JPS58103755A - Method of electron-beam exposure - Google Patents
Method of electron-beam exposureInfo
- Publication number
- JPS58103755A JPS58103755A JP56202102A JP20210281A JPS58103755A JP S58103755 A JPS58103755 A JP S58103755A JP 56202102 A JP56202102 A JP 56202102A JP 20210281 A JP20210281 A JP 20210281A JP S58103755 A JPS58103755 A JP S58103755A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- coil
- electron beam
- magnetic field
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000010894 electron beam technology Methods 0.000 title claims description 19
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 6
- 230000035699 permeability Effects 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 239000000843 powder Substances 0.000 abstract description 2
- 238000004804 winding Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241001494479 Pecora Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(])発明の技術分野
本発明は電子ビーム露光装置におけるインレンズ対物偏
向系のa度向土する露光方法に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an exposure method using an in-lens objective deflection system in an electron beam exposure apparatus.
(2)技術の背景
近年微細素子加工技術は光学的方法では光の回折、干渉
ヶ効果などのため1ミクロン以下の解像&を得ることは
容易でない。(2) Background of the technology In recent years, it has not been easy to obtain a resolution of 1 micron or less using optical methods in fine element processing technology due to light diffraction, interference effects, etc.
このため電子線を用いた露光法の研究、開発がなされて
いる。For this reason, research and development of exposure methods using electron beams are being conducted.
超LSIに用いるウェハは高密度化が要求され例えば5
00万パターン/1チップ肖りは0.1〜02ミクロン
の解像度が要求されることになり、電子ビーム露光装置
(こおける電子ビーム光学系の照射精度、性能向上が髪
請される。Wafers used for VLSI are required to have high density, for example, 5
Million patterns/chip size requires a resolution of 0.1 to 0.2 microns, which requires improvements in the irradiation accuracy and performance of the electron beam optical system in electron beam exposure equipment.
(3)従来技術と問題点
電子の集束と偏向を同時に行なうと、集束磁界と偏向磁
束の重ね合せにエリOh iwa、 H,+ E。(3) Prior art and problems When focusing and deflecting electrons at the same time, the superposition of the focusing magnetic field and the deflecting magnetic flux causes problems.
Goto、and A、Ono、”Eliminati
on ofthird−order aberrat
ions in elec−tron−beam
scanning s)’Items、”Trans。Goto, and A, Ono, “Eliminati
on third-order aberrat
ions in elec-tron-beam
scanning s)'Items, "Trans.
IECE japan、 54−B、 P−73L 1
971に暮ヒ軟されている工うに偏向ifこ応じて集束
レンズの軸が移動するので、レンズの中心を偏向軌道が
通るため収差が少ない照射が可能となる。また収羊萌;
/11嗜どhス小f關区4在礒2+番/L−昏一崗=を
高めることができる。この工うに対物レンズにレンズ磁
場と偏向磁場を重畳するものが収差の点から電子ビーム
l1I1元装置には多用されており、この型のレンズは
上記文献に記載されている工うに移動対物レンズ(八’
loving 0bjecNve T、ens)と工
ばれている。このインレンズ対物偏向系を用いた草子ビ
ーム肯学系を第1図に示す。図1こ工り1け電子銃、2
はコンデンサレンズ、3は電子ビームのオン/オフ用ブ
ランカ、4は成形レンズ系、5は縮小レンズ系、6は静
電偏向器、7けインレンズ対物偏向系、8.9は矩形成
形第1.第2アパーチヤである。IECE japan, 54-B, P-73L 1
Since the axis of the focusing lens moves in accordance with the deflection, which is softened in 971, the deflection trajectory passes through the center of the lens, making it possible to perform irradiation with less aberration. Also harvesting sheep moe;
/11 It is possible to increase the ability of the child to have high school children's health. This type of lens, in which a lens magnetic field and a deflection magnetic field are superimposed on an objective lens, is often used in electron beam l1I single-source devices from the viewpoint of aberrations, and this type of lens is similar to the moving objective lens ( Eight'
Loving 0bjecNve T, ens). A Soshi beam positive system using this in-lens objective deflection system is shown in FIG. Figure 1: 1 electron gun, 2
3 is a condenser lens, 3 is a blanker for turning on/off the electron beam, 4 is a molded lens system, 5 is a reduction lens system, 6 is an electrostatic deflector, 7 is an in-lens objective deflection system, 8.9 is a rectangular shaped first .. This is the second aperture.
