[go: up one dir, main page]

JPS581093A - Method for forming protective film on surface of magnesium material - Google Patents

Method for forming protective film on surface of magnesium material

Info

Publication number
JPS581093A
JPS581093A JP9656281A JP9656281A JPS581093A JP S581093 A JPS581093 A JP S581093A JP 9656281 A JP9656281 A JP 9656281A JP 9656281 A JP9656281 A JP 9656281A JP S581093 A JPS581093 A JP S581093A
Authority
JP
Japan
Prior art keywords
voltage
silicate
spark discharge
film
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9656281A
Other languages
Japanese (ja)
Other versions
JPS5928637B2 (en
Inventor
Atsushi Fukuda
淳志 福田
Kenji Shimoda
下田 謙二
Mitsuru Ikenoue
池之上 満
Toshio Igarashi
敏夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Original Assignee
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEITSUPUSOOLE KK, Dipsol Chemicals Co Ltd filed Critical DEITSUPUSOOLE KK
Priority to JP9656281A priority Critical patent/JPS5928637B2/en
Publication of JPS581093A publication Critical patent/JPS581093A/en
Publication of JPS5928637B2 publication Critical patent/JPS5928637B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Abstract

PURPOSE:To reduce required treatment voltage and its time, and to save the quantity of power consumption, by using DC low voltage of a specific waveform as applied voltage, in an Mg material surface protective film forming method by spark discharge. CONSTITUTION:A solution containing alkali metal silicate or this silicate and alkali metal hydroxide is used as an electrolytic bath, in which an Mg material as the anode, and iron, Ni, etc. as the cathod are soaked respectively. Subsequently, DC voltage of a square waveform, a saw tooth waveform or a single phase half-waveform is applied until spark discharge is generated, and once spark discharge is generated, the voltage is further boosted. In this way, a desired protective film is formed on the surface of the anode Mg material.

Description

【発明の詳細な説明】 本発明はマグネシウム材即ち金属マグネシウム又はマグ
ネシウム合金の表面に保護皮膜を形成する方法に係り、
殊に電解洛中でマグネシウム材を陽極として通電し、火
花放電により耐食性、耐薬品性及び耐久性に優れた無機
質保護皮膜をマグネシウム材表面に形成する方法に係る
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a protective film on the surface of a magnesium material, that is, magnesium metal or magnesium alloy.
In particular, the present invention relates to a method of forming an inorganic protective film with excellent corrosion resistance, chemical resistance, and durability on the surface of a magnesium material by applying electricity to the magnesium material as an anode during electrolysis and using spark discharge.

マグネシウム材は化学的にみて極めて腐食され易い金属
である。しかしながらマグネシウム材は軽量性を含めて
種々の有利な特性を有し従ってこの化学的欠点を排除し
、工業材料として利用範囲3更に拡大するためには高度
な防食技術が要求され従来より種々の防食法の研究がな
されている。
From a chemical standpoint, magnesium material is a metal that is extremely susceptible to corrosion. However, magnesium material has various advantageous properties including lightness. Therefore, in order to eliminate this chemical disadvantage and further expand its range of use as an industrial material, advanced anti-corrosion technology is required. Research on the law is being conducted.

このようなマグネシウム材の防食処理法として大別すれ
ば、塗装法、化学皮膜形成法、電解化成皮膜形成法とが
存する。
Corrosion prevention treatment methods for such magnesium materials can be broadly classified into painting methods, chemical film forming methods, and electrolytic conversion film forming methods.

塗装法による防食は、ペイントやエナメルのような有機
皮膜を被覆することによって行なわれるが、ピンホール
の形成を避けられないため薄膜(20μm以下)では耐
食性が低下し、重ね塗りにょる厚膜化が必要である。ま
たかがる皮膜は化学的侵食に対して抵抗力を示すが、特
に高温条件下では劣化を来たし、マグネシウム材との密
着性が悪くなる。
Corrosion prevention by painting is achieved by coating with an organic film such as paint or enamel, but since the formation of pinholes is unavoidable, corrosion resistance decreases with thin films (less than 20 μm), and thicker films with repeated coatings are required. is necessary. Although the overcast film exhibits resistance to chemical attack, it deteriorates particularly under high temperature conditions and its adhesion to the magnesium material deteriorates.

化学皮膜形成法には、クロム酸法、亜セレン酸法、すず
酸塩法、リン酸塩法、7ツ化物法など数多くの方法があ
るが、一般的な方法としては重クロム酸塩を主成分とす
る溶液中に浸漬し化学反応を利用して防食皮膜を形成す
るクロメート処理が用いられている。この方法は経済性
、作業性で優れているが、耐食性に劣り、高湿度の雰囲
気中で塗装の下地処理として用いられているのが現状で
あり、この場合マグネシウム材との密着性が最も重要で
ある。
There are many methods for forming chemical films, including the chromic acid method, selenite method, stannate method, phosphate method, and heptadide method, but the most common method is to use dichromate. Chromate treatment is used to form an anti-corrosion film by immersing the material in a solution containing the components and utilizing a chemical reaction. Although this method is excellent in terms of economy and workability, it is inferior in corrosion resistance and is currently used as a base treatment for painting in a high humidity atmosphere, in which case adhesion to the magnesium material is most important. It is.

