[go: up one dir, main page]

JPS58119672A - Semiconductor non-volatile memory device - Google Patents

Semiconductor non-volatile memory device

Info

Publication number
JPS58119672A
JPS58119672A JP57002062A JP206282A JPS58119672A JP S58119672 A JPS58119672 A JP S58119672A JP 57002062 A JP57002062 A JP 57002062A JP 206282 A JP206282 A JP 206282A JP S58119672 A JPS58119672 A JP S58119672A
Authority
JP
Japan
Prior art keywords
floating gate
width
drain
channel
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57002062A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuo
龍一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57002062A priority Critical patent/JPS58119672A/en
Publication of JPS58119672A publication Critical patent/JPS58119672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/681Floating-gate IGFETs having only two programming levels
    • H10D30/684Floating-gate IGFETs having only two programming levels programmed by hot carrier injection
    • H10D30/685Floating-gate IGFETs having only two programming levels programmed by hot carrier injection from the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/681Floating-gate IGFETs having only two programming levels

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enhance the degree of integration and to charge high floating gates with high energy, by making the width of the floating gates equal to or narrower than the width of a drain region or a source region. CONSTITUTION:''Writing'' is made by applying a high voltage to a drain 3 and a control gate 2. For example, when the ratio of channel width/channel length of a transistors Tr 1 and Tr 3 is made to be 0.5mum and the ratio of channel width/channel length of a transistor Tr 2 is made to be 10/5mum, the parallel resistance of the transistors Tr 1 and Tr 3 becomes the high resistance about 10 times the transistor Tr 2. Therefore, when the high voltage is applied to the drain and the control gate of the floating gate type memory Tr 2, high energy electrons generated in the channel region exceed the energy gap in the conduction band of an insulating body 8, reach the floating gates 1, and charge the floating gates 1. The writing is performed in this way. ''Erase'' is performed by irradiating ultraviolet rays or light close to the ultraviolet rays thereby discharging the electrons in the floating gates.

Description

【発明の詳細な説明】 この発明に、半導体不揮発性メそり装置に関するもので
ろる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor non-volatile semiconductor device.

従来この種の装置として第1図に示すものがめった。第
1図−)は、Nチャンネルの浮遊ゲート屋不揮発性メモ
リの平面パターン図でらるo(1)は第1層目の周囲を
絶縁体で橿われた導電物(以下浮遊ゲー))、+2H;
j第2層目の導電物(以下制御ゲ−) ) 、11)に
ドレイン側N型不純物拡散層、14)はソースIINI
I不純物拡散層、(5)にドレイン側N型不純物拡散層
(3)の浮遊ゲー) (1)下へのくい込み領域、+6
1tl!ソ一ス側N型不純物拡散層(4)の浮遊ゲート
(1)下へのくい込み領域、(91t’!となり合うメ
モリの浮遊ゲート(1)間領斌、αO)ハ浮遊ゲート(
11のチャンネル部よりの延在部、α)は拡散領域幅で
ある。
Conventionally, a device of this type is shown in FIG. 1. Figure 1-) is a planar pattern diagram of an N-channel floating gate nonvolatile memory. +2H;
j second layer conductor (hereinafter referred to as control gate), 11) is the drain side N-type impurity diffusion layer, 14) is the source IINI
I impurity diffusion layer, (5) floating gate of drain side N type impurity diffusion layer (3)) (1) Downward digging region, +6
1tl! The region where the N-type impurity diffusion layer (4) on the source side sinks under the floating gate (1), (91t'! The area between the floating gates (1) of the memories that meet each other, αO)
The extension part 11 from the channel part, α) is the width of the diffusion region.