インレンズ対物偏向7はレンズ磁場と偏向磁場を重畳し
電子ビームを対象物に対して所定のノくターンを所定の
位置tこ投影する。磁場偏向用のインレンズ構成を第2
図に示す。The in-lens objective deflector 7 superimposes the lens magnetic field and the deflection magnetic field, and projects the electron beam onto the object in a predetermined number of turns at a predetermined position t. A second in-lens configuration for magnetic field deflection
As shown in the figure.
図のようにレンズ上に捲回されたコイル12及び鉄部材
でなるレンズコイル枠13によってレンズ収束S場が生
ずる。又偏向コイル11は矢印の方向(こ磁場を発生す
る。即ち偏向磁界14とレンズ磁場]5とが重畳する。As shown in the figure, a lens convergence S field is generated by a coil 12 wound around the lens and a lens coil frame 13 made of an iron member. Further, the deflection coil 11 generates a magnetic field in the direction of the arrow (that is, the deflection magnetic field 14 and the lens magnetic field) 5 are superimposed.
しかしレンズコイル枠13、レンズコイル12、偏向コ
イル11をこけ偏向磁場によってうず電流が発生し、電
子ビームを引き戻そうとする作用により所定の描画位置
へのパターンずれを生じ、パターン位置精度、露光時間
に大きな影響がある。従来うず電流を抑える方法として
偏向コイル近傍lζ補正用小コイルを設けるとか、米国
特許第3984687号に開示される工うに偏向コイル
の周囲にレンズ磁界を乱さないシールドリングを置く方
法が行なわれて米たが効果は十分でなかった。However, eddy currents are generated by the deflection magnetic field in the lens coil frame 13, lens coil 12, and deflection coil 11, and the action of pulling back the electron beam causes pattern deviation to a predetermined writing position, resulting in poor pattern position accuracy and exposure time. It has a big impact. Conventional methods for suppressing eddy current include installing a small lζ correction coil near the deflection coil, or placing a shield ring around the deflection coil that does not disturb the lens magnetic field, as disclosed in U.S. Pat. No. 3,984,687. However, the effect was not sufficient.
(4J 発明の目的
本発明ej上記の点に鑑み、電子ビーム露光l#装置の
インレンズ対物偏向系におけるうすt流を抑えて、高精
度の露光を行う露光方法を提供するにある。(4J OBJECTS OF THE INVENTION The present invention ej) In view of the above points, it is an object of the present invention to provide an exposure method that suppresses the thin flow in the in-lens objective deflection system of an electron beam exposure device and performs high-precision exposure.
(5)発明の構成
上記目的は電子ビームを試料上の所定の位置に偏向させ
るインレンズ対物偏向系を有する電子ビーム11光装置
を用い、該インレンズ対物偏向糸の 3−
レンズコイル枠をフェライト等で遮蔽すると共に該レン
ズコイル及び偏向コイルに細径の伸線を束ねて捲101
し、うず電流を抑えることにより運せられる。(5) Structure of the Invention The above object uses an electron beam 11 optical device having an in-lens objective deflection system that deflects an electron beam to a predetermined position on a sample, and 3- The lens coil frame of the in-lens objective deflection thread is made of ferrite. At the same time, the lens coil and the deflection coil are bundled with thin drawn wire and wound 101.
This can be carried out by suppressing eddy currents.
(6)発明の実施例 以下本発明の実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.
第3図は本発明の一実施例である磁場偏向用のインレン
ズ構造を説明する図である。FIG. 3 is a diagram illustrating an in-lens structure for magnetic field deflection, which is an embodiment of the present invention.
