JPH04328823A - Manufacture of epitaxial wafer for light emitting diode - Google Patents
Manufacture of epitaxial wafer for light emitting diodeInfo
- Publication number
- JPH04328823A JPH04328823A JP3128538A JP12853891A JPH04328823A JP H04328823 A JPH04328823 A JP H04328823A JP 3128538 A JP3128538 A JP 3128538A JP 12853891 A JP12853891 A JP 12853891A JP H04328823 A JPH04328823 A JP H04328823A
- Authority
- JP
- Japan
- Prior art keywords
- xpx
- type
- layer
- light emitting
- gaas1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 16
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 12
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011574 phosphorus Substances 0.000 claims abstract description 12
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000012808 vapor phase Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 16
- 235000012431 wafers Nutrition 0.000 abstract description 14
- 238000009792 diffusion process Methods 0.000 abstract description 6
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical class [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、発光ダイオ−ドの製造
に適したGaAs1−XPX(ここで、0.4≦x≦0
.9)エピタキシャルウエハの製造方法に関する。[Industrial Application Field] The present invention relates to GaAs1-XPX (here, 0.4≦x≦0) suitable for manufacturing light emitting diodes.
.. 9) Regarding a method for manufacturing an epitaxial wafer.
【0002】0002
【従来の技術】従来より、GaAs1−XPXを材料と
する発光ダイオ−ドは、混晶率xを変えることによって
赤外光から緑色光まで各種の色で発光させることができ
、特に、発光層となる硫黄をド−プしたN型 GaAs
1−XPXにアイソエレクトロニックトラップとなる窒
素を添加することによって中間色である橙色や黄色を発
光させることができることから、表示素子として広く用
いられている。[Prior Art] Conventionally, light emitting diodes made of GaAs1-XPX can emit light in various colors from infrared light to green light by changing the mixed crystal ratio x. N-type GaAs doped with sulfur
By adding nitrogen, which acts as an isoelectronic trap, to 1-XPX, it is possible to emit light in intermediate colors such as orange and yellow, so it is widely used as a display element.
【0003】このようなエピタキシャルウエハを製造す
る際には、通常、GaP基板上に混晶率xが1から所望
の混晶率まで変化するグレ−デイング層を形成し、これ
によって格子定数を制御して結晶基板の格子定数と一致
しない格子定数を有するエピタキシャル結晶の成長を可
能にする。そして、このグレ−ディング層の上にこのグ
レ−ディング層に生じる欠陥を緩和する緩和層を設け、
この緩和層上に発光層を堆積するようにしている。橙色
、黄色等の発光ダイオ−ドに適する GaAs1−XP
X結晶は、アイソエレクトロニックトラップである窒素
を含有した層を発光層として用いるため、この発光層は
窒素を含有するものとし、また、この層をN型半導体と
するために例えば硫黄をド−プする。そして、この窒素
を含有するN型 GaAs1−XPXエピタキシャルウ
エハの表面から熱拡散法によってP型不純物である亜鉛
をド−ピングすることによってこの発光層内にPN接合
を形成し、これによって発光ダイオ−ド用のエピタキシ
ャルウエハを製造する。[0003] When manufacturing such epitaxial wafers, a grading layer with a mixed crystal ratio x varying from 1 to a desired mixed crystal ratio is usually formed on the GaP substrate, thereby controlling the lattice constant. This allows the growth of epitaxial crystals with lattice constants that do not match that of the crystal substrate. Then, a relaxation layer is provided on this grading layer to alleviate defects occurring in this grading layer,
A light emitting layer is deposited on this relaxation layer. GaAs1-XP suitable for orange, yellow, etc. light emitting diodes
Since the X crystal uses a layer containing nitrogen, which is an isoelectronic trap, as a light-emitting layer, this light-emitting layer must contain nitrogen, and in order to make this layer an N-type semiconductor, it is doped with, for example, sulfur. do. Then, by doping zinc, which is a P-type impurity, from the surface of this nitrogen-containing N-type GaAs1-XPX epitaxial wafer using a thermal diffusion method, a PN junction is formed in this light-emitting layer, thereby forming a light-emitting diode. Manufacture epitaxial wafers for the board.