第1図(b)は第1図(a)の要部断面図である◎(7
)はP朦シリコン基板、(8)に絶縁体である。 次に
動作について説明する。浮遊ゲート(1)に電子を充電
することを「書込み」といい浮遊ゲート(1)から電子
を放出することを「消去」という。まず「書込み」は、
ドレイン(3)と制御ゲート(2)に高電圧を印加しチ
ャンネル領域で発生した高エネルギ電子を絶縁体(8)
の伝導帯のエネルギギャップを越えて浮遊ゲート(1)
に到達させ浮遊ゲート(1)を帯電させることにより行
なわれる。「消去」は紫外線、又は紫外憇の波長に近い
光の照射によって浮遊ゲート(lj中の電子を放出させ
ることにより行なわれる。読み出しに、浮遊グー) I
ll中の電荷の有無でメモリトランジスタのしきい値が
異なるのでこれによpドレイン・ソース間を流れる電流
量が変わることを利用し、この電流量をセンスアンプで
増幅シて1011ピの区別をすることにより行なわれる
Figure 1(b) is a sectional view of the main part of Figure 1(a).
) is a P-silicon substrate, and (8) is an insulator. Next, the operation will be explained. Charging the floating gate (1) with electrons is called "writing," and releasing electrons from the floating gate (1) is called "erasing." First, "writing"
A high voltage is applied to the drain (3) and control gate (2), and high energy electrons generated in the channel region are transferred to the insulator (8).
Floating gate across the conduction band energy gap (1)
This is done by charging the floating gate (1). "Erasure" is performed by emitting electrons in the floating gate (lj) by irradiating with ultraviolet light or light close to the wavelength of the ultraviolet light.For reading, floating gate I
Since the threshold value of the memory transistor differs depending on the presence or absence of charge in ll, the amount of current flowing between the p-drain and source changes due to this, which is used to amplify this amount of current with a sense amplifier to distinguish between 10 and 11 pins. It is done by doing.

従来の浮遊ゲートlI不揮発性メモリハ以上のように構
成されているので1トランジスタ1メモリにするために
ドレイン(3)、ソース(4)の拡散領域の幅(Z) 
t−浮遊ゲート(1)の長辺方向の幅よりも内側に設け
て、浮遊ゲート(1)の延在部分(101ffi少なく
とも3〜4μm以上必要とし、複数のメモリトランジス
タを構成した場合、となり合うメそりトランジスタとの
浮遊ゲート間隔(9)ヲ少なくとも3〜4μm以上必要
とするため浮遊グー) (II (D延在部分−と間隔
(9)がメモリ面積を大きくし大容量メモリにに向かな
いという欠点があった。
Since the conventional floating gate II nonvolatile memory is configured as described above, the width (Z) of the diffusion region of the drain (3) and source (4) must be adjusted to make one transistor and one memory.
T-Provided inside the width of the long side of the floating gate (1), the extended portion of the floating gate (1) (101ffi) must be at least 3 to 4 μm, and when multiple memory transistors are configured, The floating gate spacing (9) with the mesori transistor requires at least 3 to 4 μm, so the floating gate distance (9) is required. There was a drawback.

この発明は上記のような従来の欠点を除去するためにな
されたものでTo9、浮遊ゲートの幅をドレイン領域及
びソース領域の幅とN等かもしくにこの幅よりも狭くし
、集積Kを高めるとともに、高いエネルギのt術を浮遊
ゲートに帯電させることができる半導体不揮発性メモリ
装置を提供する。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology.To9, the width of the floating gate is made narrower than the width of the drain region and the source region, N, etc., and the integration K is increased. The present invention provides a semiconductor non-volatile memory device in which a floating gate can be charged with a high-energy transistor.

以下、この発明の一実施例を第2図によって説明する。An embodiment of the present invention will be described below with reference to FIG.

