[go: up one dir, main page]

JPS58115818A - Growing method of silicon carbide epitaxial film - Google Patents

Growing method of silicon carbide epitaxial film

Info

Publication number
JPS58115818A
JPS58115818A JP56212694A JP21269481A JPS58115818A JP S58115818 A JPS58115818 A JP S58115818A JP 56212694 A JP56212694 A JP 56212694A JP 21269481 A JP21269481 A JP 21269481A JP S58115818 A JPS58115818 A JP S58115818A
Authority
JP
Japan
Prior art keywords
layer
single crystal
silicon carbide
epitaxial film
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56212694A
Other languages
Japanese (ja)
Inventor
Hisanori Fujita
尚徳 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP56212694A priority Critical patent/JPS58115818A/en
Publication of JPS58115818A publication Critical patent/JPS58115818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は青色の発光ダイオード(LID )の製造に適
した炭化珪素(StC)エピタキシャル膜の気相成長方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase growth of silicon carbide (StC) epitaxial films suitable for manufacturing blue light emitting diodes (LIDs).

可視光LEDのうち赤から緑色まで発光するものはGa
Aa+−xPx 、 GBP等を用いて工業的に製造さ
れているが、青色光のT、+EiDは工業的には製造さ
れていなかった。これは青色LFiDの製造に適した材
料である炭化珪素(StC) 、窒化ガリウA (Ga
N) 等の単結晶、エピタキシャル膜等の工業的な製造
方法が確立されてぃなかったことによるものである。
Among visible light LEDs, those that emit light from red to green are Ga
Although it has been industrially manufactured using Aa+-xPx, GBP, etc., blue light T and +EiD have not been industrially manufactured. This is a material suitable for manufacturing blue LFiDs, such as silicon carbide (StC) and galium nitride A (Ga).
This is because industrial manufacturing methods for single crystals and epitaxial films such as N) have not yet been established.

特に、 SiOは跡接合を形成して、小数キャリアを注
入することにょ多発光できるので他の可視光LEDと同
様の東件で使用できるという本発明者は、容易に入手可
能な単結晶基板を用いてSiCエピタキシャル膜を成長
させる方法を確立することを目的として鋭意研究を重ね
た結果本発明に到達したものである。
In particular, the inventor believes that SiO can be used in the same way as other visible light LEDs because it can emit multiple lights by forming trace junctions and injecting minority carriers. The present invention was achieved as a result of intensive research aimed at establishing a method for growing a SiC epitaxial film using the method.

本発明の上記の目的仁、単結晶基板上にSICエピタキ
シャル膜を成長させる方法において、シリコy(sl)
単結晶基板上に81HnX+−n 、 (、!はCtま
たはBr%n=/、コ、3またはt)によりS1単結晶
層を気相成長させる第1の工程、5iHnX4−nの導
入量を徐々に減少させ、かつ炭素数がlから6個の炭化
水素を導入し、その導入量を徐々に増加させて組成が8
1からSiOまで徐々に変化する組成変化層を気相成長
させる第一の工程及び5iHnX+−n及び上記炭化水
素の導入量を一定に保って、第2の工程で得られた層上
にSiC単結晶層を成長させることを特徴とする方法に
より達せられる。
The above-mentioned object of the present invention is to provide a method for growing an SIC epitaxial film on a single crystal substrate.
The first step is to grow an S1 single crystal layer in vapor phase on a single crystal substrate using 81HnX+-n, (,! is Ct or Br%n=/, co, 3 or t), gradually increasing the amount of 5iHnX4-n introduced. and introduced a hydrocarbon with carbon number from 1 to 6, and gradually increased the amount introduced until the composition reached 8.
The first step is to vapor-phase grow a layer with a composition change that gradually changes from 1 to SiO, and the second step is to grow SiC monolayers on the layer obtained in the second step by keeping the introduced amounts of 5iHnX+-n and the above-mentioned hydrocarbons constant. This is achieved by a method characterized by growing a crystalline layer.

単結晶基板としては、良質かつ大直径の単結晶が得られ
るシリコン(Sl)が用いられる。
As the single-crystal substrate, silicon (Sl) is used because it can produce a high-quality, large-diameter single crystal.

基板の面方位としては(100)面または(ioo )
面から50以内のオiJングル(off−angle 
)を有する面が好ましいが(///)面も用いることが
できる。
The plane orientation of the substrate is (100) plane or (ioo) plane.
off-angle
) is preferred, but (///) faces can also be used.