電解化成皮膜形成法には陽極酸化皮膜形成法と本発明が
関与する火花放電法によるものとが存する。陽極酸化皮
膜形成法の代表的なものに、アルカリ浴で4;jH,A
、に、法、DOW 12法、酸性浴rGjDOW17法
、DOW 9法、(1!r 22処理などがあるが、が
がる方法での陽極酸化皮膜は着色された光沢のない゛不
透明な皮膜であり、その耐食性は上記のクロメート皮膜
と同程度である。
There are two types of electrochemical conversion film forming methods: an anodic oxide film forming method and a spark discharge method to which the present invention relates. A typical method for forming an anodic oxide film is 4;jH,A in an alkaline bath.
There are methods such as DOW 12 method, acid bath method, DOW 17 method, DOW 9 method, and (1!r 22 treatment), but the anodic oxide film produced by the peeling method is a colored, matte and opaque film. The corrosion resistance is comparable to that of the above-mentioned chromate film.

これら諸方法に対し本発明が関与する火花放電による厚
い無機質保護皮膜形成に関する従来技術方法としてはア
メリカ合衆国特許第3832293号、同第38349
99号及び同第4184926号明細書に開示されてい
る方法がある。
In contrast to these methods, prior art methods for forming a thick inorganic protective film by spark discharge to which the present invention relates include U.S. Pat. No. 3,832,293 and U.S. Pat.
There are methods disclosed in No. 99 and No. 4184926.

上記アメ□リカ合衆国特許第3832293号明細書に
記載の方法はアルカリ金属ブイ酸塩とアルカリ金属水酸
化物と酸素準触媒とを含有する強アルカリ電解浴を用い
る方法であるが、この方法によれば火花開始電圧は約2
20 Vであり、その後35o乃至tooo vに昇圧
する必要があり、又浴組成に依存するが充分な皮膜を得
るためには1500 Vまで昇圧する必要性がある。
The method described in the above-mentioned US Pat. The spark starting voltage is approximately 2
The voltage is 20 V, and then it is necessary to increase the pressure to 35° to too much V.Although it depends on the bath composition, it is necessary to increase the pressure to 1500 V in order to obtain a sufficient film.

上記アメリカ合電国特許第3834999号明細書に記
載の方法はアルカリ金属水酸化物及びS i O3””
 ”と少なくとも1つの陰イオン、例えばBO,−1B
O,−’、B2O,7−21,As04−’、co、−
2、Cj r 04−2.0r20.1−21、Mob
、−”、Po4−3、Ti30.−2、wo、、−”、
W、02.−6とを含有する強アルカリ電解浴を用いる
方法であるが、この方法によれば火花放電開始電圧は、
約250 Vであり、目的とする皮膜を形成するには被
処理材に依存するが、その後400乃至600Vに昇圧
する必要性がある。更に上記アメリカ合衆国特許中に記
載された種々の方法では所望する耐食性皮膜を形成する
には比較的長時間(30〜60分)を要する。
The method described in the above-mentioned United States Patent No. 3,834,999 uses an alkali metal hydroxide and S i O3
” and at least one anion, e.g. BO, -1B
O, -', B2O,7-21, As04-', co, -
2, Cj r 04-2.0r20.1-21, Mob
,-”,Po4-3,Ti30.-2,wo,,-”,
W, 02. According to this method, the spark discharge starting voltage is:
The voltage is about 250 V, and depending on the material to be treated, it is necessary to increase the voltage to 400 to 600 V in order to form the desired film. Furthermore, the various methods described in the above-mentioned US patents require relatively long periods of time (30 to 60 minutes) to form the desired corrosion-resistant coating.

上記アメリカ合衆国特許第4184926号明細書に記
載の方法は、先ずマグネシウム材をフッ化水素酸水溶液
で処理して、フルオロマグネジ、ラム層を形成したのち
、アルカリ金属ケイ酸塩及びアルカリ金属水酸化物水溶
液より成る電解浴を用いる方法であるが、この方法によ
れば陽極表面に可視的火花が生じるまでの電圧、即ち1
50〜300 Vの電圧を印加しこれを維持せねばなら
ない。
The method described in the above-mentioned US Pat. No. 4,184,926 involves first treating a magnesium material with an aqueous solution of hydrofluoric acid to form a fluoromagnetic layer and a ram layer, and then treating the magnesium material with an alkali metal silicate and an alkali metal hydroxide. This method uses an electrolytic bath consisting of an aqueous solution, and according to this method, the voltage required until a visible spark appears on the anode surface, that is, 1
A voltage of 50 to 300 V must be applied and maintained.

