[go: up one dir, main page]

JPS58138288A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS58138288A
JPS58138288A JP1812382A JP1812382A JPS58138288A JP S58138288 A JPS58138288 A JP S58138288A JP 1812382 A JP1812382 A JP 1812382A JP 1812382 A JP1812382 A JP 1812382A JP S58138288 A JPS58138288 A JP S58138288A
Authority
JP
Japan
Prior art keywords
pressure
suction
compressor
chamber
responsive valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1812382A
Other languages
Japanese (ja)
Inventor
Kenji Takeda
憲司 武田
Mitsuo Inagaki
光夫 稲垣
Masaatsu Ito
正篤 伊東
Yoshio Kurokawa
黒川 喜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP1812382A priority Critical patent/JPS58138288A/en
Publication of JPS58138288A publication Critical patent/JPS58138288A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce the running/stopping frequency for regulating the delivery when compared with conventional one, by varying the delivery of a rotary compressor in accordance to the variation of the suction pressure of the rotary compressor. CONSTITUTION:When the suction pressure in a suction chamber 13 increases to overcome the spring load of a spring 34 in a second pressure responsive valve 27, a plunger 29 is pushed to the left to block a pilot pressure feed path 25. Consequently an intermediate pressure between the delivery pressure and the suction pressure of a compressor is provided in an intermediate chamber 26 and functions through said path 25 on the back face of a first pressure responsive valve 22 to move the valve 22 against the spring 24 and the pressure in an operating chamber 12 to the right then fitted with a return path 21 to block the return path 21 from the suction chamber 13. Consequently the compressor will run with maximum capacity of 100%. While when the suction pressure drops below the setting level, the return path 21 will onen to transfer the operation of about 50% capacity. Consequently the running/stopping frequency for the delivery regulation can be reduced.

Description

【発明の詳細な説明】 本発明は、回転圧縮機、特に、1動車用クーラシステム
の冷媒圧縮機として有用な可**tmの回転圧縮機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary compressor, and particularly to a rotary compressor useful as a refrigerant compressor for a cooler system for a motor vehicle.

自動車用クー2システムに用いられる冷媒圧縮用の回転
圧縮機は、一般Kt&クラッチを介してエンノンのクラ
ンクデーりに連結される。この丸め、圧縮機は700〜
6000 rpmという広範囲の回転数域で使用される
。しかし、圧liA機の容量は主として低回転時に十分
な冷房能力を発揮するように設計される丸め、高回転時
又は低熱負荷時には冷房能力が過大にな9がちとなる。
The rotary compressor for compressing refrigerant used in the automotive Ku2 system is connected to the crankshaft of the Ennon via a general Kt & clutch. This rounding and compressor is 700~
It is used in a wide rotation speed range of 6000 rpm. However, the capacity of the pressure LiA machine is designed mainly to exhibit sufficient cooling capacity at low rotation speeds, but the cooling capacity tends to be excessive at high rotation speeds or low heat loads.

このように、冷房能力が過大になると、圧縮機の吸入圧
力が低下する丸め、圧縮比が大となって圧縮機の効率が
低下し、ひいては自動車の燃費が悪くなるという問題が
生じる。
As described above, when the cooling capacity becomes excessively high, problems arise in that the suction pressure of the compressor decreases, the compression ratio increases, the efficiency of the compressor decreases, and the fuel efficiency of the automobile deteriorates.

本発明は上記問題点に鑑みてなされ丸もので、高回転時
、低熱負荷運転時及び起動時に圧縮機の吐出容量を低下
させることができ、且つ特別な制御装置を必豐とせず、
連続的に容量を変化させうる可変容量雛の回転圧縮機を
提供することを目的とする。
The present invention has been made in view of the above problems, and is capable of reducing the discharge capacity of the compressor during high rotation, low heat load operation, and startup, and does not require a special control device.
It is an object of the present invention to provide a variable capacity rotary compressor that can continuously change the capacity.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図ないし第4図は本発明の−*m例を示すものであ
る0図において、1は圧縮機本体で、該圧fIl横本体
1はシリンダ状の内壁2ムを有する2イナ2を有してお
夛、腋うイナ20前端面(第1図中左端1ffi)には
7Wントナイドデレート3が配設され、ライナ20後端
面にはリアサイドプレート4が配設され、7Wントナイ
ドデレート3の前端EfiKはフロントハウジング、、
Sが配設され、フロントサイドプレート3の後端面には
、ライナ3及びリアサイドプレート3を覆うリアハウジ
ング6が配設されている。これらフロントハウジング5
゜フーントサイドプレート3.ライナ2.リアサイドプ
レート4及びリアハウジング5は図示しないがルトで一
体に固定されている。
1 to 4 show examples of the present invention. In FIG. A 7W tonide plate 3 is disposed on the front end surface of the liner 20 (left end 1ffi in FIG. 1), and a rear side plate 4 is disposed on the rear end surface of the liner 20. The front end EfiK of Derate 3 is the front housing.
A rear housing 6 is provided on the rear end surface of the front side plate 3 to cover the liner 3 and the rear side plate 3. These front housings 5
゜Hunt side plate 3. Liner 2. Although not shown, the rear side plate 4 and the rear housing 5 are fixed together with a bolt.