エピタキシャル成長法としては、エピタキシャル膜の組
成を容易に変化させることができる気相成長方法が本発
明方法に適している。
As the epitaxial growth method, a vapor phase growth method that allows the composition of the epitaxial film to be easily changed is suitable for the method of the present invention.

Si成分を反応系に供給するために用いられる化合物と
しては、沸点の低いこと等から、 5iHn014 H
(n ” / +43または4t)または5iHnBr
4−n(n = /、J、jまたは弘)が用いられ、 
S iH4,5tHsO4等が好ましい。
As a compound used to supply the Si component to the reaction system, 5iHn014H is used because of its low boiling point.
(n”/+43 or 4t) or 5iHnBr
4-n (n = /, J, j or Hiroshi) is used,
S iH4,5tHsO4 and the like are preferred.

また、炭素成分供給用としては、炭素が6以下の炭化水
素が蒸発させ易すいので用いられる。
Further, for supplying carbon components, hydrocarbons having carbon of 6 or less are used because they are easily evaporated.

特に(3H4が適当である。In particular, (3H4 is suitable.

タ 260℃以下では、エピタキシャル膜の結晶が遅くなる
こと等から好ましくない。なお、反応器の材料としては
石英が適当である。また。
A temperature of 260° C. or lower is not preferable because the crystallization of the epitaxial film becomes slow. Note that quartz is suitable as the material for the reactor. Also.

キャリアガスとしては水素が用いられる。Hydrogen is used as the carrier gas.

5i(3は、間接遷移であるのでアインエレクトロ二ツ
ク拳トラップ(工5oe1ectronic Trap
 )として窒素を添加して発光効率を向上させる必要が
ある。・Φ・の・・・11−ゆO#・・・・・・−OΦ
・O・・0・・なお、n型ドーパントとしては他にりん
も用いられる。窒素源としてはNHs、りん源としては
PHaが適当である。
5i (3 is an indirect transition, so it is an electronic trap.
), it is necessary to add nitrogen to improve the luminous efficiency.・Φ・の・・・11-ゆう#・・・・・・-Φ
・O...0... Note that phosphorus is also used as the n-type dopant. NHs is suitable as a nitrogen source, and PHa is suitable as a phosphorus source.

また、1!型ドーパントとしてはhtが用いられる。Also, 1! ht is used as the type dopant.

SiCエピタキシャル膜の成長にあたっては、Si基板
の影響を除くために81単結晶層を気相成長させる第1
の工程、続いて、  81単結晶層と5i(3工ピタキ
シヤル層の間の格子定数の相違による転位の発生を防止
するために、組成が81からSiCまで徐々に変化する
層を気相成長させる第2の工程を置く。第2の工程では
Si成分、例えばSiH4の供給量を徐々に減少させ、
同時に炭素成分、例えばCH4の、供給量を徐々に増加
させる。第2の工程が終了した後、第2の工程によシ得
られた層の上に81(3層をエピタキシャル成長させる
第3の工程を置く。
When growing the SiC epitaxial film, the first step is to grow a single crystal layer in the vapor phase to eliminate the influence of the Si substrate.
Next, in order to prevent the occurrence of dislocations due to the difference in lattice constant between the 81 single crystal layer and the 5i (3-layer pitaxial layer), a layer whose composition gradually changes from 81 to SiC is grown in a vapor phase. A second step is carried out.In the second step, the supply amount of Si component, for example, SiH4, is gradually reduced,
At the same time, the amount of carbon component supplied, for example CH4, is gradually increased. After the second step is completed, a third step is performed in which three layers 81 (3 layers) are epitaxially grown on the layer obtained in the second step.

第3の工程においては、窒素をドープし−ておく必要が
ある。また、必要に応じ、他のドーパントが添加される
。なお、必要に応じ、第1及び第一の工程において、上
記ドーパントをドープしてもよい。
In the third step, it is necessary to dope nitrogen. Further, other dopants are added as necessary. Note that, if necessary, the above dopant may be doped in the first and first steps.

pn 接合は、通常はhtO熱拡散により形成されるが
、エピタキシャル成長の際に゛添加してSICエピタキ
シャルウェハを容易にかつ歩留りよく製造することがで
きるので産業上の利用価値は極めて大である。
A pn junction is usually formed by thermal diffusion of HtO, but it has extremely great industrial value because it can be added during epitaxial growth to easily produce SIC epitaxial wafers with good yield.

続いて、実施例に基づいてさらに具体的に説明する。Next, a more specific explanation will be given based on examples.

実“施例 本発明に従い青色発光ダイオード用SiOエピタキシャ
ル、ウェハを製作した。
EXAMPLE A SiO epitaxial wafer for a blue light emitting diode was manufactured according to the present invention.