【0004】上記のように、従来 GaAs1−XPX
エピタキシャルウエハを気相法で製造する場合には、N
型半導体のみをエピタキシャル成長させ、この表面近傍
に亜鉛などを拡散することによってPN接合を形成して
いるが、この場合にはP型不純物である亜鉛の拡散深さ
が5μm以下のときに最も明るく、樹脂封止構造の径5
mmの発光ダイオ−ドとしたときは、中心発光波長63
0nmのとき、220mcd程度であり、また、中心発
光波長580nmのとき250mcd程度である。As mentioned above, conventional GaAs1-XPX
When manufacturing epitaxial wafers by vapor phase method, N
A PN junction is formed by epitaxially growing only a type semiconductor and diffusing zinc or the like near the surface. Diameter 5 of resin sealing structure
When it is a light emitting diode of mm, the center emission wavelength is 63
When the wavelength is 0 nm, it is about 220 mcd, and when the center emission wavelength is 580 nm, it is about 250 mcd.
【0005】一方、液相法によりPN接合をエピタキシ
ャル成長で形成すると、混晶比x=1のGaPで中心発
光波長570nmのとき520mcd程度であり、橙色
、黄色等の発光ダイオ−ドに適する GaAs1−XP
X結晶の混晶比X=0.65ないし0.85と上記した
x=1であるGaPとの差を考慮しても、液相法でエピ
タキシャル成長した結晶を用いて製造する発光ダイオ−
ドの輝度は、気相法によって製造した発光ダイオ−ドの
約1.5ないし2倍になる。液相法でPN接合を形成し
た高輝度の発光ダイオ−ドを開発する研究から、例えば
、上記の中心発光波長570nmの場合、P層表面にお
ける再結合速度、亜鉛の濃度に対する少数キャリア拡散
長、及び亜鉛や窒素などを含む GaAs1−XPX結
晶の吸収係数を考慮した計算に基づく最適なP層の層厚
は約11μmであり、また、実験に基づく最適なP層の
層厚は25μm程度である。もし、中心発光波長を58
0nmとした場合には、計算に基づく最適なP層の層厚
が約8μmとなることから最適なP層の層厚としては1
8μm程度必要なことが推定できるが、P層のキャリア
濃度を1018以下に制御しながら18μm程度の深い
拡散を行うことは実際上不可能である。On the other hand, when a PN junction is formed by epitaxial growth using a liquid phase method, it is about 520 mcd when the center emission wavelength is 570 nm using GaP with a mixed crystal ratio x=1, which is suitable for orange, yellow, etc. light emitting diodes. XP
Even if we take into account the difference between the mixed crystal ratio of X crystal X = 0.65 to 0.85 and the above-mentioned GaP where x = 1, the light emitting diode manufactured using the crystal epitaxially grown by the liquid phase method
The brightness of the LED is about 1.5 to 2 times that of a light emitting diode manufactured by the vapor phase method. From research to develop a high-brightness light emitting diode with a PN junction formed using a liquid phase method, for example, in the case of the above central emission wavelength of 570 nm, the recombination rate at the P layer surface, the minority carrier diffusion length with respect to the zinc concentration, The optimal thickness of the P layer based on calculations taking into account the absorption coefficient of the GaAs1-XPX crystal containing zinc, nitrogen, etc. is about 11 μm, and the optimal layer thickness of the P layer based on experiments is about 25 μm. . If the center emission wavelength is 58
In the case of 0 nm, the optimal layer thickness of the P layer based on the calculation is approximately 8 μm, so the optimal layer thickness of the P layer is 1
It can be estimated that about 8 μm is required, but it is practically impossible to perform deep diffusion of about 18 μm while controlling the carrier concentration of the P layer to 10 18 or less.
【0006】このため、例えば、特公昭58−2507
9号公報記載の発明は、P層の層厚が大きい混晶比X=
1で、中心発光波長が567nmの場合について開示さ
れており、P型半導体成長中における亜鉛の不所望な拡
散(オ−トド−ピング)を避けるためにP型半導体の成
長温度を低下させるものであるが、この成長温度低下の
ためにP層の成長速度がN層のそれの0.67倍に減少
し、所望の層厚を成長するのに1.49倍の長時間を要
するようになるので、この長いエピタキシャル成長時間
のためにオ−トド−ピングの抑制が充分に行われないも
のである。[0006] For this reason, for example,
The invention described in Publication No. 9 is based on the mixed crystal ratio X= where the layer thickness of the P layer is large.
