Publication Date Title
JPS5529154A (en) Semiconductor device
US3635771A (en) Method of depositing semiconductor material
JPS58140400A (en) Vapor growth method of gallium arsenide
GB1042933A (en) Methods of growing crystals of gallium arsenide, gallium phosphide or mixtures thereof
SU500714A1 (en) Method of obtaining gallium arsenide layers
GB1149215A (en) Improvements in or relating to the manufacture of epitaxially grown layers of semiconductor compounds
JPS61247686A (en) Preparation of semiconductor single crystal
JPS5861623A (en) Vapor phase growth of 3-5 group compound mixed crystal semiconductor
JPS5453977A (en) Manufacture for gallium phosphide green light emitting element
JPS56112720A (en) Supperssion of thermal denaturation of compound semiconductor
JPS6175531A (en) Formation of crystal for insulating film
JPS57149721A (en) Method of vapor epitaxial growth
JPS59103329A (en) Vapor growth of compound semiconductor layer
JPH01179795A (en) Vapor growth method for iii-v compound semiconductor
Scholz Esprit Morse: research for novel metal–organic precursors
JPS56114332A (en) Forming method for semiconductor insulating film
JPS60145999A (en) Gaseous-phase growth of compound semiconductor
JPS57111016A (en) Manufacture of gallium phosphide arsenide mixed crystal epitaxial wafer
JPH01192797A (en) Vapor-phase crystal growth of iii-v semiconductor
JPS57114227A (en) 3-5 group compound semiconductor vapor growth
JPH03173122A (en) Manufacture of compound semiconductor thin film
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS5792526A (en) Vaper growth of compound semiconductor
JPS56125827A (en) Vapor phase epitaxial growing method of compound semiconductor film
JPS6328030A (en) Compound semiconductor crystal growth method