第2図(a)にこの発明のNチャンネルフローティング
ゲート型不揮発性メモリの平面パターン図である611
1u浮遊ゲー)、(りは制御ゲート、(81はドレイン
側N型不純物拡散層、C4)にソース側N型不純物拡散
層、(fig(61にドレイン、ソースのN型不純物拡
散層の浮遊グー) fil下へのくい込み領域、01)
H浮遊ゲート(1)より外側に位置するドレイΦ ン、ソースの領域+3H41のにみ比し部(2)にとな
り合うメモリとの拡散領域間領域−% (Zb)は拡散
領域幅である。@2図(b)に第2図(1)の要部断面
図である。(7)にP型シリコン基板、(8)に絶縁体
でらる◇第3図は、第2図のこの発明のNチャンネル浮
遊ゲート製不揮発性メモリの1メモリ部分の等価回路図
である。tllti浮遊グー)、+!li制御ゲート、
+11 ?!ドレイン、(4)ニソース、(Tr4) 
rL電荷蓄積用の浮遊ゲート(1)ヲもったメモリトラ
ンジスタ、(Tri)i制御ゲート(2)幅をトランジ
スタの「チャンネル長」とし浮遊ゲート+11 ’i越
えたドレイン。
FIG. 2(a) is a plan pattern diagram 611 of the N-channel floating gate type nonvolatile memory of the present invention.
1u floating gate), (is the control gate, (81 is the drain side N-type impurity diffusion layer, C4) is the source side N-type impurity diffusion layer, (fig (61 is the floating gate of the drain and source N-type impurity diffusion layers) ) Insertion area under fil, 01)
The region between the diffusion regions of the drain and source regions +3H41 located outside the H floating gate (1) and the adjacent memory in the comparison portion (2) -% (Zb) is the diffusion region width. @2 Figure (b) is a sectional view of the main part of Figure 2 (1). (7) is a P-type silicon substrate, (8) is an insulator. ◇ FIG. 3 is an equivalent circuit diagram of one memory portion of the N-channel floating gate nonvolatile memory of the present invention shown in FIG. tllti floating goo), +! li control gate,
+11? ! drain, (4) source, (Tr4)
rL A memory transistor with a floating gate (1) for charge storage, (Tri)i control gate (2) and a drain extending beyond the floating gate +11 'i with the width as the "channel length" of the transistor.

ソース拡散領域のにみ出し部(6)の幅をトランジスタ
の「チャンネル幅」とした浮遊ゲート(1)の側部に設
けられたトランジスタ、(Tr3) u Triの反対
側の浮遊ゲートの側部に設けら勺、た前記(Trl)と
同じトランジスタである。
Transistor provided on the side of the floating gate (1) with the width of the protruding part (6) of the source diffusion region as the "channel width" of the transistor, (Tr3) u The side of the floating gate on the opposite side of Tri It is the same transistor as (Trl) above.

次に動作について説明する。「書込み」はドレイン(3
)と制御ゲート(2)に高電圧を印加する0たとへはト
ランジスタ(Tri)と(Tr3 )のチャンネル幅/
チャンネル長比f o、 s、” 5.unとしトラン
ジス−(Tr2)のチャンネル幅/チャンネル長比11
0/Iμmとした場合、トランジスタ(Tri)と(T
r3)の並列抵抗にトランジスタ(Tr 2 )の10
倍程度の高抵抗となる0 したがって、浮遊ゲート型メモリ(Trjl)のドレイ
イと制御ゲートに高電圧がかかクチヤンネル領声で発生
し冬高、エネルギ電子に、絶縁体(8C)の伝電帯のエ
ネルギギャップを越えて、浮遊ゲート(lb)(lc)
(ld)に到達し浮遊ゲート(lb)(lc)(ld)
t¥rtさすことで行なわれる0「消去」に従来と同じ
ように紫外線、又は紫外線に近い波長の元金照射するこ
とによって浮遊ゲート中の電子を放出することで行なわ
れる。次に読み出しハ、トランジスタ(Tri)(Tr
3)のドレイン・ソース間にiれる微少電流に一定であ
り、トランジスタ(Tr2)の浮遊ゲート中の電荷の有
無でトランジスタ(Tr2)のドレイン(3)からソー
ス(4)へ流れる電流量が変化するのでセンスアンプを
通して161 jl#のデータが出力される。
Next, the operation will be explained. "Write" is the drain (3
) and the control gate (2), which applies a high voltage to the channel width of the transistors (Tri) and (Tr3).
Channel length ratio f o, s,” 5. Un, channel width/channel length ratio of transistor (Tr2) is 11
0/Iμm, transistor (Tri) and (T
10 of the transistor (Tr 2 ) to the parallel resistance of r3)
Therefore, a high voltage is applied to the drain and control gate of the floating gate memory (Trjl), and a high voltage is generated in the cutout channel. Across the energy gap of floating gate (lb) (lc)
(ld) reached floating gate (lb) (lc) (ld)
The 0 "erase" performed by pointing t\rt is performed by emitting electrons in the floating gate by irradiating the element with ultraviolet rays or a wavelength close to ultraviolet rays, as in the conventional method. Next, read out transistor (Tri) (Tr).
The amount of current flowing from the drain (3) to the source (4) of the transistor (Tr2) changes depending on the presence or absence of charge in the floating gate of the transistor (Tr2). Therefore, data of 161 jl# is output through the sense amplifier.