ライナ2内にはロータ7が偏心状態で回転自在に設けら
れておシ、このロータ7に一体に結合され九回転軸8は
フロントサイドプレート3にベアリング9を介して支持
されている。回転s8はフロントハウジング5の外部に
延びており、該回転軸8は図示しない電磁クラッチを介
してエンジンの駆動力を受けるようKなっている。回転
軸8とフロントハウジング5との間には、外気との密封
を保つ九めの軸紺装置10が配設されている。
A rotor 7 is eccentrically and rotatably provided within the liner 2, and a rotating shaft 8 integrally connected to the rotor 7 is supported by the front side plate 3 via a bearing 9. The rotation s8 extends outside the front housing 5, and the rotation shaft 8 is adapted to receive the driving force of the engine via an electromagnetic clutch (not shown). Between the rotating shaft 8 and the front housing 5, a ninth shaft device 10 is arranged to maintain a seal from the outside air.

第3図に示すように10−タフにはその中心を貫通し且
つ半径方向に摺動可能な2つのベーン11が設けられて
いる。ぺ一711の両端はロータ7の回転に伴って常時
2イナ2の内1m2AK摺接するようKなっており、ベ
ーン11.ロータ7゜□ ライナ2及びナイドグレート3.4によってここでは4
つの作動If!12が形成されている。各作動j112
は一一夕7の回転に伴って移動しつつ容積変化を繰返す
ようになっている。
As shown in FIG. 3, the 10-tough is provided with two vanes 11 which pass through its center and are slidable in the radial direction. Both ends of the vanes 11.1 and 711 are so arranged that they are always in sliding contact with each other by 1 m2 of 2 in.2 as the rotor 7 rotates. Rotor 7゜□ Here it is 4 due to liner 2 and nid grating 3.4
One operation If! 12 are formed. Each operation j112
is adapted to move and change its volume over and over again as it rotates throughout the day.

第2図に示すように1フ四ントハウジング5の前端面に
は円弧溝状の吸入1113が形成されてお夛、吸入ポー
ト14からこの吸入1i113内に吸入され九被圧縮流
体は、第2図及び第3図に示すように、フロントナイド
プレー)3に開口した吸込口Isから容積増加段階に入
−)九作動1i112内に吸込まれるようKなっている
。すなわち、作動室12が吸込口1st通過すみ間に作
動1112内に吸入圧の被圧縮流体が充填される。そし
て、作動室12に吸込壇れえ被圧縮流体は作動iii[
120容積減少に伴りて圧縮され、作動ml!内の圧力
が吐出圧力に達し九とき、吐出口16からりアハウノン
ダ6内の吐出室17内に吐出される。18は吐出弁、1
9は吐出弁180開弁量を規制する弁ストッA# 20
は外部への吐出4−トである。
As shown in FIG. 2, an arcuate groove-shaped suction 1113 is formed on the front end surface of the first housing 5, and the compressed fluid drawn into this suction 1i113 from the suction port 14 is As shown in FIG. 3 and FIG. 3, the pump enters the volume increase stage through the suction port Is opened in the front knife plate 3 and is sucked into the actuator 1i112. That is, the fluid to be compressed at the suction pressure is filled into the actuator 1112 between the working chamber 12 and the suction port 1st. Then, the fluid to be compressed enters the working chamber 12 through the suction stage, and the fluid to be compressed enters the working chamber 12 into the working chamber 12.
Compressed with volume reduction of 120, working ml! When the internal pressure reaches the discharge pressure, it is discharged from the discharge port 16 into the discharge chamber 17 in the Ahunonda 6. 18 is a discharge valve, 1
9 is a valve stop A# 20 that regulates the opening amount of the discharge valve 180
is the discharge point to the outside.

フロントサイドプレート3にはシリンダ状の被圧縮流体
戻し通路(以下戻し通路という、)21が設けられてい
る。戻し通路21の一端は作動室12に@口してお1、
戻し通路21の他端は吸入室1BK開口している。
The front side plate 3 is provided with a cylindrical compressed fluid return passage (hereinafter referred to as a return passage) 21. One end of the return passage 21 is connected to the working chamber 12.
The other end of the return passage 21 is open to the suction chamber 1BK.

