[go: up one dir, main page]

JPS5983336A - Device for focusing and deflecting charged particle ray - Google Patents

Device for focusing and deflecting charged particle ray

Info

Publication number
JPS5983336A
JPS5983336A JP57193077A JP19307782A JPS5983336A JP S5983336 A JPS5983336 A JP S5983336A JP 57193077 A JP57193077 A JP 57193077A JP 19307782 A JP19307782 A JP 19307782A JP S5983336 A JPS5983336 A JP S5983336A
Authority
JP
Japan
Prior art keywords
deflection
deflector
charged particle
particle beam
electromagnetic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57193077A
Other languages
Japanese (ja)
Other versions
JPH0234426B2 (en
Inventor
Hidekazu Goto
英一 後藤
Takashi Soma
相馬 嵩
Masanori Idesawa
出沢 正徳
Teruo Someya
染谷 輝夫
Toshinori Goto
後藤 俊徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Nippon Telegraph and Telephone Corp
RIKEN
Original Assignee
Jeol Ltd
Nihon Denshi KK
Nippon Telegraph and Telephone Corp
RIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK, Nippon Telegraph and Telephone Corp, RIKEN filed Critical Jeol Ltd
Priority to JP57193077A priority Critical patent/JPS5983336A/en
Publication of JPS5983336A publication Critical patent/JPS5983336A/en
Publication of JPH0234426B2 publication Critical patent/JPH0234426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce deflectional aberration on the surface to be irradiated by placing a first and a second deflector within an electromagnetic lens system, and performing selection so that one of deflectional chromatic aberration, deflectional comatic aberration and vertical incidence error becomes zero. CONSTITUTION:An electron beam is focused on a drawing material 9 by means of an erosion electromagnetic lens 1 having a short focus and consisting of a yoke 2 and an excitation coil 3 as well as an electromagnetic projection lens 4 consisting of a yoke 5 and excitation coils 6a-6d. At the same time, the beam is deflected according to deflection voltages supplied to a first and a second deflector 7 and 8 changing an area of the material 9 irradiated by the beam. On the other hand, a large deflection signal and a small deflection signal are produced from an electronic computer 17. The large deflection signal is supplied to the first deflector 7 through a DA converter 12, and supplied to the second deflector 8 through a deflection-signal controlling circuit 13 and a DA converter 14. The small deflection signal is supplied to a third deflector through a DA converter 15.

Description

【発明の詳細な説明】 本発明は荷電粒子線を大きい角度偏向さけても、偏向に
伴なう収差の影響を極めて少くし得る荷電粒子線集束偏
向装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charged particle beam focusing/deflecting device that can minimize the influence of aberrations accompanying the deflection even if the charged particle beam is deflected at a large angle.

電子あるいはイオンビーム描画装置に83いて、荷電粒
子線の偏向範囲を拡大−づることは、荷電粒子線の偏向
に比べて著しく時間を要り゛る被描画材1’3+の移動
の回数を減少させることができるため、スルーブッ1へ
を向上させる意味において最も重要な要因となる。しか
しながら、偏向範囲を拡大するに什なっで、電子線の材
料への斜め入射の問題が無視できなくなると共に、各種
の収差が大きくなり、微細な図形の高精度の描画が困難
となる。
Expanding the deflection range of the charged particle beam in an electron or ion beam drawing system reduces the number of movements of the drawing material, which takes significantly more time than deflection of the charged particle beam. Therefore, it is the most important factor in improving throughput to 1. However, as the deflection range is expanded, the problem of oblique incidence of the electron beam onto the material cannot be ignored, and various aberrations increase, making it difficult to draw fine figures with high precision.

特開昭5/1132962号に開示された発明では、様
な軸上分布を右する回転対称磁界内に少くとも3段の静
電偏向電極を配置し、該各電極の位置。
In the invention disclosed in JP-A No. 5/1132962, at least three stages of electrostatic deflection electrodes are arranged in a rotationally symmetrical magnetic field having a similar axial distribution, and the position of each electrode is adjusted.

