[go: up one dir, main page]

JPS5810721B2 - Manufacturing method of thin film optical device - Google Patents

Manufacturing method of thin film optical device

Info

Publication number
JPS5810721B2
JPS5810721B2 JP53070260A JP7026078A JPS5810721B2 JP S5810721 B2 JPS5810721 B2 JP S5810721B2 JP 53070260 A JP53070260 A JP 53070260A JP 7026078 A JP7026078 A JP 7026078A JP S5810721 B2 JPS5810721 B2 JP S5810721B2
Authority
JP
Japan
Prior art keywords
waveguide
film
waveguide film
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070260A
Other languages
Japanese (ja)
Other versions
JPS54161350A (en
Inventor
小林盛男
照井博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53070260A priority Critical patent/JPS5810721B2/en
Publication of JPS54161350A publication Critical patent/JPS54161350A/en
Publication of JPS5810721B2 publication Critical patent/JPS5810721B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、主として光通信に用いられる薄膜光素子の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a thin film optical element mainly used for optical communications.

近来光通信の実用化に伴い、電気回路における分岐回路
、濾波回路等と同様の目的で、光通信の光線に対し分岐
あるいは濾波等を行なうため、これらの目的を達する機
能単位としての薄膜光素子が開発されており、従来の立
体的光学系に比して平面的構成を有するうえから、小形
、軽量化の利点を有し、次第に汎用化される傾向を呈し
ている。
With the recent commercialization of optical communications, thin-film optical devices are being developed as functional units that can branch or filter optical communication beams for the same purposes as branch circuits and filter circuits in electrical circuits. has been developed, and has the advantage of having a planar configuration, smaller size, and lighter weight than conventional three-dimensional optical systems, and is gradually becoming more widely used.

第1図は従来のかかる薄膜光素子の製造方法を示す工程
図であり、ガラス基板および空気をクラッド層としガラ
ス基板上へコアとしての光導波層を形成する場合である
FIG. 1 is a process diagram showing a conventional method for manufacturing such a thin film optical device, in which a glass substrate and air are used as cladding layers, and an optical waveguide layer as a core is formed on the glass substrate.

まず、同図Aのとおり第1クラッド層としての透明な平
面状のガラス基板1へ、高周波スパッタリングまたは蒸
着等の手段により透明な光導波層2を形成し、ついで、
同図Bのとおりエツチングに対して耐性を有する物質に
よりマスク3を所定の形状に形成したうえ、エツチング
を行ない、同図Cのとおり光導波層2の不要部分を除去
し、更に溶剤等を用いてマスク3を取り去ると、同図り
のとおり所定の形状を有する光導波層2がガラス基板1
上へ形成され、光導波層2内を伝搬する光線の波長にお
ける第1クラッド層としてのガラス基板1の屈折率をn
い光導波層2の屈折率をn2、第2クラッド層として作
用する空気の屈折率をn3とし、n2>nl>n3の関
係に保てば、光導波層2内をグラスファイバと同様の原
理により光線が伝搬する。
First, as shown in Figure A, a transparent optical waveguide layer 2 is formed on a transparent planar glass substrate 1 as a first cladding layer by means such as high frequency sputtering or vapor deposition, and then,
As shown in Figure B, a mask 3 is formed into a predetermined shape using a material that is resistant to etching, and then etched, unnecessary portions of the optical waveguide layer 2 are removed as shown in Figure C, and further, using a solvent or the like, etching is performed. When the mask 3 is removed, the optical waveguide layer 2 having a predetermined shape is covered with the glass substrate 1 as shown in the figure.
The refractive index of the glass substrate 1 as the first cladding layer at the wavelength of the light beam formed on the optical waveguide layer 2 and propagating in the optical waveguide layer 2 is n.
If the refractive index of the optical waveguide layer 2 is n2, and the refractive index of the air acting as the second cladding layer is n3, and the relationship n2>nl>n3 is maintained, the inside of the optical waveguide layer 2 can be operated on the same principle as glass fiber. The light ray propagates due to

ところが、第1図りのとおり光導波層2の側面4がエツ
チングの際非平滑面となり、ここにおいて伝搬すべき光
線の乱反射を生ずるため、光線の伝搬損失が増大する原
因となり、側面4を平滑面とするには高度の製造技術を
必要とし、多数の複雑な装置と熟練した作業員とを要す
るうえから、製造コストが高価となる欠点を生じていた
However, as shown in the first diagram, the side surface 4 of the optical waveguide layer 2 becomes a non-smooth surface during etching, causing diffuse reflection of the light rays that should propagate there, which causes an increase in the propagation loss of the light ray. This requires advanced manufacturing technology, requires a large number of complex equipment and skilled workers, and has the drawback of high manufacturing costs.

また、「誘電体微小光回路の製造方法」(特開昭48−
79655号)により開示されているとおり、光照射に
より屈折率が低下する性質の物質を導波膜として用いた
うえ、これの所望部位へ光照射を行なって光素子を形成
する方法もあるが、これは、LiNbO3にオブ酸リチ
ウム)等の電気光学的結晶へ、可視光線(波長4sso
大のアルゴンガスレーザ光等)を照射すると、光損傷部
位が生じ、この部位の屈折率が低下することを利用する
ものであり、か〜る光損傷効果による屈折率の低下量Δ
nは高々10−4にすぎず、この程度の屈折率変化では
、光の閉じ込め効果が弱く、直線状の導波路は製作可能
であっても、曲線状の導波路を製することは、事実上不
可能となる欠点を生ずる。
Also, ``Method for manufacturing dielectric micro-optical circuits''
79655), there is a method in which an optical element is formed by using a material whose refractive index decreases when irradiated with light as a waveguide film and then irradiating light onto a desired part of the film. This can be applied to electro-optic crystals such as LiNbO3 and lithium oxate by visible light (wavelength 4
This method takes advantage of the fact that when irradiated with a large argon gas laser beam, etc., a photodamaged area is generated and the refractive index of this area decreases.
n is only 10-4 at most, and with this degree of refractive index change, the light confinement effect is weak, and even though it is possible to fabricate a straight waveguide, it is difficult to fabricate a curved waveguide. This results in disadvantages that make it impossible.