22は戻し通路21を開閉する丸めO第1圧力応動弁で
、該第1圧力応動弁211は第4図にも示すように1吸
入1113の途中に設けられ丸ガイドスリーブ23に摺
動可能に支持されており、jll圧力応動弁22の先端
部は戻し通路21に嵌合可能に形成されており、戻し通
路21への鮒合によって戻し通路21と吸入室13との
連通を断つようKなっている。
22 is a round O first pressure-responsive valve that opens and closes the return passage 21; as shown in FIG. The distal end of the pressure-responsive valve 22 is formed to be able to fit into the return passage 21, and the distal end of the pressure-responsive valve 22 is configured to cut off communication between the return passage 21 and the suction chamber 13 by fitting into the return passage 21. ing.

第1圧力応動弁22はばね24によって戻し通路21を
開く方向に付勢されているが、第1圧力応勘弁22の先
端面には作動室12内の圧力が開弁方向に作用するので
、ばね24を省略してもよい。
The first pressure-responsive valve 22 is biased by the spring 24 in the direction of opening the return passage 21, but since the pressure within the working chamber 12 acts on the front end surface of the first pressure-responsive valve 22 in the valve-opening direction, The spring 24 may be omitted.

7曹ントハウジング60後端面には第1圧力応勘弁22
に対して戻し通路21を閉じさせる方向にノ9イi’l
y)圧を作用させる丸めのノ量イロット圧供給通路8!
lが形成されている。第2図に示すように、このノ譬イ
四ット圧供給通路25の一端25Aはガイドスリーブ2
3内の第1圧力応勘弁22の背面@に開口してお砂、ノ
臂イ曹、ト圧供給通路25C)他端25Bは吸入室11
1に開口している。そして、ノ豐イー、ト圧供艙通路2
器の途中に中間圧1i126が位置してお〉、該中間圧
1126と吸入1113との間のノ量イーット圧供給通
路25の途中に%吸入室13内の吸入圧変化に応じてノ
fイロ、ト圧供給通路2sを開閉する第2圧力応動弁2
7が設けられている。
A first pressure adjustment valve 22 is provided on the rear end surface of the seventh housing 60.
9 i'l in the direction of closing the return passage 21 against
y) A rounded amount of pressure supply passage 8 that applies pressure!
l is formed. As shown in FIG. 2, one end 25A of the four pressure supply passage 25 in this example
3, the other end 25B is the suction chamber 11.
It opens at 1. And then, the pressure supply aisle 2
An intermediate pressure 1i 126 is located in the middle of the chamber, and in the middle of the pressure supply passage 25 between the intermediate pressure 1126 and the suction 1113, a pressure adjustment is made according to changes in the suction pressure in the suction chamber 13. , a second pressure-responsive valve 2 that opens and closes the pressure supply passage 2s.
7 is provided.

この中間王室26は回転−8とフロントハウジング5と
フロントナイドプレート3と馳−夕7と軸MWI置10
とによってaすれ九空間で、この中間圧室26はロータ
7とフロントサイドプレート3との摺動做小−間を介し
て前記各作動*12に連通されている九め、圧縮機回転
時には中間圧室26内は圧縮機の吐出圧と吸入圧との#
1ぼ中間的な圧力となり、圧縮機停止時には中間圧室2
6内は吸入圧と同圧になる。このことは実験で確11−
gれている。を九、第2圧力応動弁27について詳しく
説明すると、第4図にも示すように1ノ臂イ四、ト圧供
給通路25の途中と交叉し九デツンゾヤ11211にプ
ランジャ29が摺動可能に挿入されておp1プランジャ
29の一端にはぺ關フラム3゜が取付けられている。フ
ロントハウジング5の前面に弁ハウシング81が取付け
られており、骸弁ハウゾンダ31とフロントハウジング
5との間に形成された空所がぺ闘フラム30によって大
気開放[32と吸入圧導入133とに画成されている。
This intermediate royal 26 has a rotation 8, a front housing 5, a front night plate 3, a front housing 5, a front housing 7, and an axis MWI position 10.
This intermediate pressure chamber 26 is connected to each operation *12 through the sliding space between the rotor 7 and the front side plate 3, and when the compressor is rotating, the intermediate pressure chamber 26 is Inside the pressure chamber 26, the discharge pressure and suction pressure of the compressor are
When the compressor is stopped, the pressure becomes intermediate pressure chamber 2.
The pressure inside 6 is the same as the suction pressure. This is confirmed by experiment11-
It's broken. 9. To explain in detail about the second pressure-responsive valve 27, as shown in FIG. A pepphram 3° is attached to one end of the p1 plunger 29. A valve housing 81 is attached to the front surface of the front housing 5, and a space formed between the valve body 31 and the front housing 5 is opened to the atmosphere [32] and a suction pressure introduction 133 by the pet flam 30. has been completed.

