JPS58116A - Molecular beam growth method for semiconductor crystals - Google Patents
Molecular beam growth method for semiconductor crystalsInfo
- Publication number
- JPS58116A JPS58116A JP9854681A JP9854681A JPS58116A JP S58116 A JPS58116 A JP S58116A JP 9854681 A JP9854681 A JP 9854681A JP 9854681 A JP9854681 A JP 9854681A JP S58116 A JPS58116 A JP S58116A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- hydrogen
- chamber
- molecular
- molecular beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 47
- 239000004065 semiconductor Substances 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000002109 crystal growth method Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- 125000004429 atom Chemical group 0.000 abstract description 2
- 229910052733 gallium Inorganic materials 0.000 abstract description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は分子線結晶成長に係り、特にイオン化し走化学
的に活性な水素を結晶成長雰囲気に微量添加して、酸化
を防止しながら良質な半導体単結晶を成長させる方法に
関する。[Detailed Description of the Invention] The present invention relates to molecular beam crystal growth, and in particular, adds a trace amount of ionized and chemotactically active hydrogen to the crystal growth atmosphere to grow a high-quality semiconductor single crystal while preventing oxidation. Regarding the method.
分子線結晶成長は、超高真空中で単結晶を成長させる方
法で、結晶の品質は装置内の残胃ガス。Molecular beam crystal growth is a method of growing single crystals in an ultra-high vacuum, and the quality of the crystals is determined by the residual gas inside the device.
特に水、酸素のような酸化性物質の存在に大きく影響金
堂ける。従って、残留ガスが多くなると結晶表面Km化
物が付着し易くなり結晶内の欠陥密度が増加するため、
高品質な結晶が得られない。In particular, the presence of oxidizing substances such as water and oxygen has a significant effect. Therefore, as residual gas increases, Km oxides tend to adhere to the crystal surface, increasing the defect density within the crystal.
High quality crystals cannot be obtained.
この影響を避けるために従来は、装置内の酸化反応を抑
制する、即ち還元作用のある水素を微量添加し、結晶成
長中の酸化全防止して、高品質なガリウム・ヒ素(Ga
As )結晶を成長させる試みが行われていた。In order to avoid this effect, conventional methods have been used to suppress the oxidation reaction within the device, that is, add a small amount of reducing hydrogen, completely prevent oxidation during crystal growth, and produce high-quality gallium arsenide (Ga
Attempts were made to grow As) crystals.
しかし、酸化され易いアル<ニウム(An)′t−含ム
アルミニウム・ガリウム・ヒ素(All GaAs)M
晶成長では、微量の水素添加のみでA2の酸化を防止す
ることは困難である0水素濃11増すと、真空度が低下
するため、基板に照射している分子線の分子が水素に衝
央し、散乱され、基板まで到達できず成長の制御側並び
に結晶性が悪くなる。However, aluminum, gallium, arsenide (All GaAs), which is easily oxidized, contains aluminum (An)'t-
In crystal growth, it is difficult to prevent oxidation of A2 with only a small amount of hydrogen addition.0 As the hydrogen concentration increases, the degree of vacuum decreases, so the molecules of the molecular beam irradiating the substrate are concentrated on the hydrogen. However, it is scattered and cannot reach the substrate, resulting in poor growth control and poor crystallinity.
また、結晶成長温度が低い場合には水素の還元作用は低
下し、水素添加効果は減退する。水素添加効果を高める
ために結晶成長温at高くしても。Furthermore, when the crystal growth temperature is low, the reducing action of hydrogen decreases, and the hydrogenation effect decreases. Even if the crystal growth temperature is increased to enhance the hydrogenation effect.
GaAs結晶では、ヒ素(As)の昇華温度が低いため
、高温ではAsが昇華し、熱分解が起きるなどの欠点が
ある。In GaAs crystals, the sublimation temperature of arsenic (As) is low, so at high temperatures As will sublimate and thermal decomposition will occur.
本発明の目的は1分子線結晶成長法において。The object of the present invention is a single molecular beam crystal growth method.