幅、内径、印加電圧等のパラメータを荷電粒子線の斜め
入射と各収差を減少ゼしめるように選択しくいる。この
発明によって、理論上は荷電粒子線の斜め入射の影響を
無くし、色収差、コマ収差等を実用−に無視でさる程度
まで減少させることができるが、実際上は、偏向器の数
が多く構成が複雑(あると具に、現状では次のような欠
点を有していることが判明した。すなわち、装置製作時
におい−(、偏向電極の工作9組立が必ずしもこの発明
r要求される精度で行うことができないため、組立後に
d3いて偏向器の大きさ、内径1位置等に誤差が生じる
。この誤差の補正を行うため、該誤差に応じて他のパラ
メータ、例えば、各偏向器への印加電圧、磁場の強さ等
の再調整を行わねばならないが、この再調整によって該
電圧、磁場の強さの最適値を見出すことは誤差が生じた
パラメータ(3つ以上の偏向器夫々の位置、大きさ、内
径)の数が多いために極めて困難である。更に、この発
明においては、非線形的収差、すなわち、偏向非点収差
及び偏向湾曲収差の補正は偏向角度に応じた補正電圧を
各偏向器に供給する所謂動的補正によって行っているた
め、該補正電圧を作成する制御回路が複雑且つ高価とな
る。更に又、当然のことながら上述した一部のパラメー
タには製造上の誤差があるため、該動的補正電圧も予め
求めた理論的な値から変化させねばならないが、該補正
電圧は偏向角度に応じて各偏向器毎にnl算によって求
められているもので、このような微細な角度毎に各偏向
器用に求められている補正電圧全てに対して該誤差を除
去するための補止を加えることは、はとんど不可能に近
い。
Parameters such as width, inner diameter, and applied voltage are selected to reduce oblique incidence of the charged particle beam and various aberrations. In theory, this invention can eliminate the effects of oblique incidence of charged particle beams and reduce chromatic aberrations, comatic aberrations, etc. to the extent that they can be ignored in practice. However, in practice, the configuration requires a large number of deflectors. However, it has been found that the present invention has the following drawbacks: In manufacturing the device, the work and assembly of the deflection electrodes cannot necessarily be performed with the accuracy required for this invention. Since this cannot be done, errors will occur in the size of the deflector, inner diameter 1 position, etc. after assembly.In order to correct this error, other parameters, such as the voltage applied to each deflector, may be It is necessary to readjust the voltage, magnetic field strength, etc., but it is difficult to find the optimal values of the voltage and magnetic field strength through readjustment. In addition, in this invention, correction of nonlinear aberrations, that is, deflection astigmatism and deflection curvature aberration, is extremely difficult due to the large number of deflection angles. Since this is done by so-called dynamic correction supplied to the device, the control circuit for creating the correction voltage is complex and expensive.Furthermore, as a matter of course, there are manufacturing errors in some of the parameters mentioned above. Therefore, the dynamic correction voltage must also be changed from a theoretical value determined in advance, but the correction voltage is determined by nl calculation for each deflector according to the deflection angle, and such minute It is almost impossible to add compensation for eliminating the error to all the correction voltages required for each deflector for each angle.

本発明は上)ホした点に鑑みてなされたもので、荷電粒
子線を大きな角度偏向させても収差を極めて少くし得る
構造が簡単で且つ動的補正の必要がない荷電粒子線集束
偏向装置を提供する。
The present invention has been made in view of the above point, and is a charged particle beam focusing/deflecting device that has a simple structure that can extremely minimize aberrations even when a charged particle beam is deflected at a large angle, and does not require dynamic correction. I will provide a.

本発明者は集束偏向系の収差の大きさと、偏向器の大き
さ1位置、印加電圧等のパラメータとの関係を大型電子
81算機を使用して詳細に調べた結果、ある電磁レンズ
系内に第1と第2の偏向器を配置し、偏向色収差、偏向
コマ収差あるいは垂直入射誤差のうちいずれかが零どな
るように、これらの偏向器への印加電圧の比と偏向方向
のなり角度を固定して偏向電圧を供給ずれば、荷電粒子
線が照q・1される面上での偏向収差の合計が実用上問
題とならない範囲にまで減少できることを見出し、本発
明を完成り゛るにに至った。
The inventor investigated in detail the relationship between the magnitude of aberration of a focusing/deflecting system and parameters such as the size and position of the deflector, applied voltage, etc., using a large electronic 81 calculator. The first and second deflectors are arranged at They discovered that by supplying a fixed deflection voltage, the total deflection aberration on the surface where the charged particle beam is irradiated can be reduced to a range that does not pose a practical problem, and has completed the present invention. reached.