大気開放室32内にはベロフラム3oを吸入圧導入11
33@に付勢するばね34が配設されており、吸入圧導
入!33は707トハウジング5に形成した連通孔21
5(3112図参照)を介して常時吸入室13と連通し
ている。し九がって、吸入室13内の吸入圧による荷重
がばね34の設定荷重よりも大きくなるとべ+27ラム
30はばね34に抗して大気開放1132儒に移動し、
これによってグランジャ29%第1図中左方に移動して
弁ハウジング31に尚接する。
Velofram 3o is introduced under suction pressure 11 into the atmosphere open chamber 32.
A spring 34 is installed to bias 33@, and suction pressure is introduced! 33 is a communication hole 21 formed in the housing 5 of 707.
5 (see diagram 3112), it is constantly in communication with the suction chamber 13. Therefore, when the load due to the suction pressure in the suction chamber 13 becomes larger than the set load of the spring 34, the ram 30 moves against the spring 34 to open to the atmosphere,
As a result, the granger 29% moves to the left in FIG. 1 and still contacts the valve housing 31.

wi2圧力応動弁27のシランツヤ29の連通路(ここ
では外周#1I)29ムは、!シンシャ29がばね34
で#I6図中右方に押しやられているときに/4イロ、
ト圧供給通路2gを導通させるように位置決め形成され
ている。
The communication path (outer circumference #1I here) of the silane gloss 29 of the wi2 pressure-responsive valve 27 is! Shinsha 29 is spring 34
So when #I6 is being pushed to the right in the diagram, /4 Iro,
It is positioned and formed so as to conduct the pressure supply passage 2g.

次に1上記構成の回転圧縮機を自動車用クーラシステム
に適用し友場合の作動を説明する。この場合、回転軸8
は図示しない電磁クラッチを介してエンジンの回転駆動
力を受ける。を九、吸入ポート14はクーラシステムの
冷媒蒸発器に接続され、吐出ポート20はクーラシステ
ムの凝縮機に接続される。
Next, the operation of the rotary compressor having the above-mentioned configuration will be explained when it is applied to an automobile cooler system. In this case, the rotating shaft 8
receives the rotational driving force of the engine via an electromagnetic clutch (not shown). Nine, the suction port 14 is connected to the refrigerant evaporator of the cooler system, and the discharge port 20 is connected to the condenser of the cooler system.

ロータ7が第3図中反時計方向く回転すると、吸入圧の
冷媒が蒸発器側から吸入$−)14.吸入M1B及び吸
込口15を通りて作動ml!内に吸込まれる。
When the rotor 7 rotates counterclockwise in FIG. 3, the refrigerant at the suction pressure is sucked from the evaporator side ($-)14. Operation ml through suction M1B and suction port 15! sucked inside.

容量調整を行なわない場合には、戻し通路21は閉じて
いる丸め、圧縮機の吐出容量はベーン11が第3図中破
線で示す位置オで移動したときに作動1!12内に閉じ
込められた冷媒の量となシ、このと自作動1112の容
積は最大となっている。
If the capacity adjustment is not carried out, the return passage 21 is closed and the discharge capacity of the compressor is confined within the operating range 1!12 when the vane 11 moves to the position O shown by the broken line in FIG. In terms of the amount of refrigerant, the volume of the automatic actuation 1112 is the maximum.

一方、容量調整を行なりえ場合には、戻し通路21は開
放され吸入1113と連通している。し九かって、この
場合の圧縮機の吐出容量は、作動室12を画成する2つ
のベーン11のうちの回転方向後方−のベーン11が戻
し通路21を通過し九直後の作動室容積(第3図中打点
を施こし死領域)となる・本実施例の場合、仁のときの
容積は最大容積の約SOsとなるように戻し通路21の
位置及び大きさが設定されているが、容積減少率は5o
16以外の値であってもよい。
On the other hand, when the capacity can be adjusted, the return passage 21 is opened and communicated with the suction 1113. Therefore, the discharge capacity of the compressor in this case is determined by the working chamber volume immediately after the rear vane 11 in the rotational direction of the two vanes 11 defining the working chamber 12 passes through the return passage 21. In this example, the position and size of the return passage 21 are set so that the volume at full capacity is about SOs, which is the maximum volume. The reduction rate is 5o
It may be a value other than 16.

ぺ四72ム30の吸入圧導入ii匈端面に加わる圧力す
なわち吸入圧による荷重が、ばね34の設定荷重よシも
小さいとII(例えば吸入圧が2ゆ/as”G以下のと
11)は、シランツヤ29はばね34で第1図中右方に
押しやられているため、ノ9イロ、ト圧供給通路25は
シランツヤ29の連通路29ムを介して吸入圧lll5
と連通している。このため、第1圧力応動弁22の背面
に作用する圧力は吸入圧となり、第1圧力応動弁22は
ばね24及び作動室12内の圧力にょシ第1図中左方に
押されて戻し通路21を開放する。し九がって、圧fI
I1機は最大容積の約son容積の運転を行なう。
If the pressure applied to the suction pressure introduction ii end face of the p472mm 30, that is, the load due to the suction pressure, is smaller than the set load of the spring 34, then II (for example, when the suction pressure is less than 2Y/as"G) will be Since the silant gloss 29 is pushed to the right in FIG. 1 by the spring 34, the suction pressure
It communicates with Therefore, the pressure acting on the back surface of the first pressure-responsive valve 22 becomes suction pressure, and the first pressure-responsive valve 22 is pushed to the left in FIG. Open 21. Then, the pressure fI
The I1 machine operates at a maximum volume of approximately son volume.