りん(P)が添加され、抵抗率0.02Ω個で、結晶学
的面方位が(ioの面よ’) </lo>方向に70偏
位したシリコン(Sl)単結晶基板を、内径60Il1
1長さりOcmの水平型石英製エピタキシャルリアクタ
ー内の所定の場所にセットした。
A silicon (Sl) single crystal substrate doped with phosphorus (P), having a resistivity of 0.02Ω, and a crystallographic plane orientation deviated by 70 degrees in the </lo> direction (from the io plane) was prepared with an inner diameter of 60Il1.
It was set at a predetermined location in a horizontal quartz epitaxial reactor with a length of 1 Ocm.

次に窒素(N2)ガスを該リアクター内に10分間導入
し、空気を充分置換除去した後、キャリア、ガスとして
の高純度水素(H2)を毎分/ 100 cc導入し、
窒素の流れを止め昇温工程に入った。
Next, nitrogen (N2) gas was introduced into the reactor for 10 minutes to sufficiently replace and remove air, and then high-purity hydrogen (H2) was introduced as a carrier gas at a rate of 100 cc/min.
The flow of nitrogen was stopped and the temperature raising process began.

上記シリコン単結晶基板をセットした領域の温度が、タ
タO℃に一定に保持されている事を確認しエピタキシャ
ル膜の気相成長を開始した。
After confirming that the temperature of the region where the silicon single crystal substrate was set was kept constant at 0° C., vapor phase growth of the epitaxial film was started.

気相成長開始時よシ濃度20pに水素ガスで希釈したn
型不純物PH3を毎分/ j cc導入し、水素ガスで
クーに希釈された5IH4t−毎分/θ00cc導入し
70分間第1の81工ピタキシヤル層をシリコン基板上
に成長させた。
At the start of vapor phase growth, N was diluted with hydrogen gas to a concentration of 20p.
A type impurity PH3 was introduced at a rate of 1 j cc per minute, and 5IH4t diluted with hydrogen gas was introduced at a rate of 000 cc per minute to grow a first 81-layer pitaxial layer on a silicon substrate for 70 minutes.

次にPHaの導入量を変えることな(SiH4の導入量
を毎分/ 000 ccから毎分5oocaまで徐々に
減少させ、更に新たに0H4t−毎分Occよシ毎分λ
Occまで徐々に増加させつ\導入し、60分間に亘り
第2の組成が81からSiOへ変化する層を第1の81
工ピタキシヤル層上に成長させた。
Next, without changing the amount of PHa introduced (the amount of SiH4 introduced was gradually decreased from 000 cc/min to 5ooca/min, and then 0H4t-Occ/min to λ/min)
The second layer changes from 81 to SiO over a period of 60 minutes.
It was grown on the pitaxial layer.

次の30分間はPH3,日1u4、OH4の導入量を次
に81H4、OH4の導入量を変える事なく、PHsの
供給を停止し、NHf1ガスを毎分/θ■導成長させエ
ピタキシャル層程を終了させた。
For the next 30 minutes, the amount of PH3, 1u4, and OH4 introduced was changed. Next, without changing the amount of 81H4 and OH4 introduced, the supply of PHs was stopped, and NHf1 gas was grown every θ/min to form an epitaxial layer. Finished it.

次にエピタキシャル層の膜厚を測定したところ、SiC
!エピタキシャル層は帽よμm1組成5変化層は、27
pm、Pピー1810層は/ J、j pm 。
Next, when we measured the film thickness of the epitaxial layer, we found that SiC
! The epitaxial layer is 1μm, 1 composition is 5, and the layer with varying composition is 27
pm, P 1810 layer / J, j pm.

NドープSiC層は2♂μmであった。The N-doped SiC layer had a thickness of 2♂μm.

NドープSiC層のn型キャリア濃度は7.jX物拡散
源としてのアルミニウム(At)と共に真空封入し、熱
拡散を実施しp−n接合を形成した。
The n-type carrier concentration of the N-doped SiC layer is 7. The sample was vacuum-sealed together with aluminum (At) as a diffusion source for jX substances, and thermal diffusion was performed to form a p-n junction.

その後p−n接合の深さを測定したところ3μmであっ
た。
Thereafter, the depth of the pn junction was measured and found to be 3 μm.

次に写真蝕刻法、真空蒸着を駆使し電極形成を行った。Next, electrodes were formed using photolithography and vacuum deposition.