更に、「光学的薄膜素子」(特開昭50−159626
号)により開示されているものがあり、P(燐)および
Ge(ゲルマニウム)を含むカルコゲナイドガラスの吸
収端に対し、短波長光を照射すると、カルコゲナイドガ
ラスの構造変化により、照射部の屈折率が変化する現象
を利用しているが、この場合には、カルコゲナイドガラ
スがアルカリに弱く、耐久性および耐候性上問題を生ず
ると共に、製作条件が未だ十分に解明されておらず、実
用的な光素子の製作には不適当となる等の欠点を生じて
いる。
Furthermore, "Optical thin film element" (Japanese Patent Application Laid-Open No. 50-159626)
(No.), when the absorption edge of chalcogenide glass containing P (phosphorus) and Ge (germanium) is irradiated with short wavelength light, the refractive index of the irradiated part changes due to structural changes of the chalcogenide glass. However, in this case, chalcogenide glass is susceptible to alkali, which causes problems in terms of durability and weather resistance, and the manufacturing conditions have not yet been fully elucidated, making it difficult to create practical optical devices. However, there are disadvantages such as making it unsuitable for manufacturing.

本発明は従来のかかる欠点を根本的に解決する目的を有
し、ガラス基板上へ導波光を透過しかつ熱線を吸収する
物質により導波光に対するカットオフ膜厚以上の膜厚を
有する導波膜を形成し、この導波膜の所定部位を熱線に
より加熱して所定部位の屈折率を所望量だけ低下させ、
この屈折率低下部位により導波膜内へ光素子を形成する
ことにより、極めて容易に高精度の薄膜光素子を製造で
きる薄膜光素子の製造方法を提供するものである。
The purpose of the present invention is to fundamentally solve the above-mentioned drawbacks of the conventional art, and to create a waveguide film having a film thickness equal to or greater than the cutoff thickness for the waveguide light using a substance that transmits the waveguide light onto a glass substrate and absorbs heat rays. is formed, and a predetermined portion of this waveguide film is heated with a hot wire to lower the refractive index of the predetermined portion by a desired amount,
The present invention provides a method for manufacturing a thin film optical device that can extremely easily manufacture a thin film optical device with high precision by forming an optical device in a waveguide film using this refractive index lowered portion.

以下、実施例を示す第2図以降により本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 2 and subsequent figures showing embodiments.

第2図は製造方法の概要構成図であり、バイコールガラ
ス等の平面かつほぼ滑面状ガラス基板10表面上へ、5
i02(2酸化シリコン)、Ta203(5酸化タンタ
ル)、Ge02(2酸化ゲルマニウム)、P2O5(5
酸化燐)、B203(酸化ホウ素)、Nb205(酸化
ニオビウム)、■n203(酸化インジウム)、A12
03(酸化アルミニウム)等を主成分とする酸化物ガラ
スを用い、高周波スパッタリングまたは蒸着等により薄
膜状の導波膜11を形成し、この導波膜11の所定部位
12へ熱線としてレーザビーム13を投射すると、レー
ザビーム13のエネルギーて導波膜11へ吸収され、所
定部位12が加熱される。
FIG. 2 is a schematic diagram of the manufacturing method.
i02 (silicon dioxide), Ta203 (tantalum pentoxide), Ge02 (germanium dioxide), P2O5 (5
phosphorus oxide), B203 (boron oxide), Nb205 (niobium oxide), n203 (indium oxide), A12
A thin waveguide film 11 is formed by high frequency sputtering or vapor deposition using oxide glass whose main component is 03 (aluminum oxide), etc., and a laser beam 13 is emitted as a heat ray to a predetermined portion 12 of this waveguide film 11. When projected, the energy of the laser beam 13 is absorbed by the waveguide film 11 and the predetermined region 12 is heated.

すなわち、炭酸ガスレーザ発振器等のレーザ発振器14
からのレーザ光15をミラー16により曲折のうえ、レ
ーザ光15に対して透明かつ耐熱性に優れたゲルマニウ
ム、食塩、亜鉛化セレン等を用いたレンズ17により、
レーザ光15をビーム状に集束したレーザビーム13と
してから導波膜11へ投射しており、導波膜11を含む
ガラス基板1を一般的な送り機構により矢印で示すX方
向またはX方向へ移動させ、あるいはθ方向へ回転させ
ることにより、レーザビーム13の導波膜11に対する
投射部位を移動し、任意の形状に所定部位12をレーザ
ビーム13のエネルギーにより加熱している。
That is, a laser oscillator 14 such as a carbon dioxide laser oscillator
After bending the laser beam 15 from the mirror 16, a lens 17 made of germanium, salt, zincated selenium, etc., which is transparent to the laser beam 15 and has excellent heat resistance,
The laser beam 15 is focused into a laser beam 13 and then projected onto the waveguide film 11, and the glass substrate 1 including the waveguide film 11 is moved in the X direction or the X direction shown by the arrow by a general feeding mechanism. By rotating or rotating in the θ direction, the projection area of the laser beam 13 onto the waveguide film 11 is moved, and the predetermined area 12 is heated into an arbitrary shape by the energy of the laser beam 13.

なお、シャッタ18はレーザ光15の光路に対し出入自
在に回転し、レーザビーム13の投射を停止するときに
レーザ光15を遮断するためのものである。
Note that the shutter 18 rotates freely in and out of the optical path of the laser beam 15, and is used to block the laser beam 15 when stopping the projection of the laser beam 13.