一方、吸入室13への吸入圧が高tb、第2圧力応動弁
27のばね34のばね荷重に打勝つと、グランツヤ29
は第1図中左方に押しやられてるため、ノ臂イロット圧
供給通路25はプランジャ29によって1断される。こ
のため、中間圧室26内は圧縮機の吐出圧と吸入圧との
中間圧となり、この中間圧がノ臂イー、ト圧供給通路2
sを経て第1圧力応動弁22の背面に作用する。この九
め、第l圧力応動弁22はばね24及び作動室12の圧
力に抗して第1図中右方に移動し、戻し通W1121に
嵌合して戻し通路21と吸入室13との連通を断つ。し
九がって、圧縮機は最大容量1001!の運転を行なう
働 このように%吸入圧が設定圧力(ここでは2時101G
 )よシ高いときには戻し通路21が閉じて圧縮機が最
大容量の運転を行なう。
On the other hand, when the suction pressure to the suction chamber 13 is high tb and overcomes the spring load of the spring 34 of the second pressure-responsive valve 27, the grand gloss 29
is pushed to the left in FIG. Therefore, the inside of the intermediate pressure chamber 26 becomes an intermediate pressure between the discharge pressure and the suction pressure of the compressor, and this intermediate pressure
It acts on the back surface of the first pressure-responsive valve 22 via s. Ninth, the first pressure-responsive valve 22 moves to the right in FIG. Cut off communication. After all, the compressor has a maximum capacity of 1001! In this way, the % suction pressure is the set pressure (here 101G at 2 o'clock).
) When the pressure is too high, the return passage 21 is closed and the compressor operates at maximum capacity.

壕九、吸入圧力が設定圧力以下に下がると戻し通路21
が開いて圧縮機は約5091容量の運転に移行する。
Trench 9, when the suction pressure drops below the set pressure, the return passage 21
is opened and the compressor shifts to operation at approximately 5091 capacity.

ここで、圧縮機の夷−の動きについて、第6図(a) 
= (b) −(c)を参照して説明すると、例えば第
5図(&)のように1熱負荷が時間とともに減少すると
、容量調整を行なわない圧縮機の場合には第5図(b)
中において破線で示す如く吸入圧は熱負荷の減少に従っ
て低下する。しかしながら、本発明による可変容量型圧
縮機の場合、吸入圧力が低下したときには圧縮機の吐出
容量が減少し、これによって吸入圧力の回復が図られる
ため、容量調整できる範囲では第5図伽)中において実
線で示す如く吸入圧力をはぼ一定とすることができる。
Here, regarding the movement of the compressor, Fig. 6 (a)
To explain with reference to = (b) - (c), for example, when the heat load decreases over time as shown in Figure 5 (&), in the case of a compressor that does not perform capacity adjustment, Figure 5 (b) )
As shown by the broken line, the suction pressure decreases as the heat load decreases. However, in the case of the variable capacity compressor according to the present invention, when the suction pressure decreases, the discharge capacity of the compressor decreases, and the suction pressure is thereby restored. As shown by the solid line, the suction pressure can be kept almost constant.

すなわち、圧縮機のみかけ上の吐出容量を′lI45図
(c)に示す如く100−から50−まで連続的に変化
させて吸入圧を一定に保つようKなっている。
That is, the apparent discharge capacity of the compressor is continuously changed from 100 to 50 as shown in Figure 1I45 (c) to keep the suction pressure constant.

このことは、第6図(a) 、 (b) 、 (c) 
、 (d)に示すように、戻し通路21の開閉のデユー
ティ比が連続的に変化することによって達成されゐ、す
なわち、クーラシステムの熱負荷が高く、吸入圧力が設
定圧力よ)高い状態(第5図(a)のA点以前)のとき
は、圧縮機は第6図(a)K示す如く常時100%容2
量運転を行なっているが、その後熱負荷が下が如、吸入
圧力が設定圧力以下となれば(第5図(e)のB点付近
)、戻し通路21が開いて圧縮機は約50優容量運転に
なる。ただ、この状態では、50’j容量となれば直ち
に吸入圧力が設定圧力以上に回復して再び戻し通路21
を閉じる丸め、全体としては第6図6)に示す如く吐出
容量100慢の状態の方が多く、この丸め圧縮機のみか
け上の吐出容量はさほど低下しない。
This is shown in Figure 6 (a), (b), (c).
As shown in (d), this is achieved by continuously changing the duty ratio of opening and closing of the return passage 21. In other words, when the heat load of the cooler system is high and the suction pressure is higher than the set pressure (the first (before point A in Figure 5 (a)), the compressor is always at 100% capacity 2 as shown in Figure 6 (a) K.
However, when the heat load decreases and the suction pressure falls below the set pressure (near point B in Fig. 5(e)), the return passage 21 opens and the compressor operates at a rate of about 50%. It becomes capacity operation. However, in this state, as soon as the capacity reaches 50'j, the suction pressure recovers above the set pressure and the return passage 21
As a whole, as shown in FIG. 6, the discharge capacity is often 100, and the apparent discharge capacity of this rounding compressor does not decrease much.