火花放電法により形成される保護皮膜はガラス質様であ
って他の方法により形成される皮膜と比較する場合に厚
く耐食性、耐薬品性、耐久性等に優れている。
The protective film formed by the spark discharge method is glass-like, thicker and superior in corrosion resistance, chemical resistance, durability, etc. when compared to films formed by other methods.

斯くて、本発明の目的は従来技術による既述の火花放電
法を改良して所要処理電圧及び時間を低下せしめ、以て
消費電力量の節減、附帯設、備コストの低減を図り、処
理コストを廉価ならしめることにある。
Therefore, an object of the present invention is to improve the spark discharge method described above according to the prior art to reduce the required processing voltage and time, thereby reducing power consumption, ancillary equipment, and equipment costs, and reducing processing costs. The goal is to make it cheaper.

本発明によれば、この目的は電解浴がケイ酸塩含有水溶
液若しくはケイ酸塩とアルカリ金属水酸化物とを含有す
る水溶液であり且つ印加電圧が矩形波波形、ノコギリ波
波形又は単相半波波形の直流低電圧であることにより達
成される。
According to the invention, this purpose is such that the electrolytic bath is a silicate-containing aqueous solution or an aqueous solution containing a silicate and an alkali metal hydroxide, and the applied voltage has a rectangular waveform, a sawtooth waveform or a single-phase half-wave waveform. This is achieved by a waveform DC low voltage.

本発明方法に於いて、印加電圧が単相半波波形直流電圧
である場合には約40 Vで火花放電が開始する。目的
とする保護皮膜は約50乃至】50vに昇圧しこれを維
持することにより得ることができる。
In the method of the present invention, spark discharge starts at about 40 V when the applied voltage is a single-phase half-wave DC voltage. The desired protective film can be obtained by increasing the voltage to about 50 to 50V and maintaining this.

本発明方法に於いて、印加電圧が矩形波波形又はノコギ
リ波波形の直流電圧の場合には印加電圧を更に著るしく
低減せしめることができる。即ち、この場合には約15
Vの印加で火花放電が開始する。
In the method of the present invention, when the applied voltage is a DC voltage with a rectangular waveform or a sawtooth waveform, the applied voltage can be further reduced significantly. That is, in this case about 15
Spark discharge starts when V is applied.

目的とする皮膜を形成するための所要最終電圧に必ずし
も制限はないが30乃至100 Vに昇圧しこれを維持
すれば無機質(ガラス質様)の皮膜を形成することがで
きる。
Although there is no particular limit to the final voltage required to form the desired film, an inorganic (glass-like) film can be formed by increasing the voltage to 30 to 100 V and maintaining this voltage.

本発明方法を更に詳述するに、ケイ酸塩を含有するか又
はケイ酸塩とアルカリ金属水酸化物とを含有する水溶液
を電解浴として、若しくは上記水溶液中に酸素酸塩の少
なくとも1種を含有させた溶液を電解浴として、これに
被処理マグネシウム材を陽極とし且つ鉄、ステンレス又
はニッケルを陰極として浸漬し、単相半波波形、矩形波
波形又はノコギリ波波形の直流電圧を火花放電が生起す
る迄印加し、火花放電が生1.じたならば更に上記電圧
まで昇圧し約1〜!O分間維持すれば目的とする保護皮
膜が陽極マグネシウム材表面上に形成される。
To further explain the method of the present invention, an aqueous solution containing a silicate or a silicate and an alkali metal hydroxide is used as an electrolytic bath, or at least one oxyacid salt is added to the aqueous solution. The magnesium material to be treated is immersed in the solution as an electrolytic bath, and the magnesium material to be treated is used as an anode and iron, stainless steel, or nickel is used as a cathode, and a DC voltage with a single-phase half-wave, rectangular, or sawtooth waveform is applied to generate a spark discharge. Apply the voltage until spark discharge occurs.1. If it is, further increase the voltage to the above voltage and approximately 1~! If the temperature is maintained for 0 minutes, the desired protective film will be formed on the surface of the anode magnesium material.

本発明方法の実施に際しては、フツイヒ水素酸水溶液で
処理してフルオロマグネシウム層を形成するという予備
表面調整を必要としない。即ち、マグネシウム材は便箋
前処理を施こすことなくそのまま用いることができる。
When carrying out the method of the present invention, there is no need for preliminary surface preparation such as treatment with an aqueous solution of fluoromagnesium to form a fluoromagnesium layer. That is, the magnesium material can be used as it is without any pre-treatment for stationery.

勿論常法による脱脂、洗浄、硝酸第二鉄などによる酸洗
又は既述の如き化学皮膜形成を前処理として行なうこと
もできる。
Of course, conventional degreasing, washing, pickling with ferric nitrate or the like, or the formation of a chemical film as described above can also be carried out as a pretreatment.

かかる予備表面調整は、保護皮膜の有する本質的な耐食
性に殆んど影響を与えない。
Such preliminary surface conditioning has little effect on the inherent corrosion resistance of the protective coating.