また、ガラス基板1を固定し、反対にレーザ発振器14
乃至レンズ17の光学系を移動させてもよく、レーザビ
ーム13と導波膜11とが相対的に移動すれば、同様の
結果が得られる。
In addition, the glass substrate 1 is fixed, and the laser oscillator 14 is
The optical system of the lens 17 may be moved, and the same result can be obtained if the laser beam 13 and the waveguide film 11 are moved relative to each other.

以上のとおりに、導波膜11を加熱すると前述の酸化物
ガラスにおいては、加熱量に応じて導波光に対する屈折
率が低下し、この屈折率低下部位において導波光の反射
または屈折が生ずるため、導波膜11内に光素子が形成
される。
As described above, when the waveguide film 11 is heated, the refractive index of the guided light in the oxide glass decreases depending on the amount of heating, and reflection or refraction of the guided light occurs at the portion where the refractive index decreases. An optical element is formed within the waveguide film 11 .

第3図はレーザビーム13による屈折率低下状況を示す
図であり、同図Aのとおり、レーザビーム13における
中心Cからの距離rにしたがい、(ただし、Ioはビー
ムの中心における最大バワ−密度、ωはビーム半径、)
により定められるガウス分布のガウシアンビームを用い
れば、投射を受けた所定部位12の第2図におけるY−
Y方向断面の屈折率nが、同図Bのとおりに低下する。
FIG. 3 is a diagram showing how the refractive index decreases due to the laser beam 13. As shown in FIG. 3A, the distance r from the center C of the laser beam 13 is , ω is the beam radius,)
If a Gaussian beam with a Gaussian distribution defined by is used, Y-
The refractive index n of the Y-direction cross section decreases as shown in FIG.

なお、第3図の例は、ビーム半径約450μm、ビーム
の全パワー221W1波長10.6μmのレーザ光を用
いると共に、バイコールガラスのガラス基板1上へ屈折
率が1.987の5i02−Ta20一系導波膜11を
膜厚0.8μmとして形成のうえ用いており、この導波
膜11を第2図のX方向へ150μm/SeCの速度で
移動させた場合である。
In the example shown in FIG. 3, a laser beam with a beam radius of about 450 μm, a total beam power of 221 W, and a wavelength of 10.6 μm is used, and a 5i02-Ta20 series with a refractive index of 1.987 is applied onto a glass substrate 1 made of Vycor glass. This is a case in which the waveguide film 11 is formed to have a thickness of 0.8 μm and is used, and the waveguide film 11 is moved in the X direction in FIG. 2 at a speed of 150 μm/SeC.

同図Bから明らかなとおり、導波膜11の屈折率低下は
レーザビーム13の中心Cが最も大きくこの最大点を中
央として対称的に減少し、中心では約2.4X10−2
の屈折率低下が見られ、必要Jする屈折率低下を生じさ
せるためのレーザビーム13における限界パワー密度は
約250W/cm2となっている。
As is clear from FIG.
A reduction in the refractive index is observed, and the critical power density in the laser beam 13 for producing the necessary reduction in the refractive index is approximately 250 W/cm 2 .

なお、第3図に示す例の実験では、レーザビーム13の
投射された所定部位12およびその周辺部における、導
波膜11の変形、破損等は全く発生していない。
In the experiment of the example shown in FIG. 3, no deformation or damage of the waveguide film 11 occurred at the predetermined region 12 onto which the laser beam 13 was projected and its surroundings.

このほか、所定部位12を加熱し所望量だけ屈折率を低
下させるには、第4図に示す手段によっても同様である
In addition, the means shown in FIG. 4 can also be used to heat the predetermined region 12 and lower the refractive index by a desired amount.

すなわち、導波膜11上へ所定部位12を除きかつレー
ザ光15の投射される部位21を、鉄、コバルト、ニッ
ケル、銅、クロム、アルミニウムチタン、金、銀、白金
等のいずれかを含む金属蒸着膜等のマスク22により被
覆のうえ、これらの部位12,21ヘレーザ光15を投
射すれば、マスク22によりレーザ光15が反射される
ためその直下の導波膜11は加熱されず、所定部位12
のみが加熱され、この部位に光素子が形成される。
That is, the region 21 onto which the laser beam 15 is projected, excluding the predetermined region 12, onto the waveguide film 11 is made of a metal containing any one of iron, cobalt, nickel, copper, chromium, aluminum titanium, gold, silver, platinum, etc. If the laser beam 15 is projected onto these areas 12 and 21 after being covered with a mask 22 such as a vapor-deposited film, the laser beam 15 will be reflected by the mask 22, so the waveguide film 11 directly below will not be heated, and the predetermined area will be 12
Only the area is heated, and an optical element is formed in this area.

なお、炭酸ガスレーザ光に対しては、金属蒸着膜の反射
率が85%以上であるのに対し、上述の物質による導波
膜11は良好な赤外線の吸収体であり、完全に目的を達
することができる。
It should be noted that while the reflectance of the metal vapor deposited film is 85% or more for carbon dioxide laser light, the waveguide film 11 made of the above-mentioned material is a good absorber of infrared rays, and therefore cannot completely achieve the purpose. I can do it.

また、導波膜11としては、導波光に対し透明なことが
要求され、0.4μm〜1.6μmの波長に対しては上
述のSiO2,Ta205.GeO2,P2O5゜Al
2O3,B2O3,Nb2O6,In2O3等のいずれ
かを含む酸化物ガラスが透明であり、空気中において温
度400℃以上により加熱焼鈍すると屈折率が低下し、
その低下量は導波膜11の熔融温度を上限として、加熱
温度の増大と共に低下する。
Further, the waveguide film 11 is required to be transparent to the guided light, and for wavelengths of 0.4 μm to 1.6 μm, the above-mentioned SiO2, Ta205. GeO2, P2O5゜Al
Oxide glasses containing any of 2O3, B2O3, Nb2O6, In2O3, etc. are transparent, and when annealed in air at a temperature of 400°C or higher, the refractive index decreases.
The amount of the decrease is set at the melting temperature of the waveguide film 11 as an upper limit, and decreases as the heating temperature increases.