その後、更に熱負荷が下がると(第5図(o)の0点付
近)、50慢容量運転に入り死後に吸入圧力が設定圧力
以上の圧力に回復するまでの時間が第6図(c)に示す
如く長くなシ、この友め、圧縮機のみかけ上の吐出容量
は漸減する。そして、吸入圧力がt#IJ5図(e)の
D点付近まで低下し九ときは圧縮機は常時50−容量運
転を行なう、更に1熱負荷が看しく小さく、50−容量
運転にもかかわらず吸入圧力が低下すゐ場合には、電磁
クラ、チを切って圧M機の運転を中止する。圧縮機の運
転を止めると吸入圧は上昇し、従って次に圧縮機を再起
動させるときには第1圧力応動弁22の背面には中間圧
力が加わることになるが、中間圧は圧縮機停止後短時間
で吸入圧と同化する丸め、このように中間圧が加わった
としても#11圧力応動弁22ま九、戻し通路21の開
閉のデユーティ比は熱負荷の変動だけでなくエンジン回
転数の変動につれても自動的に変化してゆく。この場合
、吸入圧力の安定は戻し通路21の応答性の早さくかか
わってくるが本発明では第1圧力応動弁22の背面に吸
入圧、中間圧を選択的に作用させるため応答性がよく、
常に変動に追従している0本発明者等の実験によれば、
圧縮機のみかけ上の谷1調!I範囲(第5図(c)のム
〜D)では毎秒1回以上のかなりの頻度で戻し通路21
が開閉されることが確かめられた。友だ、本発明では上
記の如く第1圧力応動弁22の背面には中間圧がかかり
、吐出圧のような過大な圧力が加わることがないので、
第1圧力応動弁22が戻し通路21の開閉を繰り返して
も、第1圧力応動弁22やサイドプレート3を損傷させ
ることはない。
After that, when the heat load further decreases (near the 0 point in Figure 5 (o)), 50-hour capacity operation begins and the time required for the suction pressure to recover to the set pressure or higher after death is shown in Figure 6 (c). As shown in , the apparent discharge capacity of the compressor gradually decreases over time. Then, when the suction pressure decreases to around point D in Figure t#IJ5 (e), the compressor always operates at 50-capacity.Furthermore, the heat load is noticeably small, despite the 50-capacity operation. If the suction pressure drops, turn off the electromagnetic clutch and stop the operation of the pressure machine. When the compressor stops operating, the suction pressure increases, and therefore, when the compressor is restarted next time, an intermediate pressure will be applied to the back of the first pressure-responsive valve 22, but the intermediate pressure will be maintained for a short time after the compressor is stopped. Even if intermediate pressure is added in this way, the duty ratio of opening and closing of the #11 pressure-responsive valve 22 and the return passage 21 will change not only due to changes in heat load but also due to changes in engine speed. will also change automatically. In this case, the stability of the suction pressure depends on the quick response of the return passage 21, but in the present invention, the suction pressure and the intermediate pressure are selectively applied to the back surface of the first pressure-responsive valve 22, so the response is good.
According to the experiments conducted by the inventors,
The apparent trough of the compressor! In the I range (M to D in FIG. 5(c)), the return passage 21
was confirmed to open and close. Friend, in the present invention, as described above, intermediate pressure is applied to the back surface of the first pressure-responsive valve 22, and excessive pressure such as discharge pressure is not applied.
Even if the first pressure-responsive valve 22 repeatedly opens and closes the return passage 21, the first pressure-responsive valve 22 and the side plate 3 will not be damaged.