本発明方法に於いて用いられるケイ酸塩は一般式M 2
0 ・n S 102 (Mはアルカリ金属を示し、n
は0.5乃至20の正数を示す〕で表わされる種々の水
溶性の又は水分散性のものであって、例えばケイ酸ナト
リウム、メタケイ酸ナトリウム、ケイ酸カリウム、ケイ
酸リチウム、コロイダルシリカ等を挙げることができる
。これらケイ酸塩は単独若しくは2種又はそれ以上の混
合物として用いることができる。ケイ酸塩濃度は52/
1以上飽和濃度まで用いることができるが、好ましい範
囲は、10〜300y/lである。ケイ酸塩濃度が高い
程火花放電開始電圧が低下するが200171以上では
火花放電開始電圧低下に関する影響は殆んど認められな
くなる。
The silicate used in the method of the invention has the general formula M2
0 ・n S 102 (M represents an alkali metal, n
represents a positive number from 0.5 to 20], such as sodium silicate, sodium metasilicate, potassium silicate, lithium silicate, colloidal silica, etc. can be mentioned. These silicates can be used alone or as a mixture of two or more. The silicate concentration is 52/
It is possible to use one or more up to a saturation concentration, but the preferred range is 10 to 300 y/l. The higher the silicate concentration, the lower the spark discharge starting voltage, but at 200171 or more, almost no effect on the spark discharge starting voltage is observed.

電解浴としてケイ酸塩水溶液若しくはケイ酸塩と酸素酸
塩とを含有する水溶液を用いる場合には、使用するケイ
酸塩はモル比(51o2/ M、O) 2.5以下のも
のが好ましく更にこの場合のケイ酸塩濃度としては比較
的高濃度(50171以上)で使用することが好ましい
。ケイ酸塩のモル比が2.5以上のものを用いての電解
処理では、アルカリ金属水酸化物を含有しない場合、陽
極マグネシウム材表面に火花放電を生しさせる印加電圧
を得るには、初期電流密度を非常に高くする必要があり
、後述の本発明方法による0、1〜10 A/dm2の
電流密度範囲では実質上火花放電が生起せず、密着性の
悪いコロイド状物質が析出するか或いはマグネシウム材
表面に陽極酸化皮膜が形成されるのみである。
When using an aqueous silicate solution or an aqueous solution containing a silicate and an oxyacid salt as the electrolytic bath, the silicate used preferably has a molar ratio (51o2/M, O) of 2.5 or less. In this case, it is preferable to use a relatively high silicate concentration (50171 or more). In electrolytic treatment using a silicate with a molar ratio of 2.5 or more, if no alkali metal hydroxide is contained, initial It is necessary to make the current density very high, and in the current density range of 0, 1 to 10 A/dm2 according to the method of the present invention described later, spark discharge does not substantially occur and colloidal substances with poor adhesion are deposited. Alternatively, only an anodized film is formed on the surface of the magnesium material.

かかる皮膜は本発明の目的とする耐食性を有しない。Such a film does not have the corrosion resistance targeted by the present invention.

本発明方法に於いて用いられる電解浴は少なくとも1種
のアルカリ金属水酸化物を含有することができる。この
場合、浴のpHは極めて高いものとなり、その値は個々
の水酸化物濃度或いは水酸化物の組合せによって決定さ
れる。アルカリ金属水酸化物を含有させることにより種
々のモル比のケイ酸塩を使用することが可能となり、ま
たケイ酸塩との相対量にもよるが、使用ケイ酸塩濃度を
低下させることができ、更に火花放電電圧の低減にも役
立つ。本発明方法に於て用いられる好ましいアルカリ金
属はナトリウム、カリウム及びリチウムであり、少なく
とも5y/を以上のアルカリ金属水酸化物を含有するこ
とが好ましい。水酸化物は飽和濃度まで用いることがで
きるが、本発明方法による保護皮膜での好ましい範囲は
、上述ケイ酸塩濃度との相対量にもよるが10〜100
 f/lである。
The electrolytic bath used in the method of the invention may contain at least one alkali metal hydroxide. In this case, the pH of the bath will be very high, the value being determined by the individual hydroxide concentration or the hydroxide combination. The inclusion of alkali metal hydroxide makes it possible to use silicate in various molar ratios, and depending on the relative amount to silicate, the concentration of silicate used can be reduced. , it also helps to reduce the spark discharge voltage. Preferred alkali metals used in the process of the invention are sodium, potassium and lithium, preferably containing at least 5y/m of alkali metal hydroxide. The hydroxide can be used up to a saturation concentration, but the preferred range for the protective coating according to the method of the present invention is 10 to 100, depending on the relative amount to the above-mentioned silicate concentration.
f/l.