本発明に桔づく荷電粒子線集束偏向装置は、荷電粒子線
を所望の面に集束するための縮小電磁レンズと該縮小電
磁レンズの後段に配置された投影電磁レンズと、該縮小
電磁レンズの像面近傍であり該投影電磁レンズの物面近
傍に配置された第1の静電偏向器と、該投影電磁レンズ
が形成する磁場因に配置された第2の静電偏向器と、該
第1と第2の偏向器にJ、って該荷電粒子線を偏向さけ
、該所望の面上の荷電粒子線の照射位置を変化させるた
めに該第1と第2の偏向器に偏向電圧を供給Jるための
回路とを備え、該第1の偏向器と第2の偏向器に供給さ
れる電圧の比ど、該第1の偏向器による荷電粒子線の偏
向方向と第2の偏向器による荷電粒子線の偏向方向との
なす角度が、該所望の面上での荷電粒子線の偏向色収差
、偏向コマ収差あるいは垂直入射誤差のいずれかが零と
なるJ:うに選択されている。
A charged particle beam focusing/deflecting device according to the present invention includes a reduction electromagnetic lens for focusing a charged particle beam on a desired surface, a projection electromagnetic lens disposed after the reduction electromagnetic lens, and an image of the reduction electromagnetic lens. a first electrostatic deflector disposed near the object surface of the projection electromagnetic lens; a second electrostatic deflector disposed in the magnetic field formed by the projection electromagnetic lens; and a second deflector to deflect the charged particle beam, and supply a deflection voltage to the first and second deflectors in order to change the irradiation position of the charged particle beam on the desired surface. the ratio of the voltages supplied to the first deflector and the second deflector, the deflection direction of the charged particle beam by the first deflector and the second deflector; The angle formed with the deflection direction of the charged particle beam is selected such that any one of deflection chromatic aberration, deflection coma, or vertical incidence error of the charged particle beam on the desired surface becomes zero.