1 discloses the case where the central emission wavelength is 567 nm, and the growth temperature of the P-type semiconductor is lowered in order to avoid undesirable diffusion of zinc (autodoping) during the growth of the P-type semiconductor. However, due to this drop in growth temperature, the growth rate of the P layer decreases to 0.67 times that of the N layer, and it takes 1.49 times as long to grow the desired layer thickness. Therefore, autodoping cannot be sufficiently suppressed due to this long epitaxial growth time.
【0007】[0007]
【発明が解決しようとする課題】エピタキシャルウェハ
結晶内部の発光を効率よく取りだすために充分な厚さを
有するP層を1018以下のキャリア濃度で得るととも
に、高品質なPN接合を形成させた窒素を含む GaA
s1−XPXエピタキシャルウエハを比較的短時間で製
造する方法を得ることを目的とする。[Problems to be Solved by the Invention] It is an object of the present invention to obtain a P layer with a carrier concentration of 1018 or less, which has a sufficient thickness to efficiently extract the light emitted from inside the epitaxial wafer crystal, and to form a high-quality PN junction using nitrogen. Contains GaA
It is an object of the present invention to obtain a method for manufacturing s1-XPX epitaxial wafers in a relatively short time.
【0008】[0008]
【課題を解決するための手段】即ち本発明は、GaP単
結晶基板上にPN接合を有するGaAs1−XPX(こ
こで、0.4≦x≦0.9)単結晶層を気相エピタキシ
ャル成長させる発光ダイオ−ド用エピタキシャルウエハ
の製造方法において、窒素原子を含むN型 GaAs1
−XPXエピタキシャル成長の際のGa成分の分圧とリ
ンとヒ素成分の分圧とを0.003ないし0.02at
mとし、窒素原子を含むP型 GaAs1−XPXエピ
タキシャル成長のGa成分の分圧とリンとヒ素成分との
分圧を0.01ないし0.05atmとしたものである
。[Means for Solving the Problems] That is, the present invention provides a light emitting method for growing a GaAs1-XPX (here, 0.4≦x≦0.9) single crystal layer having a PN junction on a GaP single crystal substrate by vapor phase epitaxial growth. In a method for manufacturing an epitaxial wafer for a diode, N-type GaAs1 containing nitrogen atoms is used.
- The partial pressure of Ga component and the partial pressure of phosphorus and arsenic components during XPX epitaxial growth is 0.003 to 0.02at.
m, and the partial pressure of Ga component and the partial pressure of phosphorus and arsenic components in P-type GaAs1-XPX epitaxial growth containing nitrogen atoms are set to 0.01 to 0.05 atm.
【0009】[0009]
【作用】窒素原子を含むN型 GaAs1−XPXエピ
タキシャル成長の際のGa成分の分圧とリンとヒ素成分
の分圧とを、窒素原子を含むP型 GaAs1−XPX
エピタキシャル成長の際のGa成分とリンとヒ素成分の
分圧と変えることによって、これらエピタキシャル成長
の際の成長温度を一定として速い成長速度を達成し、P
層の層厚が厚く、且つ高品質なPN接合を有する窒素を
含む GaAs1−XPXエピタキシャルウエハの製造
を可能とした。[Function] The partial pressure of Ga component and the partial pressure of phosphorus and arsenic components during epitaxial growth of N-type GaAs1-XPX containing nitrogen atoms are changed to
By changing the partial pressures of the Ga component, phosphorus, and arsenic components during epitaxial growth, a fast growth rate can be achieved while keeping the growth temperature constant during epitaxial growth, and P
It has become possible to manufacture a nitrogen-containing GaAs1-XPX epitaxial wafer with a thick layer and a high-quality PN junction.
【0010】0010
【実施例】以下に、本発明の実施例を示すが、本発明は
これに限定されるものではない。[Examples] Examples of the present invention are shown below, but the present invention is not limited thereto.