ケイ酸塩若しくはケイ酸塩とアルカリ金属水酸化物とを
含有する水溶液から成る電解浴に酸素酸塩を添加せしめ
ることにより火花放電開始電圧を低下せしめ、ケイ酸塩
濃度の低減を図り、皮膜の均質化及び平滑化を図り、又
皮膜に着色を生ぜしめることができる。斯がる酸素酸塩
としては、タングステン酸塩、すず酸塩、モリブデン酸
塩、リン酸塩、バナジン酸塩、ホウ酸塩、クロム酸塩及
び過マンガン酸塩を挙げることができる。これらは単独
で若しくは2種又はそれ以上を組合わせて使用すること
ができ、その濃度は0.2 y/を以上である。例えば
すず酸塩は皮膜を平滑化し往つ灰色となす効果があり、
又バナジン酸塩はその濃度に応じ皮膜を黄金色、茶色、
灰黒色、又は黒色ならしある効果を有している。
By adding an oxyacid to an electrolytic bath consisting of a silicate or an aqueous solution containing a silicate and an alkali metal hydroxide, the spark discharge starting voltage is lowered, the silicate concentration is reduced, and the film is improved. It is possible to homogenize and smooth the film, and also to color the film. Among such oxyacid salts, mention may be made of tungstates, stannates, molybdates, phosphates, vanadates, borates, chromates and permanganates. These can be used alone or in combination of two or more, and the concentration is 0.2 y/or more. For example, stannate has the effect of smoothing the film and making it gray,
Also, depending on the concentration, vanadate gives the film a golden color, brown color, or
It has a grayish-black or black color with a certain effect.

電解浴のpHは8.5以上となすのが好ましく、8.5
以下ではゲル化等の望ましからぬ現象が生ずる可能性が
ある。このためにpH調整剤、安定剤を加えてゲル化及
び沈殿を防止することができる。
The pH of the electrolytic bath is preferably 8.5 or higher, and 8.5
Below, undesirable phenomena such as gelation may occur. For this purpose, pH adjusters and stabilizers can be added to prevent gelation and precipitation.

電解処理は既述のように被処理マグネシウム材を陽極と
し且つ鉄、ステンレス又はニッケルを陰極として上記電
解浴に浸漬し、前記波形の直流電圧を火花放電が生ずる
まで徐々に印加し次いで火花放電を維持しつつ所定電圧
まで昇圧し所定厚さの皮膜が形成されるまで該電圧を維
持すればよい。
In the electrolytic treatment, as described above, the magnesium material to be treated is used as an anode and iron, stainless steel or nickel is used as a cathode, and is immersed in the above electrolytic bath, and a DC voltage of the above waveform is gradually applied until a spark discharge occurs. The voltage may be increased to a predetermined voltage while maintaining the same, and the voltage may be maintained until a film of a predetermined thickness is formed.

例えば定電流電解法では一定の陽極電流密度を維持する
ように印加電圧を連続的に変化させて、陽極表面に激し
い火花放電を生ぜしめ、その後皮膜が所望厚さ、となる
まで当該電圧を維持しつつ通電を継続する。定電流電解
法を行なえない場合には、先ず成る陽極電流密度となる
ように電圧を印加して火花放電を生せしめれば該放電に
よる皮膜の生成に伴なって電流密度の低下が認められる
ので、その後初期の電流密度になるように電圧を印加し
この操作を繰返して皮膜を所望厚さになせば良い。
For example, in galvanostatic electrolysis, the applied voltage is continuously varied to maintain a constant anode current density, producing intense spark discharge on the anode surface, and then the voltage is maintained until the film reaches the desired thickness. Continue to turn on the power while doing so. If constant current electrolysis cannot be carried out, if a voltage is applied to produce a spark discharge so that the anode current density is as follows, a decrease in current density will be observed as a film is formed by the discharge. Then, a voltage is applied so that the initial current density is achieved, and this operation is repeated to form the film to a desired thickness.

電流密度は0.1〜10 A/d’m2の範囲で任意に
選択することができ、この電流密度は火花放電電圧には
殆んど関係しないが、低電流密度の場合には所定電圧ま
で印加するのに長時間を要し且つ高電流密度の場合には
電解浴温度の上昇等の問題が生ずるので0.5〜2 A
/dm2となすのが好ましい。
The current density can be arbitrarily selected in the range of 0.1 to 10 A/d'm2, and this current density has almost no relation to the spark discharge voltage, but in the case of low current density, it can be selected up to a predetermined voltage. It takes a long time to apply and when the current density is high, problems such as an increase in the temperature of the electrolytic bath occur, so the
/dm2 is preferable.

形成される皮膜の厚さは、電解浴の濃度、電解浴温度、
処理電圧、処理時間等によって決定され、この内で電解
浴温度は目的とする皮膜に応じて決定されるが通例5乃
至80°Cとなされる。
The thickness of the film formed depends on the concentration of the electrolytic bath, the temperature of the electrolytic bath,
The temperature of the electrolytic bath is determined depending on the processing voltage, processing time, etc., and the temperature of the electrolytic bath is determined depending on the desired film, but is generally set at 5 to 80°C.

次に、実施例に関連して本発明を更に詳細に説明する。The invention will now be explained in more detail with reference to examples.