以下本発明の一実施例を添付図面に基づき詳jホする。An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に基づく電子ビーム集束偏向装置を示し
ており、第2図は該第1図の装置に使用されている電磁
レンズ系の軸上磁場分布を示している。図中1はヨーク
2と励磁コイル3j、りなる短焦点の縮小電磁レンズで
あり、4はヨーク5ど4つの励磁コイル6a、6b、6
c、6dよりなる投影電磁レンズである。該縮小電磁レ
ンズ1には強い励磁電流が流され、第2図のMlで示す
分布のr41揚が形成される。該投影電磁レンズ4のヨ
ーク5は4つのl、it 14i間ギャップが形成され
るように形づくられ−(’ J5す、夫々のギャップに
対応して励(6二1イル6a〜6dが設【〕られている
。該励磁:Jイル5a〜6dには別々に励磁電流が供給
され(おり、函励)41電流を適切に調整りることによ
つ(第2図の分布M4の如くある範囲内において所望な
磁場分イ5、例えば、略一様な磁場分布を1qることが
できる。尚、該ギャップ及び励磁コイルの数をより多く
し、夫々の励磁電流を調整づれば、J、り所望とりる磁
場分布を得ることができる。該両電罎レンズは該縮小電
磁レンズ1の像面位置と該投影電磁レンズ4の物面位置
とが略一致するように配置され(いる。該縮小電磁レン
ズ1の像面(O置、づなわ1)、該投影電磁レンズ4の
物面位置近傍には第1の静電偏向器7が配置され、又、
該投影電長長レンズ4の形成する磁場の中には第2の静
電偏向器83が配置されている。該両偏向器は第1図で
は2枚の偏向板の如く示されているが、実際には第3図
に承り如く、光@Zの回りに等間隔で配置された8つの
電極「1〜「8に」;ってlf6成されている。該各偏
向器を構成する電極の数は例えば、4本でも良いが、電
子ビームを正確に定められた方向に偏向するためには、
8極あるいは12極等の多極である方が望ましい。該両
電磁レンズ1,4によって電子ビームは被描画材料の如
き材料9上に集束されると共に、該第1と第2の偏向器
7,8に供給される偏向電圧に応じて該電子ビームは偏
向され、該材料9上での電子ビームの照射位置は変化さ
せられる。尚、該第1と第2の偏向器の間には第3の偏
向器10が配置されているが、該第3の偏向器10は第
1と第2の偏向器(こj;って人ぎく偏向された電子ビ
ームを微小な領域内で偏向するために使用される。11
は電子計算(幾であり、該電子計算fX111からは大
偏向信号と小偏向信号が発生され、該大偏向信号はDA
変換器12を介して該第1の偏向器7に供給されると共
に、偏向信号調整回路13及びDA変換器14を介して
該第2の偏向器8に供給されてd3す、該小偏向信号は
DA変換器15を介して第3の偏向器に供給されている
FIG. 1 shows an electron beam focusing/deflecting device according to the present invention, and FIG. 2 shows the axial magnetic field distribution of the electromagnetic lens system used in the device of FIG. In the figure, 1 is the yoke 2, the excitation coil 3j, and a short focus reduction electromagnetic lens, and 4 is the yoke 5 and the four excitation coils 6a, 6b, 6.
This is a projection electromagnetic lens consisting of c and 6d. A strong excitation current is passed through the reduction electromagnetic lens 1, and a distribution r41 shown by Ml in FIG. 2 is formed. The yoke 5 of the projection electromagnetic lens 4 is shaped so that four gaps are formed between them. Excitation: Excitation currents are separately supplied to the coils 5a to 6d (box excitation) 41. By appropriately adjusting the currents (distribution M4 in Figure 2 Within the range, it is possible to obtain a desired magnetic field distribution 5, for example, a substantially uniform magnetic field distribution of 1q.If the number of gaps and excitation coils is increased and the respective excitation currents are adjusted, J. A desired magnetic field distribution can be obtained.The two electromagnetic lenses are arranged so that the image plane position of the reduction electromagnetic lens 1 and the object plane position of the projection electromagnetic lens 4 substantially match. A first electrostatic deflector 7 is arranged near the image plane (position O, link 1) of the electromagnetic lens 1 and the object plane position of the projection electromagnetic lens 4, and
A second electrostatic deflector 83 is disposed in the magnetic field formed by the projection lens 4 . Although both deflectors are shown as two deflection plates in FIG. 1, in reality, as shown in FIG. "To 8"; lf6 has been created. The number of electrodes constituting each deflector may be, for example, four, but in order to deflect the electron beam in an accurately determined direction,
It is preferable to have multiple poles such as 8 poles or 12 poles. The electron beam is focused onto a material 9 such as a material to be imaged by the electromagnetic lenses 1 and 4, and the electron beam is focused in accordance with the deflection voltages supplied to the first and second deflectors 7 and 8. The electron beam is deflected, and the irradiation position of the electron beam on the material 9 is changed. Note that a third deflector 10 is disposed between the first and second deflectors; Used to deflect an artificially deflected electron beam within a minute area.11
is an electronic calculation, and the electronic calculation fX111 generates a large deflection signal and a small deflection signal, and the large deflection signal is DA
The small deflection signal d3 is supplied to the first deflector 7 via the converter 12, and is also supplied to the second deflector 8 via the deflection signal adjustment circuit 13 and the DA converter 14. is supplied to the third deflector via the DA converter 15.

さて、本発明者は上述した構成において各偏向器を動作
させない時の電子ビームの軌道Δlと第1と第20)偏
向;(1:を動作さけた時の軌道CIを用い、偏向にf
′4”、’;う各収差の81算を電子計樟機を使用しで
iiつだ。そ(〕て、第1の偏向器7に印加される偏向
電圧と第2の偏向器8に印加される偏向電圧の杜をある
値に固定覆ると共に、該第1の偏向器7にJ、る偏向方
向と第2の偏向器8による偏向方向どのなり角磨く相対
偏向角)をある値に固定した場合に、偏向電圧値を変化
させても、偏向色11v、差、偏向]711V、差ある
いは材料に対する電子じ一ムの垂直入射誤差のいずれか
1つが零となることをMr ’FrlしICo尚、第1
図の電磁レンズ系に入用した電子ビームは該電磁レンズ
によって集束されると共に、偏向作用、回転作用も受番
プる。その結果、第4図に示J矢印りに示す方向に電子
ビームを偏向りるためには、該第1の偏向器によって矢
印1〕1に示り方向に偏向し、該第2の偏向器8にJ、
つ(矢印1) 4の方向に偏向しな(プればならない。
Now, in the above-mentioned configuration, the present inventor used the orbit Δl of the electron beam when each deflector was not operated and the orbit CI when the 1st and 20th) deflections were not operated;
'4'', '; Calculate each aberration using an electronic calculator. Then, the deflection voltage applied to the first deflector 7 and the deflection voltage applied to the second deflector 8 While fixing the applied deflection voltage to a certain value, the relative deflection angle (to which the deflection direction of the first deflector 7 and the deflection direction of the second deflector 8) is set to a certain value. Mr'Frl shows that even if the deflection voltage value is fixed, any one of the deflection color 11v, difference, deflection]711V, difference, or vertical incidence error of electronic uniformity to the material becomes zero. ICo Nao, 1st
The electron beam entering the electromagnetic lens system shown in the figure is focused by the electromagnetic lens, and is also subjected to deflection and rotation effects. As a result, in order to deflect the electron beam in the direction shown by the arrow J shown in FIG. J to 8,
It must be deflected in the direction of arrow 1 (arrow 1).