【0011】[0011]
【実施例1】内径150mm、長さ140cmの縦型石
英製反応管内に、N型GaP単結晶基板として研磨加工
した厚み250μm、直径2インチでキャリア濃度5×
1017のN型GaP基板12枚を設置し、この反応管
内のガス流れ方向の上流に液体状の金属ガリウムを石英
容器に収容して配置した。そして、上記の反応管を窒素
ガス流量10l/分で約30分間反応管内の空気パ−ジ
を行った後、水素ガス流量6l/分として上記金属ガリ
ウムが830℃、基板が850℃になるまで電気炉内で
加熱した。その後、上記石英容器内の金属ガリウムを移
送するための塩化水素ガスを20cc/分、N型ド−バ
ントとして窒素ガスで100ppmに希釈した硫化水素
ガスを60cc/分、水素ガスで10%に希釈したホス
フィンガスを120cc/分の流量で、それぞれこの反
応管内に導入し、これとともに、水素ガスで希釈した1
0%アルシンガスを0cc/分から0.73cc/分の
割合で増加させながら90分間のグレ−ディングを行っ
てN型のグレ−ディング層を生成した。このグレ−ディ
ング層生成の90分が経過したときは、上記の水素ガス
で希釈した10%アルシンガスは66cc/分の流量に
なっており、その後エピタキシャル成長終了まで10%
アルシンガスをこの66cc/分の一定量で継続して反
応管内に導入した。上記のようにグレ−ディング層が形
成されてから、このグレ−ディング層の欠陥の緩和のた
めに上記雰囲気のままで窒素原子を含まないN型 Ga
As1−XPX層を60分間成長させて緩和層を形成さ
せた。[Example 1] In a vertical quartz reaction tube with an inner diameter of 150 mm and a length of 140 cm, an N-type GaP single crystal substrate was polished and had a thickness of 250 μm and a diameter of 2 inches with a carrier concentration of 5×.
Twelve No. 1017 N-type GaP substrates were installed, and liquid metal gallium was placed in a quartz container upstream in the gas flow direction within the reaction tube. After purging the reaction tube with air for about 30 minutes at a nitrogen gas flow rate of 10 l/min, the hydrogen gas flow rate was set at 6 l/min until the metal gallium reached 830°C and the substrate reached 850°C. Heated in an electric furnace. After that, hydrogen chloride gas to transfer the metal gallium in the quartz container was supplied at 20 cc/min, and hydrogen sulfide gas diluted to 100 ppm with nitrogen gas as an N-type dopant was diluted to 10% with hydrogen gas at 60 cc/min. The phosphine gas diluted with hydrogen gas was introduced into the reaction tubes at a flow rate of 120 cc/min, and together with the phosphine gas diluted with hydrogen gas.
Grading was performed for 90 minutes while increasing 0% arsine gas at a rate of 0 cc/min to 0.73 cc/min to produce an N-type grading layer. When 90 minutes have elapsed for this grading layer generation, the flow rate of the 10% arsine gas diluted with hydrogen gas is 66 cc/min.
Arsine gas was continuously introduced into the reaction tube at a constant rate of 66 cc/min. After the grading layer is formed as described above, in order to alleviate defects in the grading layer, N-type Ga which does not contain nitrogen atoms is grown in the above atmosphere.
The As1-XPX layer was grown for 60 minutes to form a relaxed layer.