鉄部材でなるレンズコイル枠23を、その内側面に、導
電兎(σ)の非常に低いしかも透磁率(μ)の冒い部材
をはりS蔽する。例えばフェライトを用い遮蔽方法の一
例としてフェライト粉末を接着剤溶液中に混合し、表面
塗布し硬化させて図のようにフェライト膜24を形成さ
せる。更にレンズコイル22及び偏向コイル25には3
0ミクロン程度の細径の伸線を用い束ねて捲回する。A lens coil frame 23 made of an iron member is covered with a material having a very low conductivity (σ) and a high magnetic permeability (μ) on its inner surface. For example, as an example of a shielding method using ferrite, ferrite powder is mixed into an adhesive solution, applied to the surface, and cured to form a ferrite film 24 as shown in the figure. Furthermore, the lens coil 22 and the deflection coil 25 have 3
The wires are bundled and wound using wire drawn wire with a diameter of about 0 microns.
うす電流の時定数τは一般に次式で表わされる。The time constant τ of the thin current is generally expressed by the following equation.
τ〈σμ。L” (σ二導電率、μ:透磁率、L;寸
法)
フェライト24の導W惠σはσ〜−、−1”T: #
4−
リ、うす電流の時定数τは数μ8eeとなり、透磁率μ
を極めて高いため偏向磁場が数μ8eeに抑えられる。τ〈σμ. L" (σ2 conductivity, μ: magnetic permeability, L: dimension) The conductivity of ferrite 24 is σ~-, -1"T: #
4- The time constant τ of the thin current is several μ8ee, and the magnetic permeability μ
is extremely high, so the deflection magnetic field can be suppressed to a few μ8ee.
一方レンズコイル22汲び偏向コイル25のコイル捲線
もまた細径の伸線L〜10−5mを束ねて捲回すること
にエリ、うす電流の時定数τを数μsecに抑えること
ができる。このようなうす電流抑制手段を用いることに
よりパターン位tf梢fそ向上させ、g光時間の高速化
が可能となる。On the other hand, since the coil windings of the lens coil 22 and the deflection coil 25 are also wound by bundling small-diameter drawn wire L to 10 -5 m, the time constant τ of the thin current can be suppressed to several μsec. By using such a thin current suppressing means, it is possible to improve the pattern height and increase the light time.
(7)発明の効果
以上詳細に砦明したように電子ビーム露光装置のインレ
ンズ対物偏向系において、本発明の磁場偏向用コイル、
レンズコイル及び枠にうずtSを抑制するii方法を用
いることにより、パターン描画精度を向上させより微細
素子加工が可能となる優れた効果がある。(7) Effects of the Invention As explained in detail above, in the in-lens objective deflection system of an electron beam exposure apparatus, the magnetic field deflection coil of the present invention,
By using method ii to suppress eddy tS in the lens coil and frame, there is an excellent effect of improving pattern drawing accuracy and enabling finer element processing.
第1図はインレンズ対物偏向糸を用いた電子ビーム霧光
装置の構成図、第2図は従来の磁場偏向用レンズ構成を
説明する図、m3図は本発明の−実施例における磁場偏
向用レンズ構造を駁明する図である。図において11は
偏向コイル、12゜22.25はコイル、13.23は
レンズコイル枠、】4は偏向磁界、15はレンズ磁場、
24はフェライトを示す。
7−
第1 図
一シ」〜1
、!!2 図
第31¥]
」
299−
23
′22Fig. 1 is a configuration diagram of an electron beam fogging device using an in-lens objective deflection thread, Fig. 2 is a diagram explaining a conventional lens configuration for magnetic field deflection, and Fig. It is a diagram clarifying the lens structure. In the figure, 11 is a deflection coil, 12°22.25 is a coil, 13.23 is a lens coil frame, ]4 is a deflection magnetic field, 15 is a lens magnetic field,
24 indicates ferrite. 7- Figure 1 ~1,! ! 2 Figure No. 31 ¥] 299- 23 '22
Claims (1)
せる電子レンズ系と該電子ビームを試料上の所定の位置
に偏向させるインレンズ対物偏向糸とを有する電子ビー
ム露光装置を用い、前記インレンズ対物偏向系のレンズ
コイル枠をフェライト等で遮蔽すると共に、該レンズコ
イル及び(M内用コイルに細径の棒線を束ねて捲回し、
偏向磁場によって、レンズ内部に誘起されるうす電流を
抑えて露光することを特徴とする電子ビーム11元方法
・An electron beam exposure apparatus is used that has an electron gun that emits a heavy particle beam, an electron lens system that focuses the electron beam, and an in-lens objective deflection thread that deflects the electron beam to a predetermined position on the sample. The lens coil frame of the objective deflection system is shielded with ferrite, etc., and a thin rod wire is bundled and wound around the lens coil and (M internal coil).