まえ、圧縮機の運転を停止させると、圧縮機の吸入圧は
高まるため、プランシャ29は第1図中左方に押しやら
れてノfイロ、ト圧供給通路26を開くが、中間圧!2
6及びノ譬イロット圧供給通路25内の圧力は吸入備へ
の洩れによって吸入圧と等しい圧力まで低下するため、
第1圧力応動弁22は戻し通路21から離間して戻し通
路21を開放する。し九がって、その後圧縮機を起動さ
せる1llKは戻し通路21は開いてお)、圧縮機は第
5図(e)の如く約50vI容量状態で起動することと
なるため、電磁クラッチの起動負荷を軽減させることが
できるようKなる。
First, when the compressor operation is stopped, the suction pressure of the compressor increases, so the plunger 29 is pushed to the left in FIG. 1 and opens the pressure supply passage 26, but the intermediate pressure! 2
The pressure inside the pressure supply passage 25 decreases to a pressure equal to the suction pressure due to leakage to the suction equipment.
The first pressure-responsive valve 22 is separated from the return passage 21 to open the return passage 21. Therefore, when the compressor is started (1llK), the return passage 21 is open), and the compressor is started with a capacity of about 50 vI as shown in Fig. 5(e), so the electromagnetic clutch cannot be started. K so that the load can be reduced.

以上実施例に一’)@説明し九が、本発明は上記実施例
のみに限定されるものではなく、例えば、第1圧力応勘
弁を戻し通路と交叉する方向に移動可能に設けるように
してもよい。この場合、作動室内の圧力は第1圧力応動
弁に対し開弁方向に作用しなくなるため、ばねで開弁方
向に付勢するようKすればよい、まえ、ΔイI”y)圧
供給通路に/1態様であってもよい。
The above embodiments have been described above, but the present invention is not limited to the above embodiments. For example, the first pressure adjustment valve may be provided movably in the direction intersecting the return path. Good too. In this case, the pressure in the working chamber no longer acts on the first pressure-responsive valve in the valve-opening direction, so the spring can be used to bias it in the valve-opening direction. /1 aspect may be sufficient.

以上のように、本発明は回転圧縮機の吸入圧の変化に応
じて回転圧縮機の吐出容量を変化させるようにしたから
、従来に比べて吐出量調整のための回転圧縮機の運転・
停止回数を大幅に減少させることができるようになる。
As described above, since the present invention changes the discharge capacity of the rotary compressor in accordance with changes in the suction pressure of the rotary compressor, the operation and control of the rotary compressor for adjusting the discharge amount is more efficient than in the past.
The number of stops can be significantly reduced.

シ九がって、回転圧縮機を自動車用ターラシステムに適
用し九場合に、回転圧縮機とエンジン出力側とを連結す
る電磁クラッチのオン・オフ回数を大幅に減少させるこ
とがで龜るようKなり、自動車の運転フィーリング及び
冷房フィーリングを向上させる仁とができるようになる
Therefore, when a rotary compressor is applied to an automotive tara system, it will be possible to significantly reduce the number of times the electromagnetic clutch that connects the rotary compressor and the engine output side is turned on and off. It becomes possible to improve the driving feeling and cooling feeling of the car.

しか4、起動時における圧縮機容量を少なくすることが
できる丸め、起動負荷を軽減できることとなり、電磁ク
ラッチを小型化できることとなる。
However, 4, the compressor capacity at startup can be reduced, the startup load can be reduced, and the electromagnetic clutch can be downsized.

を九、電磁クラッチのオン・オフ回数が減少するため、
電磁り2ツチの耐久性が向上する。
Nine, because the number of times the electromagnetic clutch turns on and off decreases,
The durability of the two electromagnets is improved.

更に、本発v4によれば、圧力応動弁以外の例えば電磁
弁を用いることなく、連続的で応答性のよい容量変化を
行なわせることができるから、構造が簡単で部品点数も
少なくなり、安@に提供できることとなる。
Furthermore, according to the present invention v4, it is possible to change the capacity continuously and with good responsiveness without using a solenoid valve other than a pressure-responsive valve, so the structure is simple, the number of parts is reduced, and it is safe. This means that it can be provided to @.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すもので、第2図の1−1
mに沿った断面図、第2図は第1図の川−I婦に沿った
断面図、#13図は第1図の曹−門−に沿り死所面図、
第4図は第1圧力応動弁及び第2圧力応勘弁近傍の拡大
断面図。 第5図ta) 、 (b) 、(e)及び第6図(a)
 −(b) 、 (c) 、 (d)はそれぞれ本発明
の作動説明図。 1・・・圧縮機本体、7・・・ロータ、12・・・作動
室、13・・・吸入室、17・・・吐出室、21・・・
被圧縮流体戻し通路、22・・・第1圧力応動弁、25
−−−−々イロ、ト圧供給通路、26・・・中間圧室、
27・・・第2圧力応動弁。 第4図 13 第51図(Q) 時間
FIG. 1 shows an embodiment of the present invention, and 1-1 in FIG.
Figure 2 is a cross-sectional view along River I in Figure 1, Figure #13 is a view of the death site along Cao-men in Figure 1,
FIG. 4 is an enlarged sectional view of the vicinity of the first pressure-responsive valve and the second pressure-responsive valve. Figure 5 ta), (b), (e) and Figure 6 (a)
-(b), (c), and (d) are respectively explanatory views of the operation of the present invention. DESCRIPTION OF SYMBOLS 1... Compressor main body, 7... Rotor, 12... Working chamber, 13... Suction chamber, 17... Discharge chamber, 21...
Compressed fluid return passage, 22...first pressure responsive valve, 25
----Iro, G pressure supply passage, 26... intermediate pressure chamber,
27...Second pressure responsive valve. Figure 4 13 Figure 51 (Q) Time