実施例 1 ケイ酸カリウム50 y/を及び木酸化ナトリウム50
y/lより成る水溶液中に表面積50’c++!s厚さ
3關のマグネシウム合金板AZ 310を陽極とし且つ
鉄板を陰極として浸漬し、単相半波直流電圧を陽極電流
密度1.OA/dm2に保持しながら連続的に印加すれ
ば約40 Vで火花放電が生起する。電圧を60 Vま
で昇圧し10分間維持した。この通電は激しい火花放電
゛を伴なう。陽極板上には乳白色ガラス状を呈する皮膜
が形成され、該皮膜の厚さは約30μmであった。
Example 1 50 y/y of potassium silicate and 50 y/y of sodium wood oxide
In an aqueous solution consisting of y/l, the surface area is 50'c++! A magnesium alloy plate AZ 310 with a thickness of 3 mm is used as an anode and an iron plate is used as a cathode. A single-phase half-wave DC voltage is applied to the anode current density of 1. If applied continuously while maintaining the voltage at OA/dm2, a spark discharge will occur at approximately 40 V. The voltage was increased to 60 V and maintained for 10 minutes. This energization is accompanied by intense spark discharge. A milky glass-like film was formed on the anode plate, and the thickness of the film was about 30 μm.

実施例 2 メタケイ酸ナトリウム9水塩(モル比−0,9〜1、I
ン150y/l水溶液中に表面積50d1厚ざ3闘のマ
グネシウム合金板AZ’31(1!を陽極とし且つ鉄板
を陰極として浸漬し、ノコギリ波波形直流電圧を陽極電
流密度0.5 A/dm2に保持しながら連続的に印加
すれば約20Vで火花放電が生起する。電圧を30 V
まで昇圧し、この電圧を維持しながら5分間通電した。
Example 2 Sodium metasilicate nonahydrate (molar ratio -0.9 to 1, I
A magnesium alloy plate AZ'31 (1!) with a surface area of 50 d1 and a thickness of 3 mm was immersed in a 150 y/l aqueous solution with the plate as an anode and the iron plate as a cathode, and a sawtooth wave DC voltage was applied to the anode current density of 0.5 A/dm2. If applied continuously while holding the voltage, a spark discharge will occur at about 20V.
The voltage was increased to 1, and current was applied for 5 minutes while maintaining this voltage.

この通電は激しい火花放電を伴なう。This energization is accompanied by intense spark discharge.

陽極板上には乳白色ガラス状を呈する皮膜が形成され、
この皮膜の厚さは約20pmであった。
A milky glass-like film is formed on the anode plate,
The thickness of this film was approximately 20 pm.

実施例 3 ケイ酸カリウム’so y7’t 、水酸化ナトリウム
30f/を及びメタバナジン酸カリウム30 y/lを
含有する水溶液中に、表面積50 cr!、厚さ2闘の
マグネシウム合金鋳物板AZ 910を陽極とし且つ鉄
板を陰極として浸漬し、陽極電流密度0.5 A/dm
2に保持しつつ単相半波波形直流電圧を徐々に印加すれ
ば約40 Vで火花放電が生起する。電圧を55 Vま
で昇圧し、この電圧を維持しながら10分間処理した。
Example 3 A surface area of 50 cr. , a magnesium alloy casting plate AZ 910 with a thickness of 2 mm was used as an anode and an iron plate was used as a cathode, and the anode current density was 0.5 A/dm.
2 and gradually apply a single-phase half-wave DC voltage, a spark discharge will occur at about 40 V. The voltage was increased to 55 V, and the treatment was carried out for 10 minutes while maintaining this voltage.

斯くすることにより陽極板上に形成された皮膜は厚さ約
30μmで濃茶色ガラス状を呈していた。
The film thus formed on the anode plate had a thickness of about 30 μm and a dark brown glassy appearance.

実施例 4 ケイ酸ナトリウム200 f/l及び水酸化ナトリウム
60り/lを含有する水溶液中に、表面積50−1厚さ
2關のマグネシウム合金鋳物板AZ 910を陽極とし
且つ鉄板を陰極として浸漬し、陽極電流密度0.8 A
/dm2に保持しつ1つ矩形波波形直流電圧を徐々に印
加すれば約15Vで火花放電が生起する。
Example 4 A cast magnesium alloy plate AZ 910 with a surface area of 50-1 and a thickness of 2 mm was immersed as an anode and an iron plate as a cathode in an aqueous solution containing 200 f/l of sodium silicate and 60 l/l of sodium hydroxide. , anode current density 0.8 A
/dm2 and gradually apply a rectangular waveform DC voltage one by one, a spark discharge will occur at about 15V.

電圧を30 Vまで昇圧し、この電圧を維持しながら3
分間通軍処理した。この通電は激しい火花放電を伴なう
。陽極板上には平滑なガラス状を呈する乳白色の皮膜が
形成され、該皮膜の厚さは約10μmであった。
Increase the voltage to 30 V, and while maintaining this voltage,
The army was processed for a minute. This energization is accompanied by intense spark discharge. A smooth, glass-like, milky white film was formed on the anode plate, and the thickness of the film was about 10 μm.