次にこの発明の一実施例の襄造方法について、餓4図に
より説明する。まず浮遊ゲート(1)となる第1層目の
導電層をマスクυにて形成する0次にこの第1層目の導
電層に絶縁膜を積み制御ゲート(2)ヲマスクα4にて
形成し、前記マスクα4にて兜1層目の導電物をエツチ
ングしマスクα養以外のところを除去して浮遊ゲート(
1)を形成する0次に不純物拡散を行なうためのマスク
四にて不純@をドープしドレイン、ソース領域fall
 14) ’に形成する0この場合、不純物拡散全行な
−うためのVスフ(至)は少なくともマスクα美にて作
られた浮遊ゲート(1)と一致するかこれを含まなく、
てはならない。
Next, a method of making cloth according to an embodiment of the present invention will be explained with reference to Figure 4. First, a first conductive layer, which will become a floating gate (1), is formed using a mask υ.Next, an insulating film is stacked on this first conductive layer, and a control gate (2) is formed using a mask α4. The conductive material in the first layer of the helmet is etched using the mask α4, and the parts other than the mask α are removed to form the floating gate (
1) Dope impurities with mask 4 for zero-order impurity diffusion to form drain and source regions (fall).
14) '0 In this case, the V area for all impurity diffusion lines coincides with or does not include the floating gate (1) made with the mask α, at least.
must not.

なお、上記実施例では、浮遊ゲートの両側共が不純物拡
散領域内になるが、第5図(&)に浮遊ゲート(1)の
片’If41t−不純物拡散領域(3)を越えるように
設けてもよい。この場合その等価回路図は、第5l6)
のようになり、前記一実施例と比べて高抵抗トランジス
タが1つになっているだけであり、基本的動作は全く同
じである。
In the above embodiment, both sides of the floating gate are within the impurity diffusion region, but as shown in FIG. Good too. In this case, the equivalent circuit diagram is No. 5l6)
Compared to the previous embodiment, only one high-resistance transistor is used, and the basic operation is exactly the same.