Claims (1)

【特許請求の範囲】 1、圧縮機本体内に、ロータの回転に伴って移動しつつ
容積変化を繰返す作動室と、容積増加段階に入り九作動
mK連通される吸入室と、容積最小段階に違し九作動富
に連通される吐出室とが形成され九回転圧縮機において
、 前記圧縮機本体に1容積減少段階に入りた作動室及び前
記吸入室間を連通させる被圧縮流体戻し通路と、鎖被圧
縮流体戻し通路を開閉する第1圧力応勘弁と、咳第1圧
力応動弁に対し被圧縮流体戻し通路を閉じさせる方向1
()fイロtト圧を作用させるためのノ譬イOyト圧供
給通路とがそれぞれ設けられ、 11、−fイロ、ト圧供給通路途中に、前記吸入室内の
歇入圧変化に応じて誼ノ臂イロット圧供給通路を開閉す
−る第2圧力応動弁が設けられ、前記ノ4イロット圧供
給通路唸微小な隙間を介して圧縮機の前記作動室に連通
され、これによplo−一回転時には該ノ4イロ、ト圧
供給通路内は吐出圧と吸入圧との中間圧になり、−一タ
停止時には吸入圧と同圧になることを特徴とする回転圧
縮機0
[Claims] 1. In the compressor main body, there is an operating chamber that repeatedly changes volume while moving with the rotation of the rotor, a suction chamber that enters the volume increase stage and is communicated with nine operating mK, and enters the minimum volume stage. In a nine-rotary compressor, the compressor body is formed with a discharge chamber that communicates with nine working chambers, and a compressed fluid return passage that communicates between the working chamber that has entered the one volume reduction stage in the compressor body and the suction chamber; A first pressure responsive valve that opens and closes the compressed fluid return passage; and a direction 1 that causes the first pressure responsive valve to close the compressed fluid return passage.
11. In the middle of the -f pressure supply passages, a pressure supply passage for applying pressure to the suction chamber is provided. A second pressure-responsive valve is provided to open and close the lower pilot pressure supply passage, and the lower pilot pressure supply passage communicates with the working chamber of the compressor through a small gap. A rotary compressor characterized in that during one rotation, the pressure in the pressure supply passage becomes intermediate between the discharge pressure and the suction pressure, and when the rotation is stopped, the pressure becomes the same as the suction pressure.
JP1812382A 1982-02-09 1982-02-09 Rotary compressor Pending JPS58138288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1812382A JPS58138288A (en) 1982-02-09 1982-02-09 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1812382A JPS58138288A (en) 1982-02-09 1982-02-09 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS58138288A true JPS58138288A (en) 1983-08-17

Family

ID=11962822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1812382A Pending JPS58138288A (en) 1982-02-09 1982-02-09 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS58138288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0144790A2 (en) * 1983-11-10 1985-06-19 Matsushita Electric Industrial Co., Ltd. Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0144790A2 (en) * 1983-11-10 1985-06-19 Matsushita Electric Industrial Co., Ltd. Compressor

Similar Documents

Publication Publication Date Title
US5074760A (en) Scroll type compressor
JP4776203B2 (en) Variable displacement vane pump with variable target adjuster
JPS58155287A (en) Refrigerating unit
JPH0511222B2 (en)
US4743168A (en) Variable capacity compressor and method of operating
WO1995025225A1 (en) Variable displacement type compressor
US5030066A (en) Variable-delivery vane-type rotary compressor
US4502850A (en) Rotary compressor
JPS58138288A (en) Rotary compressor
JP2003201976A (en) Variable-displacement vane pump with variable target adjuster
JPH0366163B2 (en)
JPS6229779A (en) Compressor for vehicle air conditioner
JP2529118B2 (en) Operation control method for engine-driven compressor
JPH01216086A (en) Variable capacity type compressor
JPS6346713Y2 (en)
JPH0716071Y2 (en) Variable capacity compressor
JPS62251482A (en) Check valve for delivery port of compressor
JPS6332948Y2 (en)
JPS6334320B2 (en)
JPS59110882A (en) Variable volume vane pump
CA1331751C (en) Rotary compressor
JPH0118864Y2 (en)
JPS6246164A (en) Variable displacement compressor
JPS5968593A (en) Variable capacity type compressor
JPH01155093A (en) Variable displacement rotary compressor