該矢印D1の方向と矢印D4の方向とのな1゛角度θが
上述した相対偏向角である。更に、本発明者は偏向色収
差、偏向コマ収差あるいは垂直入射誤差のいずれかが零
どなるような偏向電圧比及び該角度θにおいて、第1と
第2の偏向器の中心位置及び該偏向器を構成する電極の
長さを任意パラメータどして変化させ、電子計算例によ
るシミュレーションを行ったところ、該任意パラメータ
がある値の時に、除去し1りない他の偏向収差あるいは
垂直入射誤差σ) l−一タルが極めて小さくなること
を見出した。尚、この最適な任意パラメータの値は電磁
レンズによる磁場の強さ、8向器に印加される電圧の比
、相対偏向角に応じて変化り゛る。
The 1° angle θ between the direction of the arrow D1 and the direction of the arrow D4 is the above-mentioned relative deflection angle. Furthermore, the present inventor determined the center positions of the first and second deflectors and configured the deflector at the deflection voltage ratio and the angle θ such that any one of deflection chromatic aberration, deflection coma aberration, or vertical incidence error becomes zero. When the length of the electrode is changed using an arbitrary parameter and a simulation is performed using an example of electronic calculation, it is found that when the arbitrary parameter has a certain value, other deflection aberrations or normal incidence error σ) l- It was discovered that one barrel becomes extremely small. Note that the value of this optimal arbitrary parameter changes depending on the strength of the magnetic field by the electromagnetic lens, the ratio of the voltages applied to the eight deflectors, and the relative deflection angle.

ここで、上記シミュレーションの一例を第1表に示ず。Here, an example of the above simulation is not shown in Table 1.

法衣において、A、B、Cは夫々偏向コマ収差、偏向色
収差及び垂直入射誤差を零とした場合のシミュレーショ
ン結果である。法衣にJ3いて、垂直入射誤差の単位が
ラジアンである以外は各収差の単位はpHである。又、
該表中の総合収差には歪収差が含まれていないが、これ
は、歪収差か、偏向電圧に応じて必要な補正電圧を該偏
向電圧にΦ畳りるようにした、既に一般的となっている
技術を使用して独立に除去することができるノζめであ
る。
Regarding the robe, A, B, and C are simulation results when deflection comatic aberration, deflection chromatic aberration, and vertical incidence error are respectively set to zero. The unit of each aberration is pH, except for the case of J3 in the vestibule, where the unit of normal incidence error is radian. or,
The total aberration in the table does not include distortion, but this may be due to distortion, or the already common system in which the necessary correction voltage according to the deflection voltage is multiplied by Φ. This is because it can be removed independently using existing techniques.

第1表 尚、上記シミコレ−ジョンは、電子線の加速型j−1が
20kV、電子線エネルギーの広がりが20V、4.f
l斜面面上J3 Cjる電子線の聞き角が5×10−3
ラジアン、電磁レンズ系の物面上の電子ビームの形状は
一辺が10 +rWの正方形1月利面上の偏向領域が1
0mn+の正方形の条件で行われており、各収差の値は
、該偏向領域のコーナーにおける値である。
Table 1 Note that the above stain corrosion occurs when the electron beam acceleration type j-1 is 20 kV, the electron beam energy spread is 20 V, and 4. f
The hearing angle of the electron beam J3 Cj on the l slope surface is 5 × 10-3
radian, the shape of the electron beam on the object plane of the electromagnetic lens system is a square with sides of 10 + rW, and the deflection area on the gain plane is 1.
This is performed under the square condition of 0 mn+, and the value of each aberration is the value at the corner of the deflection area.