すなわち、具体例としては、5i02.Ta205およ
びコーニング社製品番号#7059のガラスを用いた膜
厚的1μmの導波膜11の場合、約800℃の加熱によ
り5i02は2X10−3、Ta205は4×10−2
、#7059は3X10−2以上の屈折率低下が得られ
、Ge02tP205.A120a、B203tNb2
05.In2O3等を含む導波膜11の場合、加熱焼鈍
により10−3〜10−2の屈折率低下が得られ、これ
らの物質は、波長3μm以上の赤外線、波長10.6μ
mの炭酸ガスレーザ光、および波長2000A以下のエ
キサイマレーザ光等の熱線を吸収するため、極めて好適
である。
That is, as a specific example, 5i02. In the case of a waveguide film 11 with a film thickness of 1 μm using Ta205 and Corning product number #7059 glass, 5i02 is 2×10−3 and Ta205 is 4×10−2 by heating at about 800°C.
, #7059 obtained a refractive index reduction of 3X10-2 or more, and Ge02tP205. A120a, B203tNb2
05. In the case of the waveguide film 11 containing In2O3 etc., a reduction in refractive index of 10-3 to 10-2 can be obtained by heat annealing, and these materials can be used for infrared rays with a wavelength of 3 μm or more, and infrared rays with a wavelength of 10.6 μm.
It is extremely suitable because it absorbs heat rays such as carbon dioxide laser light with a wavelength of 2,000 A or less and excimer laser light with a wavelength of 2000 A or less.

なお、導波膜11の膜厚Wは、導波光の波長λに対する
カットオフ膜厚以上であれば導波光が良好に伝搬し、こ
の膜厚Wは次式によって与えられる。
Note that if the thickness W of the waveguide film 11 is equal to or greater than the cutoff thickness for the wavelength λ of the guided light, the guided light will propagate favorably, and this film thickness W is given by the following equation.

ただし、nlは第1クラッド層として作用するガラス基
板1の波長λにおける屈折率、B2は導波膜11の同様
な屈折率、B3は導波膜11の上面に存在し第2グラツ
ド層として作用する空気等の同様な屈折率であり、場合
によっては第2クラッド層として樹脂、ガラス等を導波
膜11上へ付着して用いられる。
However, nl is the refractive index at wavelength λ of the glass substrate 1 which acts as the first cladding layer, B2 is the similar refractive index of the waveguide film 11, and B3 is present on the upper surface of the waveguide film 11 and acts as the second cladding layer. The waveguide film 11 has a similar refractive index to that of air, and in some cases, resin, glass, or the like is used as a second cladding layer by depositing it on the waveguide film 11.

第5図は、本発明に基づき光路偏向器を光素子として形
成した例の斜視図であり、レーザビーム光13により所
定部位12aを直線状に加熱した後、端部31において
第2図のシャッタ18を一時閉塞し、更に角度θ1だけ
方向を変えて所定部位12bを直線状に加熱しており、
これによって導波光32の光路が、屈折率の低下した所
定部位12a、12bにより反射されて角度2θ1だげ
偏向される。
FIG. 5 is a perspective view of an example in which the optical path deflector is formed as an optical element based on the present invention. After linearly heating a predetermined portion 12a with the laser beam 13, the shutter of FIG. 18 is temporarily closed, and the direction is further changed by an angle θ1 to linearly heat the predetermined region 12b.
As a result, the optical path of the guided light 32 is reflected by the predetermined portions 12a and 12b where the refractive index is lowered, and is deflected by an angle of 2θ1.

すなわち、屈折率の低下量をΔnとしたとき、cosθ
〉(B2−Δn)/n2、(ただし、0〈θ〈π/2)
を満足する入射角θで導波光32が入射すると、導波光
32は全反射によりその光路を入射経路に対し角度2θ
だけ偏向し、更に所定部位12bにおいて全反射し、元
の入射経路に対し結果として2θ1−2θ+2θ=2θ
1だげ光路を偏向する。
That is, when the amount of decrease in the refractive index is Δn, cos θ
〉(B2-Δn)/n2, (0〈θ〈π/2)
When the guided light 32 is incident at an incident angle θ that satisfies
2θ1-2θ+2θ=2θ with respect to the original incident path.
Deflect the optical path by 1.

ただし、角度θ1はcos(θ1−θ)>(n2−Δn
)/n2、(ただし、0〈θ〈π/2)を満足すること
が必要であり、その範囲は次式によって示される。
However, the angle θ1 is cos(θ1-θ)>(n2-Δn
)/n2, (where 0<θ<π/2) must be satisfied, and the range thereof is shown by the following equation.

なお、所定部位12a、12bは偏向角度および方向に
応じ、任意の数を選定すればよ(、同時に屈折率の低下
量Δnも投射するレーザビーム13の全パワー密度を制
御すれば、任意の値が得られる。
Note that any number of predetermined portions 12a and 12b may be selected depending on the deflection angle and direction (and at the same time, if the total power density of the laser beam 13 that projects the amount of decrease Δn in the refractive index is controlled, any value may be selected). is obtained.

また、第4図に示すマスク22を所定部位12a、12
bの形状とし、レーザ光15を投射しても同様である。
In addition, the mask 22 shown in FIG.
The same effect can be obtained even if the shape is set as b and the laser beam 15 is projected.

第6図は光素子として光分岐器を形成した例であり、第
2図または第4図の手段により三角形の所定部位41を
全面的に加熱し、導波光32の入射する部位42の屈折
率低下量をΔnとしたとき、同部位420角度θ2が次
式を満足する値に定める。
FIG. 6 shows an example in which an optical splitter is formed as an optical element, in which a predetermined triangular region 41 is entirely heated by the means shown in FIG. When the amount of decrease is Δn, the angle θ2 of the same portion 420 is set to a value that satisfies the following equation.

