[go: up one dir, main page]

JPS58116A - Molecular beam growth method for semiconductor crystals - Google Patents

Molecular beam growth method for semiconductor crystals

Info

Publication number
JPS58116A
JPS58116A JP9854681A JP9854681A JPS58116A JP S58116 A JPS58116 A JP S58116A JP 9854681 A JP9854681 A JP 9854681A JP 9854681 A JP9854681 A JP 9854681A JP S58116 A JPS58116 A JP S58116A
Authority
JP
Japan
Prior art keywords
crystal
hydrogen
chamber
molecular
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9854681A
Other languages
Japanese (ja)
Inventor
Toshio Hashimoto
橋本 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9854681A priority Critical patent/JPS58116A/en
Publication of JPS58116A publication Critical patent/JPS58116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To utilize the ionization of hydrogen through the reduction action of hydrogen, to prevent oxidation during crystal growth and to obtain the semiconductor crystal having high quality by molecular-beam growing the semiconductor crystal in an atmosphere containing hydrogen ionized. CONSTITUTION:A hydrogen ionizer 7 is arranged to an ultra-high vacuum chamber 8, and the molecular-beam sources 2-4 of Al, Ga and As as the mother materials of the AlGaAs crystal and the molecular-beam sources 5, 6 of an and Be as P type impurities are each disposed into the chamber 8. A GaAs substrate 1 in the chamber 8 is heated at a predetermined temperature, and atoms forming the crystal are injected toward the substrate 1 in the form of atomic beams and grown. Hydrogen ionized by means of the ionizer 7 is added into the chamber 8 at that time, and the partial pressure of the hydrogen is adjusted at prescribed value. The oxidation of a crystal growing material and the surface of the crystal due to oxidazing residual gas in the chamber 8 is prevented, and the semiconductor crystal having few crystal defects and high quality is grown.

Description

【発明の詳細な説明】 本発明は分子線結晶成長に係り、特にイオン化し走化学
的に活性な水素を結晶成長雰囲気に微量添加して、酸化
を防止しながら良質な半導体単結晶を成長させる方法に
関する。
[Detailed Description of the Invention] The present invention relates to molecular beam crystal growth, and in particular, adds a trace amount of ionized and chemotactically active hydrogen to the crystal growth atmosphere to grow a high-quality semiconductor single crystal while preventing oxidation. Regarding the method.

分子線結晶成長は、超高真空中で単結晶を成長させる方
法で、結晶の品質は装置内の残胃ガス。
Molecular beam crystal growth is a method of growing single crystals in an ultra-high vacuum, and the quality of the crystals is determined by the residual gas inside the device.

特に水、酸素のような酸化性物質の存在に大きく影響金
堂ける。従って、残留ガスが多くなると結晶表面Km化
物が付着し易くなり結晶内の欠陥密度が増加するため、
高品質な結晶が得られない。
In particular, the presence of oxidizing substances such as water and oxygen has a significant effect. Therefore, as residual gas increases, Km oxides tend to adhere to the crystal surface, increasing the defect density within the crystal.
High quality crystals cannot be obtained.

この影響を避けるために従来は、装置内の酸化反応を抑
制する、即ち還元作用のある水素を微量添加し、結晶成
長中の酸化全防止して、高品質なガリウム・ヒ素(Ga
As )結晶を成長させる試みが行われていた。
In order to avoid this effect, conventional methods have been used to suppress the oxidation reaction within the device, that is, add a small amount of reducing hydrogen, completely prevent oxidation during crystal growth, and produce high-quality gallium arsenide (Ga
Attempts were made to grow As) crystals.

しかし、酸化され易いアル<ニウム(An)′t−含ム
アルミニウム・ガリウム・ヒ素(All GaAs)M
晶成長では、微量の水素添加のみでA2の酸化を防止す
ることは困難である0水素濃11増すと、真空度が低下
するため、基板に照射している分子線の分子が水素に衝
央し、散乱され、基板まで到達できず成長の制御側並び
に結晶性が悪くなる。
However, aluminum, gallium, arsenide (All GaAs), which is easily oxidized, contains aluminum (An)'t-
In crystal growth, it is difficult to prevent oxidation of A2 with only a small amount of hydrogen addition.0 As the hydrogen concentration increases, the degree of vacuum decreases, so the molecules of the molecular beam irradiating the substrate are concentrated on the hydrogen. However, it is scattered and cannot reach the substrate, resulting in poor growth control and poor crystallinity.