上記した第1表より明らかな如く、A、B、Cのいずれ
の場合も全収差の和を極めて小さくすることができる。
As is clear from Table 1 above, the sum of all aberrations can be made extremely small in any case of A, B, and C.

特に、偏向色収差を零とり−るような電圧比と相対偏向
角の第1と第2の偏向器を使用J゛れば、総合収差の値
は0.175pmと著しく小さく出来、iQn+n+角
の大偏向領域においても、月利の移動を伴な4つずに1
ノブミクロンの精度で描画を行うことが可能となる。尚
、偏向色収差を零とする電磁レンズ系及び静電偏向系の
一例は、次のとおりである。
In particular, if the first and second deflectors have voltage ratios and relative deflection angles that eliminate deflection chromatic aberration, the total aberration value can be significantly reduced to 0.175 pm, and the iQn+n+ angle can be significantly reduced. Even in the deflection area, 1 for 4 with movement of monthly interest
It becomes possible to draw with knob micron precision. An example of an electromagnetic lens system and an electrostatic deflection system that have zero deflection chromatic aberration is as follows.

物面と祠斜面の間の距離・・・・・・・・・300mm
縮小電磁レンズの縮小比・・・・・・・・・1/3第1
の偏向器の電極長・・・・・・・・・・・・30mm第
2の偏向器の電極長・・・・・・・・・・・・9Qn+
m両偏向器間の相対的回転角・・・・・・28゜両偏向
器に印加する電圧の比・・・1:2ここで、第1図に示
した実施例において、偏向伝号調整回路13は、該第1
の偏向器7に印加される電圧値に3・1して第2の偏向
器8に印加される電圧値が常に248となるように、又
、該第2の偏向器と第1の偏向器との相対回転角が28
°となるJ、うに調整されている。この状態C電子削粋
礪11から描画Jべぎパターンに応じた大偏向信号と小
偏向信号を各偏向器に供給覆れば、拐料上には収差の極
めて小さな電子ビームが投射され、微細なパターンが高
精度で描画される。尚、第3の偏向器9に印加される偏
向電圧には特別な補正が施されていないが、該第3の偏
向器による偏向は偏向範囲が極めて制限された微細な領
域であるため、それによる収差は無視し1qる。
Distance between object surface and shrine slope: 300mm
Reduction ratio of reduction electromagnetic lens 1/3 1st
Electrode length of the second deflector: 30mm Electrode length of the second deflector: 9Qn+
m Relative rotation angle between both deflectors...28° Ratio of voltage applied to both deflectors...1:2 Here, in the embodiment shown in FIG. The circuit 13
The voltage value applied to the second deflector 8 is always 248 by multiplying the voltage value applied to the second deflector 7 by 3×1, and the second deflector and the first deflector The relative rotation angle with
It is adjusted to J, which is °. If a large deflection signal and a small deflection signal corresponding to the drawn J-beg pattern are supplied to each deflector from this state C electron cutting board 11, an electron beam with extremely small aberration is projected onto the electron beam, and a fine patterns are drawn with high precision. Note that although no special correction is applied to the deflection voltage applied to the third deflector 9, the deflection by the third deflector 9 is in a minute area with an extremely limited deflection range. Ignoring the aberration caused by 1q.