すると、導波光32の入射する部位420角度のを2分
する線43の方向から、同部位42へ入射した導波光3
2は同部位42の両辺により全反射され、分岐すると共
に入射経路に対し角度2θ2の方向へ偏向され、2方向
へ分岐される。
Then, the guided light 3 that has entered the same part 42 from the direction of the line 43 that bisects the part 420 angle into which the guided light 32 is incident.
2 is totally reflected by both sides of the same portion 42, branched, and deflected in a direction at an angle 2θ2 with respect to the incident path, and branched into two directions.

第7図Aは前述と同様に薄膜凸レンズを形成した例であ
り、所定部位51の一辺52を0点を中心とする円弧り
としてあり、この部分の屈折率が低下しているため、平
行な導波光32at32bに対する円弧りにおける0点
を結ぶ線との角度αは、円弧りと0点とを結ぶ線に対す
る射出光53a53bの角度βに対して、スネルの法則
により、α〉βの関係が成立し、導波光32a>32b
は焦点Fに集束する。
FIG. 7A shows an example in which a thin film convex lens is formed in the same manner as described above, and one side 52 of a predetermined portion 51 is an arc centered on the 0 point, and since the refractive index of this portion is lower, parallel According to Snell's law, the angle α of the guided light 32 at 32b with the line connecting the 0 point in the circular arc and the angle β of the emitted light 53 a 53 b with the line connecting the circular arc and the 0 point holds the relationship α>β. and guided light 32a>32b
is focused at focal point F.

なお、同図Bのとおり所定部位51の一辺53を円弧状
に突出させれば、薄膜凹レンズが形成され、同図Cのと
おり所定部位51として三角形を形成のうえ、その一辺
から導波光32を入射させれば薄膜プリズムとして使用
できる。
In addition, if one side 53 of the predetermined portion 51 is made to protrude in an arc shape as shown in FIG. If it is incident, it can be used as a thin film prism.

第8図は直線状の三次元導波路を形成した例を示し、同
図Aのとおり導波膜11に対し一定の間隔lを置いて2
本のレーザビーム13at13bにより、あるいは、1
本のレーザビーム13を用いて交互に所定部位61at
61bを直線状に加熱し、同図AにおけるX−X方向断
面の屈折率nを示す同図Bの結果を得ており、所定部位
61a。
FIG. 8 shows an example in which a linear three-dimensional waveguide is formed, and as shown in FIG.
By the main laser beam 13at13b, or by the laser beam 13at13b,
A predetermined portion 61at is alternately
61b was linearly heated to obtain the result shown in FIG. 6B, which shows the refractive index n of the cross section in the XX direction in FIG.

6ib間へ入射した導波光32は、所定部位61a。The guided light 32 that has entered between the 6ib and the predetermined portion 61a.

61bの屈折率低下によりその間で全反射を反復して、
所定部位61a、6Ib間の導波路62内を伝搬する。
Due to the decrease in the refractive index of 61b, total reflection is repeated between them,
It propagates within the waveguide 62 between the predetermined portions 61a and 6Ib.

ただし、第9図のとおり直線状のマスク22を用い、レ
ーザ光15により加熱しても同様である。
However, the same effect can be obtained even if a linear mask 22 is used and heated by the laser beam 15 as shown in FIG.

また、曲線状の三次元導波路を形成するには、第8図A
および第9図の所定部位61a、61bを互に平行な曲
線とし、両者の間隔lを一定に保って加熱すればよい。
In addition, in order to form a curved three-dimensional waveguide, FIG.
The predetermined portions 61a and 61b shown in FIG. 9 may be made into parallel curves, and the distance l between the two may be maintained constant during heating.

なお、導波光32の伝搬方向に対する所定部位61a、
61bの屈折率低下量は極めて一様であり、反射量の変
化が少ないため、第1図に示した従来の製造方法による
ものと対比したとき、導波路620両側方における乱反
射がなく、甚だ少ない伝搬損失の導波路が得られる。
Note that a predetermined portion 61a with respect to the propagation direction of the guided light 32,
The amount of decrease in the refractive index of the waveguide 61b is extremely uniform and there is little change in the amount of reflection, so when compared to the conventional manufacturing method shown in FIG. A waveguide with propagation loss is obtained.

第10図は、第6図と第8図との組み合せによる三次元
光分岐器を形成した例であり、その作用は第6図と第8
図における説明どおりである。
FIG. 10 is an example of forming a three-dimensional optical branching device by combining FIG. 6 and FIG.
As explained in the figure.

第11図は、三次元交叉形溝波路を第2図の手段により
形成した例であり、第8図の導波路62と同様の導波路
62a、62bを交叉させて形成してあり、プリント基
板上の導電パターンは直接交叉させることができないの
に対し、導波光32a。
FIG. 11 shows an example in which a three-dimensional intersecting groove waveguide is formed by the means shown in FIG. 2, in which waveguides 62a and 62b similar to the waveguide 62 in FIG. Whereas the upper conductive pattern cannot be directly crossed, the guided light 32a.

32bに対する導波路62a>62bの交叉は、導波光
32a、32b相互間に干渉を生せず、第11図の手段
により容易に実現できる。
The crossing of waveguide 62a>62b with respect to waveguide 32b does not cause interference between guided light beams 32a and 32b, and can be easily realized by the means shown in FIG.

すなわち、交叉部71内の所定部位61cに注目すれば
、導波光32aに対する伝搬損失は、所定部位61cに
対する導波光32aの入射角がほぼ垂直なためフレネル
反射によるものであり、次式によって示される。
That is, if we pay attention to the predetermined portion 61c within the intersection 71, the propagation loss for the guided light 32a is due to Fresnel reflection because the incident angle of the guided light 32a to the predetermined portion 61c is almost perpendicular, and is expressed by the following equation. .

ただし、その値は10−4以下と小さく、無視すること
ができる。
However, the value is small, less than 10-4, and can be ignored.