また、結晶成長温度が低い場合には水素の還元作用は低
下し、水素添加効果は減退する。水素添加効果を高める
ために結晶成長温at高くしても。
Furthermore, when the crystal growth temperature is low, the reducing action of hydrogen decreases, and the hydrogenation effect decreases. Even if the crystal growth temperature is increased to enhance the hydrogenation effect.

GaAs結晶では、ヒ素(As)の昇華温度が低いため
、高温ではAsが昇華し、熱分解が起きるなどの欠点が
ある。
In GaAs crystals, the sublimation temperature of arsenic (As) is low, so at high temperatures As will sublimate and thermal decomposition will occur.

本発明の目的は1分子線結晶成長法において。The object of the present invention is a single molecular beam crystal growth method.

水素の還元作用が水素金イオン化することで高まること
を利用して、結晶成長中の酸化を防止しながら高品質な
半導体結晶製造方法管提供することにある。
The object of the present invention is to provide a high-quality semiconductor crystal manufacturing method while preventing oxidation during crystal growth by utilizing the fact that the reducing action of hydrogen is enhanced by ionizing hydrogen into gold.

本発明は、化学的に活性なイオン化した微量水素雰囲気
中で、単結晶全成長させ、酸化によって成長結晶内に生
成される格子欠陥を低減させるよ・うにした半導体結晶
の分子線成長法である。
The present invention is a molecular beam growth method for semiconductor crystals, in which the entire single crystal is grown in a chemically active ionized trace hydrogen atmosphere, and lattice defects generated in the growing crystal due to oxidation are reduced. .

本発明の実施例として、α8μm帯発光ダイオード、レ
ーザ等で用いられているGaAs基板上のAN GaA
θ結晶成長法を説明するととKする。図dIiは本発明
の一実施例で、イオン化水素添加機構付分子線結晶成長
装置の概略図を示した。1はGa As基板、2,3.
4は各々Al GaAs結晶の母材となるAll、 G
a、 Asの分子線源である。6゜6はn、p形不純物
の錫(日n)とベリラム(Be)の分子ls源である。
As an example of the present invention, AN GaA on a GaAs substrate used in α8 μm band light emitting diodes, lasers, etc.
Let me explain the θ crystal growth method. FIG. dIi is an embodiment of the present invention, and shows a schematic diagram of a molecular beam crystal growth apparatus with an ionized hydrogen addition mechanism. 1 is a GaAs substrate, 2, 3.
4 are All and G, respectively, which are the base materials of Al GaAs crystals.
a, As molecular beam source. 6°6 is a molecular source of n- and p-type impurities tin (N) and beryllum (Be).

フはイオン化装置で、電子衝撃によるホットフィラメン
トW1オ/Sによって水素をイオン化する。勿論、他の
方法で1オン化させてもよい。GaAs基板上、分子線
源2〜6、水素イオン化装置7は、超高真空チェンバ8
の中に収納される。
F is an ionization device that ionizes hydrogen using a hot filament W1O/S caused by electron impact. Of course, it may be turned on by other methods. On the GaAs substrate, the molecular beam sources 2 to 6 and the hydrogen ionization device 7 are placed in an ultra-high vacuum chamber 8.
is stored inside.

AllGaAs の結晶成長は、基板1i550〜65
0℃に加熱17、結晶上構成する原子を分子線の形で基
板1に向って噴射して結晶全成長させる。この時、イオ
ン化装置マによってイオン化した水素を超高真空チェン
バ8内に添加しておく。水素の分圧は10→〜10′T
OrrK調整する。
Crystal growth of AllGaAs is carried out on a substrate 1i550~65
Heating 17 to 0° C., the atoms constituting the crystal are injected in the form of molecular beams toward the substrate 1 to cause the entire crystal to grow. At this time, hydrogen ionized by the ionizer is added into the ultra-high vacuum chamber 8. Partial pressure of hydrogen is 10→~10'T
Adjust OrrK.

本発明の実施例によれば、620Cで成長させたn形不
純物議1j LX 10” /am”のム1(>@ G
 Lyl A B結晶の電子移動度は11000a”/
v−secであつ九。
According to an embodiment of the present invention, n-type impurity particles 1j LX 10"/am" grown at 620C (>@G
The electron mobility of Lyl A B crystal is 11000a”/
Nine in v-sec.