【0012】ついで、アイソエレクトロニックトラップ
として作用する窒素をエピタキシャル単結晶中に添加す
るために、アンモニアガスを250cc/分の割合で上
記雰囲気とともに導入しながら、100分間エピタキシ
ャル成長を行わせることによって、窒素原子を含むN型
GaAs0.35P0.65エピタキシャル単結晶層
をN型発光層として形成させた。このN型発光層形成時
におけるGa成分の分圧とPおよびAsの分圧は、それ
ぞれ0.0054atmと0.0034atmである。
続いてN型ド−バントである硫黄をド−プするための硫
化水素ガスの導入を停止し、これに代えてP型ド−バン
トであるジメチル亜鉛を上記雰囲気とともに1cc/分
の割合で導入するとともに、前記塩化水素ガス、ホスフ
ィンガス及びアルシンガスをそれぞれ30cc/分、4
20cc/分及び230cc/分に増加させ、この条件
で窒素を含むP型 GaAs0.35P0.65エピタ
キシャル結晶層をP型注入層として25分間成長させた
後、電気炉を降温してエピタキシャルウエハを取り出し
た。このP型注入層形成時におけるGa成分の分圧とP
およびAsの分圧は、それぞれ0.0015atmと0
.0011atmである。このようにして得られたエピ
タキシャルウエハの各層の層厚とキャリア濃度とを測定
した結果を次の表1に示す。Next, in order to add nitrogen that acts as an isoelectronic trap into the epitaxial single crystal, epitaxial growth is performed for 100 minutes while introducing ammonia gas at a rate of 250 cc/min together with the above atmosphere. An N-type GaAs0.35P0.65 epitaxial single crystal layer containing the following was formed as an N-type light emitting layer. The partial pressures of the Ga component and the partial pressures of P and As at the time of forming this N-type light emitting layer are 0.0054 atm and 0.0034 atm, respectively. Next, the introduction of hydrogen sulfide gas for doping sulfur, which is an N-type dopant, was stopped, and instead, dimethylzinc, a P-type dopant, was introduced at a rate of 1 cc/min together with the above atmosphere. At the same time, the hydrogen chloride gas, phosphine gas, and arsine gas were supplied at 30 cc/min, 4
The rate was increased to 20 cc/min and 230 cc/min, and a P-type GaAs0.35P0.65 epitaxial crystal layer containing nitrogen was grown under these conditions as a P-type injection layer for 25 minutes, and then the temperature of the electric furnace was lowered and the epitaxial wafer was taken out. Ta. Partial pressure of Ga component and P at the time of forming this P-type injection layer
The partial pressures of and As are 0.0015 atm and 0, respectively.
.. 0011 atm. The results of measuring the layer thickness and carrier concentration of each layer of the epitaxial wafer thus obtained are shown in Table 1 below.
【0013】[0013]
【表1】[Table 1]
【0014】このエピタキシャルウエハを用いて発光ダ
イオ−ドを製作するために、上記エピタキシャル層の表
面にAu1%を含有するBeを、またGaP基板の裏面
に12%のAuを含有するGeをそれぞれ蒸着し、水素
ガス中で10分間、450℃に維持して合金化を行った
後、300μm角のチップ状の発光素子を構成し、さら
にリ−ドフレ−ムにマウントして樹脂封止を行なって径
が5mmの発光ダイオ−ドを構成した。その発光輝度を
測定したところ、動作電流20mAの時、発光波長63
0nm、輝度480mcdという高い輝度が得られた。
これは、気相法によって得られた従来のN型GaAs1
−XPXエピタキシャル表面に亜鉛を熱拡散して作成し
た波長630nmの橙色の発光ダイオ−ドに比べてほぼ
2.2倍高い輝度であり、液相法によって得られた発光
ダイオ−ドの輝度520mcdとほぼ同一レベルの輝度
である。In order to manufacture a light emitting diode using this epitaxial wafer, Be containing 1% Au is deposited on the surface of the epitaxial layer, and Ge containing 12% Au is deposited on the back surface of the GaP substrate. After alloying in hydrogen gas and maintaining the temperature at 450°C for 10 minutes, a 300 μm square chip-shaped light emitting device was constructed, which was then mounted on a lead frame and sealed with resin. A light emitting diode with a diameter of 5 mm was constructed. When we measured the luminance of the light, we found that when the operating current was 20 mA, the light emission wavelength was 63.
A high luminance of 0 nm and a luminance of 480 mcd was obtained. This is similar to the conventional N-type GaAs1 obtained by the gas phase method.
-The brightness is approximately 2.2 times higher than that of an orange light-emitting diode with a wavelength of 630nm created by thermally diffusing zinc onto the epitaxial surface of the The brightness is almost the same level.