An electron beam 11-element method characterized by suppressing the thin current induced inside the lens by a deflecting magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56202102A JPS58103755A (en) | 1981-12-15 | 1981-12-15 | Method of electron-beam exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56202102A JPS58103755A (en) | 1981-12-15 | 1981-12-15 | Method of electron-beam exposure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58103755A true JPS58103755A (en) | 1983-06-20 |
Family
ID=16451991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56202102A Pending JPS58103755A (en) | 1981-12-15 | 1981-12-15 | Method of electron-beam exposure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58103755A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0821392A1 (en) * | 1996-07-25 | 1998-01-28 | ACT Advanced Circuit Testing Gesellschaft für Testsystementwicklung mbH | Deflection system |
US20190295808A1 (en) * | 2016-12-14 | 2019-09-26 | Focus-Ebeam Technology (Beijing) Co., Ltd. | Magnetic lens and exciting current control method |
-
1981
- 1981-12-15 JP JP56202102A patent/JPS58103755A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0821392A1 (en) * | 1996-07-25 | 1998-01-28 | ACT Advanced Circuit Testing Gesellschaft für Testsystementwicklung mbH | Deflection system |
US20190295808A1 (en) * | 2016-12-14 | 2019-09-26 | Focus-Ebeam Technology (Beijing) Co., Ltd. | Magnetic lens and exciting current control method |
US10923312B2 (en) * | 2016-12-14 | 2021-02-16 | Focus-Ebeam Technology (Beijing) Co., Ltd. | Magnetic lens and exciting current control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS636736A (en) | Electromagnetic lens system | |
JPH11126576A (en) | Ion implantation device | |
JPS5871545A (en) | Variable shaped beam electron optical system | |
KR102088144B1 (en) | Compact deflecting magnet | |
JP4074185B2 (en) | Energy filter and electron microscope | |
JP2017517119A (en) | Electron beam imaging using a double Wien filter monochromator | |
JP2001185066A (en) | Electron beam device | |
JPS58156900A (en) | Electrostatically charged particle beam device | |
JPS5978432A (en) | Device with deflecting objective system for forming multikind particle beam | |
JPS58103755A (en) | Method of electron-beam exposure | |
US6452193B1 (en) | Electron beam exposure apparatus, electron lens, and device manufacturing method | |
JPH1154412A (en) | Electron beam reduction and transfer device | |
SE7506874L (en) | METHOD AND SYSTEM FOR AUTOMATIC CORRECTION OF THE DEVIATION FOR A RADIUM OF CHARGED PARTICLES. | |
JPH025337A (en) | Charged particle beam device and sample observing method thereby | |
US4798953A (en) | Electronic beam device for projecting an image of an object on a sample | |
US2500623A (en) | Cathode-ray device | |
JP2886277B2 (en) | Electron beam exposure equipment | |
JPS5851384B2 (en) | Deflection method of charged particle beam | |
JP3502002B2 (en) | Electron beam drawing apparatus, drawing method using electron beam, and method of manufacturing electromagnetic coil | |
JPS5983336A (en) | Device for focusing and deflecting charged particle ray | |
JP3518000B2 (en) | Charged particle beam deflector | |
JP3094454B2 (en) | Electron beam exposure method | |
JP3039988B2 (en) | Convergence York | |
JPS59229817A (en) | Electron beam exposing apparatus | |
JPS5987742A (en) | Lens for charged particles |