その後p−n接合を有した3jOpm(縦)×3jOp
m(横)×コj Opm (高さ)の角柱を切り出し発
光ダイオードを作成した。これらの発光ダイオードチッ
プをTo−1I型ヘツグーに装着し、透明樹脂のモール
ドを行った後、電気的側発光波長はu r Onmにピ
ークを持つ青色の発光をすることが確認できた。
Then 3jOpm (vertical) x 3jOp with p-n junction
A light emitting diode was created by cutting out a prism of m (width) x coj Opm (height). After these light emitting diode chips were mounted on a To-1I model and molded with transparent resin, it was confirmed that the light emitting diode chips emitted blue light having a peak at urOnm on the electrical side.

特許出願人   三菱モンサンド化成株式会社代 理 
人  弁理士 長谷用  − (ほか1名)
Patent applicant Mitsubishi Monsando Kasei Co., Ltd. Representative
Person Patent Attorney Hase - (1 other person)

Claims (1)

【特許請求の範囲】 単結晶基板上に炭化珪素(StC)エピタキシャル膜を
成長させる方法において、シリコン(Sl)単結晶基板
上に5iHnX+ −n (XはCZまたはBr 。 n = /、 2. Jまたはり)によシS1単結晶層
を気相成長させる第7の工程、 5iHnX4−n の
導入量を徐々に減少させ、かつ炭素数がlから6個の炭
化水素を導入し、その導入量を徐々に増加させて組成が
81からSiOまで徐々に変化する←酸質化層を気相成
長させる第2の工程及び5iHnX4−n及び上記炭化
水素の導入量を一定に保って、第2の工程で得られた層
上に炭化珪素単結晶層を成長させることを特徴とする方
法。
[Claims] A method for growing a silicon carbide (StC) epitaxial film on a single crystal substrate, in which 5iHnX+ -n (X is CZ or Br. n = /, 2. J) is grown on a silicon (Sl) single crystal substrate. Alternatively) the seventh step of growing the S1 single crystal layer in a vapor phase, gradually reducing the amount of 5iHnX4-n introduced, and introducing hydrocarbons having carbon numbers from 1 to 6; The composition gradually changes from 81 to SiO by gradually increasing A method characterized in that a silicon carbide single crystal layer is grown on the layer obtained in the process.
JP56212694A 1981-12-28 1981-12-28 Growing method of silicon carbide epitaxial film Pending JPS58115818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212694A JPS58115818A (en) 1981-12-28 1981-12-28 Growing method of silicon carbide epitaxial film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212694A JPS58115818A (en) 1981-12-28 1981-12-28 Growing method of silicon carbide epitaxial film

Publications (1)

Publication Number Publication Date
JPS58115818A true JPS58115818A (en) 1983-07-09

Family

ID=16626876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212694A Pending JPS58115818A (en) 1981-12-28 1981-12-28 Growing method of silicon carbide epitaxial film

Country Status (1)

Country Link
JP (1) JPS58115818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076971A (en) * 1993-01-25 1995-01-10 Ohio Aerospace Inst Synthetic semiconductor and its controlled doping
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US5980265A (en) * 1994-06-03 1999-11-09 Advanced Technology Materials, Inc. Low resistance, stable ohmic contacts to silicon carbide, and method of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076971A (en) * 1993-01-25 1995-01-10 Ohio Aerospace Inst Synthetic semiconductor and its controlled doping
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US5980265A (en) * 1994-06-03 1999-11-09 Advanced Technology Materials, Inc. Low resistance, stable ohmic contacts to silicon carbide, and method of making the same

Similar Documents

Publication Publication Date Title
US4378259A (en) Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
JP3267983B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
JPS581539B2 (en) epitaxial wafer
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JPH08335715A (en) Epitaxial wafer and manufacturing method thereof
JPS58115818A (en) Growing method of silicon carbide epitaxial film
JP3146874B2 (en) Light emitting diode
TWI405880B (en) Epitaxial substrate and liquid - phase epitaxy growth method
JPH0760903B2 (en) Epitaxial wafer and manufacturing method thereof
JP2749898B2 (en) Manufacturing method of semiconductor SiC single crystal
JP3142312B2 (en) Crystal growth method for hexagonal semiconductor
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP3156514B2 (en) Manufacturing method of semiconductor epitaxial wafer
JPH06310440A (en) Silicon carbide semiconductor and film formation method thereof
USRE29648E (en) Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities
JPH05343740A (en) Gallium arsenide arsenide epitaxial wafer
JP3785705B2 (en) Gallium arsenide mixed crystal epitaxial wafer and light emitting diode