【0015】[0015]
【実施例2】実施例1と同じ反応系を用い、水素ガス5
l/分、塩化水素ガス60cc/分、窒素ガスで100
ppmに希釈した硫化水素ガス80cc/分、水素ガス
で希釈した10%ホスフィンガス930cc/分、水素
ガスで希釈した10%アルシンガスを0cc/分から6
0分間で210cc/分まで逐次増加させて、N型のグ
レ−デング層を成長させた。続いて、10%アルシンガ
スの導入量を210cc/分の一定とし、グレ−デング
層で生じた欠陥を緩和するための緩和層のエピタキシャ
ル成長を40分間行った。つぎに、アンモニアガス28
0cc/分を導入し、40分間窒素を含むN型GaAs
1−XPXのN型発光層をエピタキシャル成長させた。
この時、Gaの分圧とリンとヒ素の分圧とは等しく、い
ずれも0.0099atmである。続いて、硫化水素ガ
スを停止し、ジエチル亜鉛0.8cc/分を導入し、且
つ塩化水素ガス180cc/分、10%ホスフィンガス
1170cc/分、10%のアルシンガス630cc/
分に増加させて窒素を含むP型GaAs1−XPX層の
エピタキシャル成長を15分間行った。このとき、Ga
の分圧とリンとヒ素の分圧とは等しく、いずれも0.0
25atmである。[Example 2] Using the same reaction system as in Example 1, hydrogen gas
l/min, hydrogen chloride gas 60cc/min, nitrogen gas 100cc/min
Hydrogen sulfide gas diluted to ppm 80cc/min, 10% phosphine gas diluted with hydrogen gas 930cc/min, 10% arsine gas diluted with hydrogen gas 0cc/min6
The rate was gradually increased from 0 minutes to 210 cc/min to grow an N-type grading layer. Subsequently, the amount of 10% arsine gas introduced was kept constant at 210 cc/min, and a relaxation layer was epitaxially grown for 40 minutes to alleviate defects generated in the grading layer. Next, ammonia gas 28
N-type GaAs with nitrogen introduced for 40 minutes at 0 cc/min.
An N-type light emitting layer of 1-XPX was epitaxially grown. At this time, the partial pressure of Ga and the partial pressures of phosphorus and arsenic are equal, and both are 0.0099 atm. Subsequently, hydrogen sulfide gas was stopped, diethylzinc 0.8 cc/min was introduced, and hydrogen chloride gas 180 cc/min, 10% phosphine gas 1170 cc/min, and 10% arsine gas 630 cc/min were introduced.
Epitaxial growth of a P-type GaAs1-XPX layer containing nitrogen was performed for 15 minutes. At this time, Ga
The partial pressure of phosphorus and arsenic are equal, and both are 0.0
It is 25 atm.
【0016】実施例1と同一条件で発光ダイオ−ドを作
成して輝度を測定した結果、中心発光波長625nmで
あってその輝度は590mcdであり、これは前述の液
相法による発光ダイオ−ドの輝度520mcdを凌ぐ、
極めて明るい発光ダイオ−ドが得られた。[0016] As a result of manufacturing a light emitting diode under the same conditions as in Example 1 and measuring its brightness, it was found that the center emission wavelength was 625 nm and its brightness was 590 mcd, which is higher than that of the light emitting diode using the liquid phase method described above. exceeds the brightness of 520mcd,
An extremely bright light emitting diode was obtained.
【0017】[0017]
【実施例3】実施例1と同じ反応系を用い、水素ガス5
l/分、塩化水素ガス110cc/分、窒素ガスで10
0ppmに希釈した硫化水素ガス80cc/分、水素ガ
スで希釈した10%ホスフィンガス700cc/分、水
素ガスで希釈した10%のアルシンガスを0cc/分か
ら60分間で385cc/分まで逐次増加させて、N型
のグレ−デング層を成長させた。続いて、10%アルシ
ンガスの導入量を385cc/分の一定とし、グレ−デ
ング層で生じた欠陥を緩和するための緩和層のエピタキ
シャル成長を40分間行った。次に、アンモニアガス3
10cc/分を導入し、40分間窒素を含むN型GaA
s1−XPXのN型発光層をエピタキシャル成長させた
。このとき、Gaの分圧と、リンPとヒ素Asの分圧は
等しく、いづれも0.017atmである。続いて、硫
化水素ガスを停止しジエチル亜鉛0.8cc/分を導入
し、且つ塩化水素ガス330cc/分、10%ホスフィ
ンガス1400cc/分、10%アルシンガス770c
c/分に増加させて窒素を含むP型GaAs1−XPX
層のエピタキシャル成長を10分間行った。この時、G
aの分圧は0.042atm、リンとヒ素の分圧は0.