したがって、交叉部71内の所定部位61dにおける導
波光32aに対する損失および同様な所定部位61a、
61bの導波光32bに対する損失も同等であり、各導
波光32a、32bは殆んど損失を受けることなく、各
独立に導波路62a。
Therefore, the loss to the guided light 32a at the predetermined portion 61d within the intersection portion 71 and the similar predetermined portion 61a,
The loss of the waveguide light 61b to the waveguide light 32b is also the same, and each waveguide light 32a, 32b suffers almost no loss and is independently connected to the waveguide 62a.

62b内を伝搬する。62b.

なお、第1図に示す従来の方法ではかかる交叉形溝波路
の製造は極めて困難であり、本発明により始めて交叉形
溝波路が容易に実現し得たものである。
It should be noted that it is extremely difficult to manufacture such a cross-shaped groove wave path using the conventional method shown in FIG. 1, and it is only through the present invention that a cross-shaped groove wave path can be easily realized.

第12図は第4図の方法により第11図のものを形成す
る場合のマスク22a、22bの形状を示し、直線状の
マスク22aを交叉状に4本形成すると共に、その端部
81を互に対向させかつ間隔dを置き、端部81の間へ
方形のマスク22bを形成している。
FIG. 12 shows the shapes of the masks 22a and 22b when forming the masks 22a and 22b shown in FIG. 11 by the method shown in FIG. A rectangular mask 22b is formed between the ends 81, facing each other and spaced apart from each other by a distance d.

なお、間隔dは第11図における所定部位61a、61
bまたは61c、61dの外縁間隔である。
Note that the interval d is the predetermined portion 61a, 61 in FIG.
b or the outer edge spacing of 61c and 61d.

第13図は、TEoモードフィルタを形成する例の斜視
図を示し、導波光32の伝搬モードがTEoとTMoと
では導波膜11を透過できる膜厚Wと屈折率が異なるた
め、まず次式に示す膜厚Wの導波膜11を形成する。
FIG. 13 shows a perspective view of an example of forming a TEo mode filter. Since the propagation mode of the guided light 32 is different between TEo and TMo, the film thickness W that can be transmitted through the waveguide film 11 and the refractive index are different. A waveguide film 11 having a film thickness W shown in is formed.

ついで、導波光32の光路に対し直角に横断する方向へ
定めた所定部位71をレーザビーム13により加熱し、
所定部位71の屈折率を低下させ、その低下量Δnが次
式を満足する値とする。
Next, a predetermined region 71 defined in a direction perpendicular to the optical path of the guided light 32 is heated by the laser beam 13,
The refractive index of the predetermined portion 71 is decreased, and the amount of decrease Δn is set to a value that satisfies the following equation.

すると、導波膜11上へ密着して設けた入射プリズム7
2へ入射した光線73は導波光32となり、所定部位7
1においてTMoモードの成分は放射モードとして導波
膜11外へ散乱し、所定部位71をTEoモードの成分
のみが通過して濾波導波光74となり、入射プリズム7
2と同様の射出プリズム75を介し、射出光76として
射出される。
Then, the entrance prism 7 provided in close contact with the waveguide film 11
The light ray 73 incident on 2 becomes the waveguide light 32, and the light ray 73 enters the predetermined portion 7.
1, the TMo mode component is scattered out of the waveguide film 11 as a radiation mode, and only the TEo mode component passes through a predetermined portion 71 to become filtered waveguide light 74, which enters the incident prism 7.
The light is emitted as emitted light 76 through an emitting prism 75 similar to No. 2.

なお、同様に短波長光フィルタも形成され、この場合に
は導波膜11の膜厚W1および屈折率はり透過できる導
波光32の波長λが定まるため、まず、次式に示す膜厚
W1に導波膜11を形成する。
Note that a short wavelength optical filter is also formed in the same way, and in this case, the film thickness W1 of the waveguide film 11 and the refractive index determine the wavelength λ of the guided light 32 that can be transmitted, so first, the film thickness W1 shown in the following equation is determined. A waveguide film 11 is formed.

すると、波長λ1より短波長の導波光32は導波膜11
中を伝搬できるが、波長右より長波長の導波光32は伝
搬不可能となり、波長λ1をカットオフ波長とした短波
長光フィルタが形成される。
Then, the waveguide light 32 with a wavelength shorter than the wavelength λ1 passes through the waveguide film 11.
However, guided light 32 with longer wavelengths than the right wavelength cannot propagate, and a short wavelength optical filter is formed with wavelength λ1 as the cutoff wavelength.

七ただし、導波膜11の屈折率低下量がΔnであり、
同時に(n2−Δn)>nlであれば、次式により与え
られる波長λ2よりも短波長の導波光32が伝搬可能と
なる。
7 However, the amount of decrease in the refractive index of the waveguide film 11 is Δn,
At the same time, if (n2-Δn)>nl, guided light 32 with a wavelength shorter than wavelength λ2 given by the following equation can be propagated.

なお、λ2はλ1〉λ2の関係である。Note that λ2 has a relationship of λ1>λ2.

したがって、第13図において阻止すべきモードまたは
波長の光線73を入射プリプリズム72へ入射させると
共に、射出プリズム75からの射出光76を観測しなが
ら、所定部位71に対する加熱と冷却とを反復し、次第
に加熱温度を上げて行(と、(7)式または(8)式の
条件に屈折率低下量Δnが達したとき射出光76が消滅
し、目的とするフィルタの形成されたことが示され、極
めて正確なフィルタが得られる。
Therefore, in FIG. 13, while making the light ray 73 of the mode or wavelength to be blocked enter the entrance pre-prism 72 and observing the exit light 76 from the exit prism 75, heating and cooling of the predetermined region 71 are repeated. When the heating temperature is gradually increased (and the refractive index reduction amount Δn reaches the condition of formula (7) or (8)), the emitted light 76 disappears, indicating that the desired filter has been formed. , a very accurate filter is obtained.