また第6図(&)のように少なくとも浮遊ゲートの片側
が不純物拡散領域の輪部と一致していてもよい。この場
Hの等価回路図は第6図ら)のようになる0 以上の説明のように、この発明によれば浮遊ゲートの少
なくとも一方側がドレイン、ソースの拡散領域の一部よ
り外に出ないので、少なくとも一方のとなり合うメそり
との間隔は、従来のメモリよりも狭くな9、制御ゲート
方向の集積密度が大幅に改書されるとともに、高いエネ
ルギの電荷を浮遊ゲートに帯電させることができるとい
う優れた効果を有する。
Furthermore, as shown in FIG. 6(&), at least one side of the floating gate may coincide with the ring of the impurity diffusion region. In this case, the equivalent circuit diagram of field H is as shown in FIG. , the spacing between adjacent mesoli on at least one side is narrower than in conventional memory9, the integration density in the direction of the control gate has been significantly revised, and high-energy charges can be charged to the floating gate. It has this excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(−ニ、従来のNチャンネルの浮遊ゲート型不揮
発性メモリの平面パターン図、第1図伽)は、4第1図
−)の要部断面図、第2図(a)はこの発明の一実施例
のNチャンネルの浮遊ゲート型子揮発性メ毫りの平面パ
ターン図、92図(b)に要部断面図、第3図に第2図
の浮遊ゲート型不揮発性メモリの等価回路図、第4図に
第2図の浮遊ゲート型不揮発性メモリの製造方法を示す
マスク平面図、第5図(a)伽)及び纂6図(a) (
b)は本発明の他の実施例を示す平面パターン図とその
等価回路図でめる0図において、(1)t;X浮遊ゲー
ト、(2)に制御ゲート、+81 rcドレイン不純物
拡散層141iソース不純物拡散層、(7)はシリコン
基板、(81r!絶縁体である。 なお、図中、同一符号に同一、又に相当部分を示す。 代理人 葛野信− 第1図 <0) 第2図 第3図 第4図 第5図 (aン 第6図 (b) 特許庁長官殿 1、事件の表示    特願昭6?−100号2、発明
の名称    半導体不揮発性メモリ装置3、補正をす
る台 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第4頁第14行にr(Zb)Jとあるのを
r(Z)Jと訂正する。 (2)明細書第6頁第19行に[絶縁体(8c )Jと
あるのを「絶縁体(8)」と訂正する。 (3)明細書第6頁第20行〜第6頁2行に「浮遊ゲ−
) (tb)(tc)(ta)に到達し浮遊ゲート(l
b) (lc)(1d)を帯電さすことで行なわれる。 」とあるのを「浮遊ゲート(1)に到達し浮遊ゲート(
1)を帯電させることで行なわれる。」と訂正する。 以上
Figure 1 (-2) is a planar pattern diagram of a conventional N-channel floating gate nonvolatile memory, Figure 1 (a) is a cross-sectional view of the main part of Figure 4 (Figure 1-), and Figure 2 (a) is a cross-sectional view of the main part of this. A planar pattern diagram of an N-channel floating gate type nonvolatile memory according to an embodiment of the invention, Figure 92(b) is a sectional view of the main part, and Figure 3 is an equivalent of the floating gate type nonvolatile memory of Figure 2. A circuit diagram, FIG. 4 is a mask plan view showing the manufacturing method of the floating gate type non-volatile memory shown in FIG. 2, FIG.
b) is a planar pattern diagram and its equivalent circuit diagram showing another embodiment of the present invention, (1) t; The source impurity diffusion layer (7) is a silicon substrate (81r! insulator). In the figure, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 < 0) Second Fig. 3 Fig. 4 Fig. 5 (a and Fig. 6 (b)) Mr. Commissioner of the Japan Patent Office 1. Indication of the case Patent Application No. 100-100 2. Title of the invention Semiconductor non-volatile memory device 3. Amendment Table 5, Detailed explanation of the invention column 6 of the specification subject to amendment, Contents of amendment (1) Corrected r(Zb)J to r(Z)J on page 4, line 14 of the specification. (2) Insulator (8c) J on page 6, line 19 of the specification is corrected to "insulator (8)." (3) Specification, page 6, lines 20 to 6 The second line on the page says “Floating game.
) (tb) (tc) (ta) and floating gate (l
b) It is carried out by charging (lc) (1d). ” is changed to “The floating gate (1) is reached and the floating gate (
This is done by charging 1). ” he corrected. that's all