実施例 5 ケイ酸カリウム10 ?/l及び水酸化カリウム4゜f
/lを含有する水溶液中に、表面積50cn、厚さ3止
のマグネシウム合金板AZ 31 Cを陽極とし且つス
テンレス板を陰極として浸漬し、陽極電流密度を0.5
 A/dm2に保持しながら徐々にノコギリ波波形直流
電圧を印加すれば約+5Vで火花放電が生起する。電圧
を30 Vに昇圧し、この電圧を維持しながら10分間
処理した。陽極板上には乳白色ガラス状を呈する皮膜が
形成され、この皮膜の厚さは約15μmであった。
Example 5 Potassium silicate 10? /l and potassium hydroxide 4°f
A magnesium alloy plate AZ 31 C with a surface area of 50 cn and a thickness of 3 stops was used as an anode and a stainless steel plate was used as a cathode, and the anode current density was set to 0.5.
If a sawtooth wave DC voltage is gradually applied while maintaining the voltage at A/dm2, a spark discharge will occur at about +5V. The voltage was increased to 30 V, and the treatment was carried out for 10 minutes while maintaining this voltage. A milky white glass-like film was formed on the anode plate, and the thickness of this film was about 15 μm.

実施例 6 ケイ酸リチウム80 ?/l 、水酸化ナトリウム5゜
9/l及びすず酸すF IJウム10 f/lを含有す
る水溶液中にマグネシウム合金板A231Cf@極とし
且つ鉄板を陰極として浸漬し、陽極電流密度を1.OA
/dm”に保持しながら徐々にノコギリ波波形直流電圧
を印加すれば約15Vで火花放電が生起する。電圧を3
0 Vに昇圧し、この電圧を維持しながら5分間通電処
理した。この通電は激しい火花放電を伴なう。
Example 6 Lithium silicate 80? A magnesium alloy plate A231Cf@ as an electrode and an iron plate as a cathode were immersed in an aqueous solution containing 5°9/l of sodium hydroxide and 10 f/l of sodium hydroxide, and the anode current density was set to 1. OA
/dm" and gradually apply a sawtooth waveform DC voltage, a spark discharge will occur at about 15V.
The voltage was increased to 0 V, and current was applied for 5 minutes while maintaining this voltage. This energization is accompanied by intense spark discharge.

陽極板上には厚さ約20μmで灰色ガラス状を呈する皮
膜が形成された。
A gray glassy film with a thickness of about 20 μm was formed on the anode plate.

尚、上記実施例1乃至6に記載の方法で形成された各皮
膜は、従来の方法により被覆されたマグネシウム材に比
べ、強酸及び強アルカリに対してはるかに大きい抵抗性
を有する耐久性ある皮膜であった。更に各皮膜は塗料と
の密着性・が良好であり、耐摩耗性にも優れている。
The coatings formed by the methods described in Examples 1 to 6 above are durable coatings that have much greater resistance to strong acids and strong alkalis than magnesium materials coated by conventional methods. Met. Furthermore, each film has good adhesion to paint and excellent wear resistance.

Claims (1)

【特許請求の範囲】 (Il電解洛中でマグネシウム材を@極として通電し、
火花放電によりマグネシウム材表面に保護皮膜を形成す
る方法に於いて、電解浴がアルカリ金属ケイ酸塩水溶液
若しくはアルカリ金属ケイ酸塩とアルカリ金属水酸化物
とを含有する水溶液であり且つ印加電圧が矩形波波形、
ノコギリ波波形又は単相半波波形の直流低電圧であるこ
とを特徴とする方法。 (2、特許請求の範囲第1項記載の方法に於いて、電解
浴がタングステン酸塩、すず酸塩、モリブデン酸塩、リ
ン酸塩、バナジン酸塩、ホウ酸塩、クロム酸塩及び過マ
ンガン酸塩から選択された少なくとも1種の酸素酸塩を
含有するケイ酸塩水溶液若しくは少なくとも1種のこれ
ら酸素酸塩とケイ酸塩とアルカリ金属水酸化物とを含有
する水溶液であることを特徴とする方法。
[Scope of claims]
In the method of forming a protective film on the surface of a magnesium material by spark discharge, the electrolytic bath is an aqueous alkali metal silicate solution or an aqueous solution containing an alkali metal silicate and an alkali metal hydroxide, and the applied voltage is rectangular. wave waveform,
A method characterized in that the DC low voltage has a sawtooth waveform or a single-phase half-wave waveform. (2. In the method described in claim 1, the electrolytic bath contains tungstate, stannate, molybdate, phosphate, vanadate, borate, chromate, and permanganate. A silicate aqueous solution containing at least one oxyacid selected from acid salts, or an aqueous solution containing at least one of these oxyacids, a silicate, and an alkali metal hydroxide. how to.
JP9656281A 1981-06-24 1981-06-24 Method of forming a protective film on the surface of magnesium material Expired JPS5928637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9656281A JPS5928637B2 (en) 1981-06-24 1981-06-24 Method of forming a protective film on the surface of magnesium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9656281A JPS5928637B2 (en) 1981-06-24 1981-06-24 Method of forming a protective film on the surface of magnesium material