以」二詳述した如く、本発明は偏向器が2段の簡!、l
i ID 4t4成て・あり、更には動的な補正の必要
なしに、電子ビームを大きい角度偏向させても偏向に伴
なう収差を実用上問題とならない範囲とすることがCき
る。又、装置の製作時に、加工誤差2組立誤フイがあつ
一ηも、調整パラメータは両偏向器に印加される電圧の
比と相対的回転角の2つしかなく、又、動的補正も行っ
ていないため、該電圧比と回転角を予め計紳された値の
近傍で若干変化さければ、収差の極めて少ない最良の値
を見イ」(プ出すことができるので、該誤差の補正も簡
単に行うことができる。従って、本発明に基づく集束偏
向装置を電子ビーム描画装置に組込めば、その実用的価
値は頗る大である。尚、上述した実施例は電子ビームを
例に説明したが、イオンビームにも本発明を適用するこ
とができる。
As described in detail below, the present invention has a simple structure with a two-stage deflector. ,l
i ID 4t4, and furthermore, even if the electron beam is deflected by a large angle, the aberration caused by the deflection can be kept within a range that does not pose a practical problem, without the need for dynamic correction. In addition, even if there is a processing error or an assembly error during the manufacturing of the device, there are only two adjustment parameters: the ratio of the voltage applied to both deflectors and the relative rotation angle, and dynamic correction is also performed. Therefore, if the voltage ratio and rotation angle are slightly changed around the predetermined values, it is possible to find the best value with the least amount of aberration, so the error can be corrected. It can be easily performed. Therefore, if the focusing/deflecting device based on the present invention is incorporated into an electron beam lithography device, its practical value will be extremely large. Note that the above-mentioned embodiments have been explained using an electron beam as an example. However, the present invention can also be applied to ion beams.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示J−図、第2図は第1図
に示した実施例におtプる電磁レンズ系の軸上磁場分布
を示す図、第3図は静電偏向器のIJJi面形状を示す
図、第4図は電子線の材料面上の偏向方向と第1と第2
の偏向器による偏向方向とを示す図である。 1:縮小電磁レンズ 4:投影電磁レンズ 7.8.10:静電偏向器 9 : 1.fl籾 11:電子51亦懇 12.14.15:DA変換器 13:偏向信号調整回路 特許出願人 日木雷子株式会社 代表者 伊藤 −夫 理化学研究所 理事長 宮島 龍興
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the axial magnetic field distribution of the electromagnetic lens system according to the embodiment shown in Fig. 1, and Fig. 3 is a diagram showing the static A diagram showing the IJJi surface shape of the electron deflector, Figure 4 shows the deflection direction of the electron beam on the material surface and the first and second
FIG. 1: Reduction electromagnetic lens 4: Projection electromagnetic lens 7.8.10: Electrostatic deflector 9: 1. 12.14.15: Electronics 51 12.14.15: DA converter 13: Deflection signal adjustment circuit Patent applicant: Raiko Hiki Co., Ltd. Representative: Ito-huu RIKEN Chairman: Tatsuoki Miyajima

Claims (1)

【特許請求の範囲】 1 イ11電粒子線を所望の面に集束りるための縮小電
磁レンズと該縮小電磁レンズの接設に配置された投影電
磁レンズと、該縮小Wi磁レンズの像面近傍であり該投
影電磁レンズの物面近傍に配置され/、: ff+ 1
の静電偏向器と、該投影電磁レンズが形成づる讃場内に
配置された第2の静電偏向器と、該第1と第2の偏向器
によって該荷電粒子線を偏向さけ、該所望の面上の荷電
粒子線の照射位置を変化さけるために該第1ど第2の偏
向器に偏向電圧をIll給りるための回路とを備え、該
第1の偏向器と第2の偏向器に供給される電LLの比と
、該第1の偏向器による荷電粒子線の偏向方向と第2の
偏向器による荷電粒子線の偏向方向とのなづ角度が、該
所望の面上での荷電粒子線の偏向色収差、偏向〕7収シ
イ−あるいは垂直入射誤差のいずれかが零となるJ、う
に選II<されていることを特徴とする荷電粒子線集束
偏向装置。 2、該投影電磁レンズは複数の磁極間ギ17ツブを有し
、該ギャップに対応した励磁コイルが設cノられ−U 
J3す、該励磁コイルに供給される励磁電流を調整覆る
ことによっ−C所望な磁場が形成されるにうにIf(成
されている特許請求の範囲第1項記載の荷電粒子線集束
偏向装置。 3、該第1と第2の偏向器によって比較的大きな角度の
偏向を行い、第3の偏向器によって微mな角度の偏向を
行うようにした特許請求の範囲第1項乃至第2項記載の
荷電粒子線集束偏向装置。
[Claims] 1.11 A reduction electromagnetic lens for focusing the electron beam on a desired surface, a projection electromagnetic lens disposed in contact with the reduction electromagnetic lens, and an image plane of the reduction Wi magnetic lens. is located near the object surface of the projection electromagnetic lens/: ff+1
a second electrostatic deflector disposed in the enclosure formed by the projection electromagnetic lens, and the first and second deflectors to deflect the charged particle beam and to avoid deflection of the charged particle beam. a circuit for supplying a deflection voltage to the first and second deflectors in order to avoid changing the irradiation position of the charged particle beam on the surface, the first deflector and the second deflector; and the angle between the direction of deflection of the charged particle beam by the first deflector and the direction of deflection of the charged particle beam by the second deflector on the desired surface. Deflection Chromatic Aberration and Deflection of Charged Particle Beam] 7. A charged particle beam focusing/deflecting device characterized in that either the convergence error or the normal incidence error is zero. 2. The projection electromagnetic lens has a plurality of gaps between magnetic poles, and excitation coils corresponding to the gaps are installed.
By adjusting the excitation current supplied to the excitation coil, a desired magnetic field is formed. 3. Claims 1 and 2, wherein the first and second deflectors perform deflection at a relatively large angle, and the third deflector performs deflection at a minute angle. The charged particle beam focusing and deflecting device described above.
JP57193077A 1982-11-02 1982-11-02 Device for focusing and deflecting charged particle ray Granted JPS5983336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193077A JPS5983336A (en) 1982-11-02 1982-11-02 Device for focusing and deflecting charged particle ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193077A JPS5983336A (en) 1982-11-02 1982-11-02 Device for focusing and deflecting charged particle ray