水素の還元作用が水素金イオン化することで高まること
を利用して、結晶成長中の酸化を防止しながら高品質な
半導体結晶製造方法管提供することにある。The object of the present invention is to provide a high-quality semiconductor crystal manufacturing method while preventing oxidation during crystal growth by utilizing the fact that the reducing action of hydrogen is enhanced by ionizing hydrogen into gold.
本発明は、化学的に活性なイオン化した微量水素雰囲気
中で、単結晶全成長させ、酸化によって成長結晶内に生
成される格子欠陥を低減させるよ・うにした半導体結晶
の分子線成長法である。The present invention is a molecular beam growth method for semiconductor crystals, in which the entire single crystal is grown in a chemically active ionized trace hydrogen atmosphere, and lattice defects generated in the growing crystal due to oxidation are reduced. .
本発明の実施例として、α8μm帯発光ダイオード、レ
ーザ等で用いられているGaAs基板上のAN GaA
θ結晶成長法を説明するととKする。図dIiは本発明
の一実施例で、イオン化水素添加機構付分子線結晶成長
装置の概略図を示した。1はGa As基板、2,3.
4は各々Al GaAs結晶の母材となるAll、 G
a、 Asの分子線源である。6゜6はn、p形不純物
の錫(日n)とベリラム(Be)の分子ls源である。As an example of the present invention, AN GaA on a GaAs substrate used in α8 μm band light emitting diodes, lasers, etc.
Let me explain the θ crystal growth method. FIG. dIi is an embodiment of the present invention, and shows a schematic diagram of a molecular beam crystal growth apparatus with an ionized hydrogen addition mechanism. 1 is a GaAs substrate, 2, 3.
4 are All and G, respectively, which are the base materials of Al GaAs crystals.
a, As molecular beam source. 6°6 is a molecular source of n- and p-type impurities tin (N) and beryllum (Be).
フはイオン化装置で、電子衝撃によるホットフィラメン
トW1オ/Sによって水素をイオン化する。勿論、他の
方法で1オン化させてもよい。GaAs基板上、分子線
源2〜6、水素イオン化装置7は、超高真空チェンバ8
の中に収納される。F is an ionization device that ionizes hydrogen using a hot filament W1O/S caused by electron impact. Of course, it may be turned on by other methods. On the GaAs substrate, the molecular beam sources 2 to 6 and the hydrogen ionization device 7 are placed in an ultra-high vacuum chamber 8.
is stored inside.
AllGaAs の結晶成長は、基板1i550〜65
0℃に加熱17、結晶上構成する原子を分子線の形で基
板1に向って噴射して結晶全成長させる。この時、イオ
ン化装置マによってイオン化した水素を超高真空チェン
バ8内に添加しておく。水素の分圧は10→〜10′T
OrrK調整する。Crystal growth of AllGaAs is carried out on a substrate 1i550~65
Heating 17 to 0° C., the atoms constituting the crystal are injected in the form of molecular beams toward the substrate 1 to cause the entire crystal to grow. At this time, hydrogen ionized by the ionizer is added into the ultra-high vacuum chamber 8. Partial pressure of hydrogen is 10→~10'T
Adjust OrrK.
本発明の実施例によれば、620Cで成長させたn形不
純物議1j LX 10” /am”のム1(>@ G
Lyl A B結晶の電子移動度は11000a”/
v−secであつ九。According to an embodiment of the present invention, n-type impurity particles 1j LX 10"/am" grown at 620C (>@G
The electron mobility of Lyl A B crystal is 11000a”/
Nine in v-sec.
水素を添加した従来法によって成長させた結晶では60
QCII”/v・eeCで、結晶品質が改善されている
ことが判る。60 for crystals grown by the conventional method with hydrogen addition.
It can be seen that the crystal quality is improved by QCII''/v·eeC.
本発明は、AlGa口結晶成長の他、酸化物結晶t−m
<、シリコン(sl)、 ゲルマニウム(Go)。In addition to AlGa crystal growth, the present invention also provides oxide crystal t-m
<, silicon (sl), germanium (Go).