014atmである。[Example 3] Using the same reaction system as in Example 1, hydrogen gas
l/min, hydrogen chloride gas 110cc/min, nitrogen gas 10
80 cc/min of hydrogen sulfide gas diluted to 0 ppm, 700 cc/min of 10% phosphine gas diluted with hydrogen gas, and 10% arsine gas diluted with hydrogen gas were sequentially increased from 0 cc/min to 385 cc/min in 60 minutes. A grading layer of the mold was grown. Subsequently, the amount of 10% arsine gas introduced was kept constant at 385 cc/min, and a relaxation layer was epitaxially grown for 40 minutes to alleviate defects generated in the grading layer. Next, ammonia gas 3
N-type GaA with nitrogen introduced for 40 minutes at 10 cc/min.
An N-type light emitting layer of s1-XPX was epitaxially grown. At this time, the partial pressures of Ga, phosphorus P, and arsenic As are equal, and both are 0.017 atm. Subsequently, hydrogen sulfide gas was stopped, diethyl zinc 0.8 cc/min was introduced, and hydrogen chloride gas 330 cc/min, 10% phosphine gas 1400 cc/min, and 10% arsine gas 770 cc/min.
P-type GaAs1-XPX with nitrogen increased to c/min
Epitaxial growth of the layer was carried out for 10 minutes. At this time, G
The partial pressure of a is 0.042 atm, and the partial pressures of phosphorus and arsenic are 0.
014 atm.
【0018】実施例1および実施例2と同一条件で発光
ダイオ−ドを作成して輝度を測定した結果、中心発光波
長630nmであって、その輝度は430mcdであり
、従来の拡散法で生成した発光ダイオ−ドにおける輝度
のほぼ2倍の輝度を有する明るい発光ダイオ−ドが得ら
れた。[0018] As a result of manufacturing a light emitting diode under the same conditions as in Example 1 and Example 2 and measuring its brightness, it was found that the center emission wavelength was 630 nm and its brightness was 430 mcd. A bright light emitting diode was obtained with a brightness approximately twice that in the light emitting diode.
【0019】[0019]
【発明の効果】本発明によれば、GaP単結晶基板上に
窒素を含むGaAs1−XPX(ここで、0.4≦x≦
0.9)エピタキシャルウエハを成長してPN接合を気
相法で形成する際に、窒素を含むN型GaAs1−XP
Xエピタキシャル層の成長を比較的低い分圧で、窒素を
含むP型GaAs1−XPXエピタキシャル層の成長を
比較的高い分圧で行うことにより、結晶内部の発光を効
率よく取り出すために充分な層厚のP型層を拡散の小さ
い条件で成長させることができる。According to the present invention, GaAs1-XPX containing nitrogen (where 0.4≦x≦
0.9) When growing an epitaxial wafer and forming a PN junction by a vapor phase method, N-type GaAs1-XP containing nitrogen is used.
By growing the X epitaxial layer at a relatively low partial pressure and growing the nitrogen-containing P-type GaAs1-XPX epitaxial layer at a relatively high partial pressure, a layer thickness sufficient to efficiently extract light emission from inside the crystal can be achieved. A P-type layer can be grown under conditions of low diffusion.
Claims (1)
aAs1−XPX(ここで、0.4≦x≦0.9)単結
晶層を気相エピタキシャル成長させる発光ダイオ−ド用
エピタキシャルウエハの製造方法において、窒素原子を
含むN型 GaAs1−XPXエピタキシャル成長の際
のGa成分の分圧とリンとヒ素成分の分圧とを0.00
3ないし0.02atmとし、窒素原子を含むP型 G
aAs1−XPXエピタキシャル成長のGa成分の分圧
とリンとヒ素成分との分圧を0.01ないし0.05a
tmとすることを特徴とする発光ダイオ−ド用エピタキ
シャルウエハの製造方法。Claim 1: G having a PN junction on a GaP single crystal substrate
In a method for manufacturing an epitaxial wafer for a light emitting diode in which aAs1-XPX (where 0.4≦x≦0.9) single crystal layer is grown by vapor phase epitaxial growth, N-type GaAs1-XPX containing nitrogen atoms is grown during epitaxial growth. The partial pressure of Ga component and the partial pressure of phosphorus and arsenic components are 0.00.