水素を添加した従来法によって成長させた結晶では60
QCII”/v・eeCで、結晶品質が改善されている
ことが判る。
60 for crystals grown by the conventional method with hydrogen addition.
It can be seen that the crystal quality is improved by QCII''/v·eeC.

本発明は、AlGa口結晶成長の他、酸化物結晶t−m
 <、シリコン(sl)、 ゲルマニウム(Go)。
In addition to AlGa crystal growth, the present invention also provides oxide crystal t-m
<, silicon (sl), germanium (Go).

GaAs、 AlAs等の分子線結晶成長法による全て
の半導体結晶成長に適用可能であるO 本発明によれば、装置内の酸化性残留ガスによる結晶成
長原材料、及び結晶表面の酸化が防止できるため、分子
線結晶成長法で結晶欠陥の少い高品質半導体結晶の成長
が可能となる。
According to the present invention, it is possible to prevent the crystal growth raw material and the crystal surface from being oxidized by oxidizing residual gas in the apparatus. Molecular beam crystal growth enables the growth of high-quality semiconductor crystals with few crystal defects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を説明するための概略図である
。 1…・・・・・・GILAli基板 2〜6・・・・・・分子線源
The drawings are schematic diagrams for explaining one embodiment of the present invention. 1......GILAli substrate 2-6... Molecular beam source

Claims (1)

【特許請求の範囲】[Claims] 分子線結晶成長法による半導体結晶の製造において、イ
オン化した水素を含む雰囲気中で該結晶を分子線成長さ
せる事を特徴とする分子線成長法。
A molecular beam growth method for manufacturing semiconductor crystals using a molecular beam crystal growth method, which is characterized in that the crystal is grown by molecular beams in an atmosphere containing ionized hydrogen.
JP9854681A 1981-06-25 1981-06-25 Molecular beam growth method for semiconductor crystals Pending JPS58116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9854681A JPS58116A (en) 1981-06-25 1981-06-25 Molecular beam growth method for semiconductor crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9854681A JPS58116A (en) 1981-06-25 1981-06-25 Molecular beam growth method for semiconductor crystals

Publications (1)

Publication Number Publication Date
JPS58116A true JPS58116A (en) 1983-01-05

Family

ID=14222681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9854681A Pending JPS58116A (en) 1981-06-25 1981-06-25 Molecular beam growth method for semiconductor crystals

Country Status (1)

Country Link
JP (1) JPS58116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636268A (en) * 1984-11-30 1987-01-13 At&T Bell Laboratories Chemical beam deposition method utilizing alkyl compounds in a carrier gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636268A (en) * 1984-11-30 1987-01-13 At&T Bell Laboratories Chemical beam deposition method utilizing alkyl compounds in a carrier gas

Similar Documents

Publication Publication Date Title
JPH0637355A (en) Iii-v alloy semiconductor and its manufacture
JPS6132420A (en) Method of annealing gallium arsenide substrate
JPH06232100A (en) Surface impurity removal of iii-v group semiconductor element
JP2554433B2 (en) Semiconductor device and manufacturing method thereof
GB1042933A (en) Methods of growing crystals of gallium arsenide, gallium phosphide or mixtures thereof
JPS58116A (en) Molecular beam growth method for semiconductor crystals
Massies et al. Characterization of Ga0. 47In0. 53As and Al0. 48In0. 52As layers grown lattice matched on InP by molecular beam epitaxy
JPH0253097B2 (en)
JPS59116192A (en) Molecular beam crystal growth method
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
Sugita et al. Catalyst Temperature Dependence of NH3 Decomposition for InN Grown by Metal Organic Vapor Phase Epitaxy
JP2803353B2 (en) Semiconductor crystal growth method
JPH0630339B2 (en) Method for producing GaAs single crystal
JPH11307458A (en) Manufacture of nitride compound semiconductor
JP3345692B2 (en) Crystal growth method
JPS63248796A (en) Molecular beam epitaxy and its device
JPS62269311A (en) Method of doping crystals
JP2830932B2 (en) Molecular beam epitaxial growth method
JPS58140400A (en) Vapor growth method of gallium arsenide
JPH05259158A (en) Method for formation of iii-group element nitride film
JPS63148616A (en) Manufacture of semiconductor device
JPH0728079B2 (en) Method for manufacturing semiconductor laser
JPH06163402A (en) Quantum structure formation method