なお、第4図の方法によっても同様なことは勿論である
It goes without saying that the method shown in FIG. 4 also has the same effect.

また、他の光素子においても実際に可視光線を導波膜1
1内へ伝搬させながら、所定部位12゜12a、12b
、41,51,61a〜61d等を同様に加熱すれば、
容易に所望の屈折率低下量となったことが可視光線の経
路変化により示されるため、確実に各種光素子の形成が
行なえる。
In addition, in other optical devices, visible light is actually transmitted through the waveguide film 1.
1 while propagating into the predetermined portions 12° 12a, 12b.
, 41, 51, 61a to 61d, etc. are similarly heated,
Since it is easily indicated by the change in the path of visible light that the desired amount of refractive index reduction has been achieved, various optical elements can be reliably formed.

なお、このほかにも本発明により種々の光素子が製造で
きることは勿論であり、その形状に応じ第2図または第
4図の方法を適用すれば、安価に正確な光素子を製造す
ることができる。
In addition, it goes without saying that various other optical devices can be manufactured by the present invention, and if the method shown in FIG. 2 or 4 is applied depending on the shape, accurate optical devices can be manufactured at low cost. can.

また、熱線としては炭酸ガスレーザ光が導波膜11にお
けるエネルギーの吸収上好適であるが、導波膜11の目
的とする部位のみを加熱できるものであればよく、上述
のとおり種々のものを適用しても同様であり、導波膜1
1の材質による特性に応じ各種の熱線を用いればよい。
Further, as the heating wire, a carbon dioxide gas laser beam is suitable for absorbing energy in the waveguide film 11, but it is sufficient as long as it can heat only the intended part of the waveguide film 11, and various types can be applied as described above. The same is true for waveguide film 1
Various hot wires may be used depending on the characteristics of the material.

以上の説明により明らかなとおり本発明によれば、従来
のエツチングによる方法に対比して甚だ簡単かつ容易に
光素子の製造が行なえると共に、特殊なガス雰囲気およ
び真空等の条件が不要であり、通常の作業環境下におい
て光素子の形成状況を実際に導波光の伝搬状況変化を見
ながら行なえるため、極めて正確に必要とする光素子を
得ることができる。
As is clear from the above description, according to the present invention, optical devices can be manufactured much more simply and easily than conventional etching methods, and special conditions such as gas atmosphere and vacuum are not required. Since the formation of the optical device can be performed under a normal working environment while actually observing changes in the propagation state of the guided light, the required optical device can be obtained with extreme accuracy.

また、加熱による導波膜の屈折率低下量が10−2程度
と大きく、十分な光閉じ込め機能を有する導波路が形成
できるうえ、上述の酸化物は耐酸、耐アルカリ性を有し
、十分な耐久性および耐候性を得ることができる。
In addition, the amount of decrease in the refractive index of the waveguide film due to heating is as large as about 10-2, making it possible to form a waveguide with a sufficient optical confinement function. properties and weather resistance.

更に、導波路側方の乱反射による伝搬損失が少なく、高
性能の光素子が実現し、平面的構成のため高安定度であ
り、高性能、高安定度かつ高精度の光素子が安価に製せ
られ、今後汎用化の傾向にある光通信のみならず、各種
光応用機器において甚だ顕著な効果を呈する。
Furthermore, the propagation loss due to diffuse reflection on the side of the waveguide is small, making it possible to realize high-performance optical devices, and the planar configuration provides high stability, making it possible to manufacture high-performance, high-stability, and high-precision optical devices at low cost. It will have a remarkable effect not only in optical communications, which will become more widespread in the future, but also in various optical application devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造方法を示す工程図、第2図以降は本
発明の実施例を示し、第2図は構成概要図、第3図はレ
ーザビームによる屈折率の低下状況を示す図、第4図は
マスクを用いる場合の斜視図、第5図は光偏向器を示す
斜視図、第6図は光分岐器を示す平面図、第7図は薄膜
の凸レンズ、凹レンズおよびプリズムを示す平面図、第
8図Aは直線状の導波路を示す斜視図、同図Bは同図A
におけるX−X方向断面の屈折率を示す図、第9図は直
線状マスクを用いる場合の斜視図、第10図は三次元光
分岐器の平面図、第11図は三次元交叉形溝波路を示す
平面図、第12図はマスクにより第11図のものを製す
る場合のマスクを示す平面図、第13図はフィルタを製
する場合の斜視図である。 1……ガラス基板、11……導波膜、12゜12a、1
2b、41,51,61a〜61a。 71……所定部位、13……レーザビーム(熱線)、1
4……し一ザ発振器、15……レーザ、獣熱線)、16
……ミラー、17……レンズ、21……熱線の投射され
る部位、22y22a、22b……マスク、32532
a、32b……導波光、Wm…膜厚。
FIG. 1 is a process diagram showing a conventional manufacturing method, FIG. 2 and subsequent figures show examples of the present invention, FIG. Fig. 4 is a perspective view when using a mask, Fig. 5 is a perspective view showing the optical deflector, Fig. 6 is a plan view showing the optical splitter, and Fig. 7 is a plan view showing the thin film convex lens, concave lens, and prism. 8A is a perspective view showing a linear waveguide, and FIG. 8B is a perspective view of a straight waveguide.
Figure 9 is a perspective view when a linear mask is used, Figure 10 is a plan view of a three-dimensional optical splitter, and Figure 11 is a three-dimensional intersecting groove waveguide. FIG. 12 is a plan view showing a mask for manufacturing the mask shown in FIG. 11, and FIG. 13 is a perspective view for manufacturing a filter. 1... Glass substrate, 11... Waveguide film, 12° 12a, 1
2b, 41, 51, 61a-61a. 71...Predetermined part, 13...Laser beam (heat ray), 1
4...shiichiza oscillator, 15...laser, beast heat ray), 16
...mirror, 17...lens, 21...part where heat rays are projected, 22y22a, 22b...mask, 32532
a, 32b... Waveguide light, Wm... Film thickness.