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、この半導体基板に互に所定
間隔をなして設けられたソース領域及びドレイン領域と
、このソース領域とドレイン領域間の前記半導体基@表
面を少なくとも被覆するように設けられた第1絶縁膜と
、この第1絶縁膜上に設けられた浮遊ゲートと、この浮
遊ゲート上に第2絶縁を介して設けられた制御ゲートを
備え、前記浮遊ゲートの幅は、前記ドレイン領域及びソ
ース領域の幅と同等かもしくはこの幅よりも狭いことを
特徴とする半導体不揮発性1日装置。
A semiconductor substrate of a first conductivity type, a source region and a drain region provided at a predetermined distance from each other on this semiconductor substrate, and a source region and a drain region provided so as to cover at least the surface of the semiconductor substrate between the source region and the drain region. a first insulating film, a floating gate provided on the first insulating film, and a control gate provided on the floating gate via a second insulating film, the width of the floating gate being equal to the width of the drain. A semiconductor non-volatile one-day device characterized in that the width is equal to or narrower than the width of a region and a source region.
JP57002062A 1982-01-09 1982-01-09 Semiconductor non-volatile memory device Pending JPS58119672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002062A JPS58119672A (en) 1982-01-09 1982-01-09 Semiconductor non-volatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002062A JPS58119672A (en) 1982-01-09 1982-01-09 Semiconductor non-volatile memory device

Publications (1)

Publication Number Publication Date
JPS58119672A true JPS58119672A (en) 1983-07-16

Family

ID=11518851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002062A Pending JPS58119672A (en) 1982-01-09 1982-01-09 Semiconductor non-volatile memory device

Country Status (1)

Country Link
JP (1) JPS58119672A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519851A (en) * 1978-07-31 1980-02-12 Hitachi Ltd Manufacture of non-volatile memories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519851A (en) * 1978-07-31 1980-02-12 Hitachi Ltd Manufacture of non-volatile memories

Similar Documents

Publication Publication Date Title
KR100876082B1 (en) Memory device and forming method thereof
JP3073645B2 (en) Nonvolatile semiconductor memory device and method of operating the same
JP3544743B2 (en) Semiconductor storage device
KR101110538B1 (en) Nonvolatile Semiconductor Memory Devices and Depletion MOOS Transistors
US20060157775A1 (en) Byte-operational nonvolatile semiconductor memory device
CN102386188A (en) Three-dimensional array memory architecture with diodes in memory strings
JPS62276878A (en) Semiconductor memory
JP2003046002A (en) Non-volatile semiconductor memory and operation method
US7813179B2 (en) Semiconductor memory device having plural word lines arranged at narrow pitch and manufacturing method thereof
JP2001102553A (en) Semiconductor device, method of driving the same, and manufacturing method for the same
KR100706071B1 (en) Single bit nonvolatile memory cell and its programming and erasing method
US5576995A (en) Method for rewriting a flash memory
KR100930074B1 (en) Single Transistor Floating Body DRAM Cell Device with Nonvolatile Functions
JP2825407B2 (en) Nonvolatile semiconductor memory device
US8994092B2 (en) Semiconductor device with enhanced discrimination between selected and non-selected memory cells
JP5483826B2 (en) Nonvolatile semiconductor memory device and writing method thereof
JPS58119672A (en) Semiconductor non-volatile memory device
JP2004214506A (en) Method for operating nonvolatile semiconductor memory device
JP2004158614A (en) Nonvolatile semiconductor memory device and data writing method thereof
JPH05110113A (en) Semiconductor memory device and storage information reading method thereof
JP6232200B2 (en) Nonvolatile semiconductor memory device
US7428173B2 (en) Low power NROM memory devices
KR0165468B1 (en) Semiconductor memory device, manufacturing method thereof and driving method thereof
US7271437B2 (en) Non-volatile memory with hole trapping barrier
US6480420B2 (en) Semiconductor memory device having source areas of memory cells supplied with a common voltage