GaAs、 AlAs等の分子線結晶成長法による全て
の半導体結晶成長に適用可能であるO
本発明によれば、装置内の酸化性残留ガスによる結晶成
長原材料、及び結晶表面の酸化が防止できるため、分子
線結晶成長法で結晶欠陥の少い高品質半導体結晶の成長
が可能となる。According to the present invention, it is possible to prevent the crystal growth raw material and the crystal surface from being oxidized by oxidizing residual gas in the apparatus. Molecular beam crystal growth enables the growth of high-quality semiconductor crystals with few crystal defects.
図面は本発明の一実施例を説明するための概略図である
。
1…・・・・・・GILAli基板
2〜6・・・・・・分子線源The drawings are schematic diagrams for explaining one embodiment of the present invention. 1......GILAli substrate 2-6... Molecular beam source
Claims (1)
オン化した水素を含む雰囲気中で該結晶を分子線成長さ
せる事を特徴とする分子線成長法。A molecular beam growth method for manufacturing semiconductor crystals using a molecular beam crystal growth method, which is characterized in that the crystal is grown by molecular beams in an atmosphere containing ionized hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9854681A JPS58116A (en) | 1981-06-25 | 1981-06-25 | Molecular beam growth method for semiconductor crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9854681A JPS58116A (en) | 1981-06-25 | 1981-06-25 | Molecular beam growth method for semiconductor crystals |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58116A true JPS58116A (en) | 1983-01-05 |
Family
ID=14222681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9854681A Pending JPS58116A (en) | 1981-06-25 | 1981-06-25 | Molecular beam growth method for semiconductor crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58116A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636268A (en) * | 1984-11-30 | 1987-01-13 | At&T Bell Laboratories | Chemical beam deposition method utilizing alkyl compounds in a carrier gas |
-
1981
- 1981-06-25 JP JP9854681A patent/JPS58116A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636268A (en) * | 1984-11-30 | 1987-01-13 | At&T Bell Laboratories | Chemical beam deposition method utilizing alkyl compounds in a carrier gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0637355A (en) | Iii-v alloy semiconductor and its manufacture | |
JPS6132420A (en) | Method of annealing gallium arsenide substrate | |
JPH06232100A (en) | Surface impurity removal of iii-v group semiconductor element | |
JP2554433B2 (en) | Semiconductor device and manufacturing method thereof | |
GB1042933A (en) | Methods of growing crystals of gallium arsenide, gallium phosphide or mixtures thereof | |
JPS58116A (en) | Molecular beam growth method for semiconductor crystals | |
Massies et al. | Characterization of Ga0. 47In0. 53As and Al0. 48In0. 52As layers grown lattice matched on InP by molecular beam epitaxy | |
JPH0253097B2 (en) | ||
JPS59116192A (en) | Molecular beam crystal growth method | |
JPS58182816A (en) | Recrystallizing method of silicon family semiconductor material | |
JP2747823B2 (en) | Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate | |
JP2549835B2 (en) | Method for manufacturing compound semiconductor thin film | |
Sugita et al. | Catalyst Temperature Dependence of NH3 Decomposition for InN Grown by Metal Organic Vapor Phase Epitaxy | |
JP2803353B2 (en) | Semiconductor crystal growth method | |
JPH0630339B2 (en) | Method for producing GaAs single crystal | |
JPH11307458A (en) | Manufacture of nitride compound semiconductor | |
JP3345692B2 (en) | Crystal growth method | |
JPS63248796A (en) | Molecular beam epitaxy and its device | |
JPS62269311A (en) | Method of doping crystals | |
JP2830932B2 (en) | Molecular beam epitaxial growth method | |
JPS58140400A (en) | Vapor growth method of gallium arsenide | |
JPH05259158A (en) | Method for formation of iii-group element nitride film | |
JPS63148616A (en) | Manufacture of semiconductor device | |
JPH0728079B2 (en) | Method for manufacturing semiconductor laser | |
JPH06163402A (en) | Quantum structure formation method |