Publications (2)

Publication Number Publication Date
JPS581093A true JPS581093A (en) 1983-01-06
JPS5928637B2 JPS5928637B2 (en) 1984-07-14

Family

ID=14168474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9656281A Expired JPS5928637B2 (en) 1981-06-24 1981-06-24 Method of forming a protective film on the surface of magnesium material

Country Status (1)

Country Link
JP (1) JPS5928637B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
JPH05239692A (en) * 1991-11-27 1993-09-17 Electro Chem Eng Gmbh Method for producing a modified oxide ceramics layer on the metal forming the isolation layer, if necessary, and an object made from this
US5264113A (en) * 1991-07-15 1993-11-23 Technology Applications Group, Inc. Two-step electrochemical process for coating magnesium alloys
WO2003029528A1 (en) * 2001-10-02 2003-04-10 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7578921B2 (en) 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
CN104514027A (en) * 2014-12-25 2015-04-15 广东省工业技术研究院(广州有色金属研究院) Electrolyte solution for preparing aluminum and aluminum alloy ceramic membrane through micro-arc oxidation technology
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147515A (en) * 1989-09-04 1992-09-15 Dipsol Chemicals Co., Ltd. Method for forming ceramic films by anode-spark discharge
KR101285485B1 (en) 2008-12-26 2013-07-23 니혼 파커라이징 가부시키가이샤 Electrolytic ceramic coating method of metal, electrolytic solution and metal material for electrolytic ceramic coating of metal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
US5264113A (en) * 1991-07-15 1993-11-23 Technology Applications Group, Inc. Two-step electrochemical process for coating magnesium alloys
JPH05239692A (en) * 1991-11-27 1993-09-17 Electro Chem Eng Gmbh Method for producing a modified oxide ceramics layer on the metal forming the isolation layer, if necessary, and an object made from this
US7578921B2 (en) 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US6797147B2 (en) 2001-10-02 2004-09-28 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
WO2003029528A1 (en) * 2001-10-02 2003-04-10 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US8361630B2 (en) 2001-10-02 2013-01-29 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US9023481B2 (en) 2001-10-02 2015-05-05 Henkel Ag & Co. Kgaa Anodized coating over aluminum and aluminum alloy coated substrates and coated articles
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
CN104514027A (en) * 2014-12-25 2015-04-15 广东省工业技术研究院(广州有色金属研究院) Electrolyte solution for preparing aluminum and aluminum alloy ceramic membrane through micro-arc oxidation technology

Also Published As

Publication number Publication date
JPS5928637B2 (en) 1984-07-14

Similar Documents

Publication Publication Date Title
JPS63501802A (en) Method of coating magnesium articles and electrolytic bath therefor
CN112160007B (en) Antibacterial, mildewproof and antiviral electrophoresis stainless steel and preparation method thereof
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JPS581093A (en) Method for forming protective film on surface of magnesium material
CN101275265B (en) A method for depositing cerium-containing compound in aluminum and its alloy anodized film
US5259937A (en) Process for forming colorless chromate coating film on bright aluminum wheel
JPS581094A (en) Method for forming colored protective film on surface of magnesium material
JPS5817278B2 (en) Method of forming a protective film on the surface of aluminum materials
JP3176470B2 (en) Multilayer coating method
JPS5916997A (en) Formation of colored protective film on surface of magnesium material
JP3212754B2 (en) Water-based inorganic paint coating pretreatment method for aluminum-based metal surfaces
US6758956B1 (en) Method for darkening a superficial layer which contains zinc and which is of a material piece
US3681149A (en) Process for chemically forming oxide films on the surfaces of aluminum and aluminum alloys
CN100467676C (en) Method for plasma electrolytic oxidation preparation of ceramic oxide film and its products
JP2000282296A (en) Steel sheet for coating excellent in hydrogen brittleness resistance and corrosion resistance and its production
EP0023762A1 (en) Method of plating with titanium and a substrate plated with titanium
JP3107884B2 (en) Pretreatment method for painting aluminum plate or aluminum plated plate
JPS61235596A (en) Surface treatment of magnesium, aluminum and alloy thereof
JPH06228797A (en) Coating method for titanium member
JPS6014119B2 (en) Method of forming opaque white film on aluminum surface
Hu et al. A review of chromium free passivation process for aluminum film with high protective properties
JPS6350499A (en) Colored zinc composite plated steel sheet and its production
Anicai et al. Surface Modification of Aluminum and Its Alloys Using Conversion Coatings
CN113061956A (en) Preparation method of antibacterial, mildewproof and antiviral super-hydrophobic stainless steel
JPH07173684A (en) Surface treatment of metallic aluminum material