Publications (2)

Publication Number Publication Date
JPS5983336A true JPS5983336A (en) 1984-05-14
JPH0234426B2 JPH0234426B2 (en) 1990-08-03

Family

ID=16301824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193077A Granted JPS5983336A (en) 1982-11-02 1982-11-02 Device for focusing and deflecting charged particle ray

Country Status (1)

Country Link
JP (1) JPS5983336A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476656A (en) * 1987-09-16 1989-03-22 Toshiba Corp Charged beam depicting device
JP2007534124A (en) * 2004-04-23 2007-11-22 ヴィステック エレクトロン ビーム ゲーエムべーハー Irradiation condenser for particle-optical illuminating systems
JP2008153131A (en) * 2006-12-19 2008-07-03 Jeol Ltd Charged particle beam apparatus
US7521688B2 (en) 2006-01-11 2009-04-21 Jeol Ltd. Charged-particle beam instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642644U (en) * 1992-11-06 1994-06-07 佐藤工業株式会社 Packaging dividers and packaging boxes with dividers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648052A (en) * 1979-09-17 1981-05-01 Varian Associates Method of double deflecting and scanning charged particle beam and condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648052A (en) * 1979-09-17 1981-05-01 Varian Associates Method of double deflecting and scanning charged particle beam and condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476656A (en) * 1987-09-16 1989-03-22 Toshiba Corp Charged beam depicting device
JP2007534124A (en) * 2004-04-23 2007-11-22 ヴィステック エレクトロン ビーム ゲーエムべーハー Irradiation condenser for particle-optical illuminating systems
US7521688B2 (en) 2006-01-11 2009-04-21 Jeol Ltd. Charged-particle beam instrument
JP2008153131A (en) * 2006-12-19 2008-07-03 Jeol Ltd Charged particle beam apparatus
US7820978B2 (en) 2006-12-19 2010-10-26 Jeol Ltd. Charged-particle beam system

Also Published As

Publication number Publication date
JPH0234426B2 (en) 1990-08-03

Similar Documents

Publication Publication Date Title
JP5160021B2 (en) Particle optical projector
KR100572253B1 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US4544846A (en) Variable axis immersion lens electron beam projection system
JPH09223475A (en) Electromagnetic deflector and charge particle beam transfer apparatus using thereof
US5635719A (en) Variable curvilinear axis deflection means for particle optical lenses
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
JPS626341B2 (en)
US4544847A (en) Multi-gap magnetic imaging lens for charged particle beams
JPH06103946A (en) Variable-shaft stigmator
US6642675B2 (en) Charged particle beam exposing apparatus
JP3210613B2 (en) Curve axis correction device
US5444257A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US5708274A (en) Curvilinear variable axis lens correction with crossed coils
JPH10302693A (en) Curve axis moving type lens correction having dipole in the center
JP4156862B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
JPS61101944A (en) Charged particle beam focusing system
JPS5983336A (en) Device for focusing and deflecting charged particle ray
US5847402A (en) Charged particle beam pattern transfer apparatus and method
US4798953A (en) Electronic beam device for projecting an image of an object on a sample
US5650628A (en) Simultaneous deflections in charged-particle beams
US6066855A (en) Charged-particle-beam optical system exhibiting aberration correction
JP3772067B2 (en) Charged particle beam irradiation equipment
JPH01295419A (en) Electron beam exposure method and device
JP7480917B1 (en) Multi-charged particle beam writing system
Zhu et al. Comprehensive analysis of electron optical design of SCALPEL-HT/Alpha