Claims (1)

【特許請求の範囲】 1 ガラス基板上へ導波光を透過しかつ前記導波光に対
するカットオフ膜厚以上の膜厚を有する導波膜を酸化物
ガラスにより形成し、該導波膜の所定部位を上記酸化物
ガラスが吸収する、波長の熱線を照射することにより加
熱して所定部位の屈折率を所望量だけ低下させ、該屈折
率低下部位により前記導波膜内へ光素子を形成すること
を特徴とする薄膜光素子の製造方法。 2 ビーム状の熱線を用いると共に、該熱線ビームを導
波膜へ投射しかつ該導波膜と前記熱線ビームとを相対的
に移動させ、前記導波膜の所定部位を加熱することを特
徴とする特許請求の範囲第1項記載の薄膜光素子の製造
方法。 3 ビーム状の熱線として炭酸ガスレーザ光を用いたこ
とを特徴とする特許請求の範囲第2項記載の薄膜光素子
の製造方法。 4 熱線を遮断する物質により導波膜の所定部位を除き
かつ前記熱線の投射される部位を被覆したうえ、該被覆
部位および前記所定部位へ前記熱線を投射し、前記導波
膜の所定部位を加熱することを特徴とする特許請求の範
囲第1項記載の薄膜光素子の製造方法。
[Scope of Claims] 1. A waveguide film that transmits guided light onto a glass substrate and has a thickness equal to or greater than the cutoff film thickness for the guided light is formed of oxide glass, and a predetermined portion of the waveguide film is By heating the oxide glass by irradiating it with heat rays having a wavelength that is absorbed by the oxide glass, the refractive index of a predetermined portion is lowered by a desired amount, and an optical element is formed in the waveguide film by the refractive index lowered portion. Characteristic method for manufacturing thin film optical devices. 2. A beam-shaped heat ray is used, the heat ray beam is projected onto a waveguide film, and the waveguide film and the heat ray beam are moved relative to each other to heat a predetermined portion of the waveguide film. A method for manufacturing a thin film optical device according to claim 1. 3. The method for manufacturing a thin film optical device according to claim 2, characterized in that a carbon dioxide laser beam is used as the beam-shaped heat ray. 4. Excluding a predetermined part of the waveguide film and covering the part to which the heat ray is projected with a substance that blocks heat rays, and then projecting the heat ray to the covered part and the predetermined part to cover the predetermined part of the waveguide film. 2. A method for manufacturing a thin film optical device according to claim 1, further comprising heating.
JP53070260A 1978-06-10 1978-06-10 Manufacturing method of thin film optical device Expired JPS5810721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53070260A JPS5810721B2 (en) 1978-06-10 1978-06-10 Manufacturing method of thin film optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53070260A JPS5810721B2 (en) 1978-06-10 1978-06-10 Manufacturing method of thin film optical device

Publications (2)

Publication Number Publication Date
JPS54161350A JPS54161350A (en) 1979-12-20
JPS5810721B2 true JPS5810721B2 (en) 1983-02-26

Family

ID=13426385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53070260A Expired JPS5810721B2 (en) 1978-06-10 1978-06-10 Manufacturing method of thin film optical device

Country Status (1)

Country Link
JP (1) JPS5810721B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562407A (en) * 1978-11-02 1980-05-10 Nec Corp Production of plane optical guide
JPS5863902A (en) * 1981-10-12 1983-04-16 Fujitsu Ltd Optical waveguide adjustment method
JPH0711608B2 (en) * 1982-10-18 1995-02-08 キヤノン株式会社 How to create an optical waveguide
JPS61200507A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Optical waveguide lens
JP2597358B2 (en) * 1986-09-20 1997-04-02 富士通株式会社 Y-branch waveguide
US4762382A (en) * 1987-06-29 1988-08-09 Honeywell Inc. Optical interconnect circuit for GaAs optoelectronics and Si VLSI/VHSIC

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879655A (en) * 1972-01-28 1973-10-25
JPS50159626A (en) * 1974-06-13 1975-12-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879655A (en) * 1972-01-28 1973-10-25
JPS50159626A (en) * 1974-06-13 1975-12-24

Also Published As

Publication number Publication date
JPS54161350A (en) 1979-12-20

Similar Documents

Publication Publication Date Title
US5136677A (en) Photorefractive effect in bulk chalcogenide glass and devices made therefrom
JP3649835B2 (en) Optical waveguide fabrication method
US5612171A (en) Planar optical waveguides with planar optical elements
US7113336B2 (en) Microlens including wire-grid polarizer and methods of manufacture
US4367916A (en) Fresnel lens for integrated optics
US4547262A (en) Method for forming thin film passive light waveguide circuit
US20050036738A1 (en) Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength
FR2578658A1 (en) MICROLENS PLATE AND METHOD FOR MANUFACTURING THE SAME
JPH09318826A (en) Optical waveguide type filter and its production
US5028105A (en) Photorefractive effect in bulk glass and devices made therefrom
US4372641A (en) Optical waveguide termination
JPS5810721B2 (en) Manufacturing method of thin film optical device
JPH10288799A (en) Optical waveguide circuit and nonlinear optical device
JPH11167036A (en) Optical waveguide circuit and nonlinear optical device
JPS63192004A (en) Waveguide type optical element and its manufacturing method
US4183617A (en) Thin film As2 S5 optical wave guide
JP2001324634A (en) Method for manufacturing optical waveguide having grating
JP2827640B2 (en) Optical component manufacturing method
JPS62295005A (en) Optical waveguide circuit
JPS60235102A (en) Transmissive light scattering element
JP2517772B2 (en) Grating optical coupler
JP2561912B2 (en) Polarization separation waveguide
JP2005132693A (en) Electro-optical element and its manufacturing method
JPS5821211A (en) Thin film lens of integrated optical structure
JP4673642B2 (en) Optical waveguide forming method