3 to 0.02 atm, P-type G containing nitrogen atoms
aAs1-XPX epitaxial growth, the partial pressure of Ga component and the partial pressure of phosphorus and arsenic components are set to 0.01 to 0.05a.
1. A method for manufacturing an epitaxial wafer for light emitting diodes, characterized in that tm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3128538A JPH04328823A (en) | 1991-04-29 | 1991-04-29 | Manufacture of epitaxial wafer for light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3128538A JPH04328823A (en) | 1991-04-29 | 1991-04-29 | Manufacture of epitaxial wafer for light emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04328823A true JPH04328823A (en) | 1992-11-17 |
Family
ID=14987234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3128538A Pending JPH04328823A (en) | 1991-04-29 | 1991-04-29 | Manufacture of epitaxial wafer for light emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04328823A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076971A (en) * | 1993-01-25 | 1995-01-10 | Ohio Aerospace Inst | Synthetic semiconductor and its controlled doping |
US5709745A (en) * | 1993-01-25 | 1998-01-20 | Ohio Aerospace Institute | Compound semi-conductors and controlled doping thereof |
US5856208A (en) * | 1995-06-06 | 1999-01-05 | Mitsubishi Chemical Corporation | Epitaxial wafer and its fabrication method |
CN103219436A (en) * | 2013-03-27 | 2013-07-24 | 上海萃智科技发展有限公司 | Preparation process for nonpolar GaN epitaxial wafer for LED (light emitting diode) |
-
1991
- 1991-04-29 JP JP3128538A patent/JPH04328823A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076971A (en) * | 1993-01-25 | 1995-01-10 | Ohio Aerospace Inst | Synthetic semiconductor and its controlled doping |
US5709745A (en) * | 1993-01-25 | 1998-01-20 | Ohio Aerospace Institute | Compound semi-conductors and controlled doping thereof |
US5856208A (en) * | 1995-06-06 | 1999-01-05 | Mitsubishi Chemical Corporation | Epitaxial wafer and its fabrication method |
CN103219436A (en) * | 2013-03-27 | 2013-07-24 | 上海萃智科技发展有限公司 | Preparation process for nonpolar GaN epitaxial wafer for LED (light emitting diode) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6057214B2 (en) | Method of manufacturing electroluminescent materials | |
US3931631A (en) | Gallium phosphide light-emitting diodes | |
US4001056A (en) | Epitaxial deposition of iii-v compounds containing isoelectronic impurities | |
US4216484A (en) | Method of manufacturing electroluminescent compound semiconductor wafer | |
US5442201A (en) | Semiconductor light emitting device with nitrogen doping | |
JPS581539B2 (en) | epitaxial wafer | |
KR100433039B1 (en) | Epitaxial wafer and manufacturing method thereof | |
JPH02257678A (en) | Manufacture of gallium nitride compound semiconductor light-emitting device | |
JP3146874B2 (en) | Light emitting diode | |
US5986288A (en) | Epitaxial wafer for a light-emitting diode and a light-emitting diode | |
JPH04328823A (en) | Manufacture of epitaxial wafer for light emitting diode | |
US5759264A (en) | Method for vapor-phase growth | |
JPH04328878A (en) | Manufacture of light emitting diode epitaxial wafer | |
JPH10200160A (en) | GaAsP epitaxial wafer and method of manufacturing the same | |
US5985023A (en) | Method for growth of a nitrogen-doped gallium phosphide epitaxial layer | |
JPH0760903B2 (en) | Epitaxial wafer and manufacturing method thereof | |
JPH08335555A (en) | Epitaxial wafer manufacturing method | |
JPH0463040B2 (en) | ||
JP7351241B2 (en) | Compound semiconductor epitaxial wafer and its manufacturing method | |
JPH06268256A (en) | Manufacture of light emitting diode epitaxial wafer | |
JPS5843898B2 (en) | Vapor phase growth method for compound semiconductor single crystal thin films | |
JPH05343740A (en) | Gallium arsenide arsenide epitaxial wafer | |
JPH0294577A (en) | Vapor phase epitaxial wafer for light emitting element | |
DenBaars | Light emitting diodes: materials growth and properties | |
JPS6285480A (en) | Manufacture of gallium phosphide green light emitting element |