[go: up one dir, main page]

JPS58102181A - X ray spectroscopy - Google Patents

X ray spectroscopy

Info

Publication number
JPS58102181A
JPS58102181A JP56201386A JP20138681A JPS58102181A JP S58102181 A JPS58102181 A JP S58102181A JP 56201386 A JP56201386 A JP 56201386A JP 20138681 A JP20138681 A JP 20138681A JP S58102181 A JPS58102181 A JP S58102181A
Authority
JP
Japan
Prior art keywords
ray
photoelectrons
kinetic energy
measured
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201386A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagai
一敏 長井
Ikuo Okada
岡田 育夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56201386A priority Critical patent/JPS58102181A/en
Publication of JPS58102181A publication Critical patent/JPS58102181A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable the measurement of spectroscopic value of soft X ray regardless of X rays radiated in pulse and continuously radiated by measuring kinetic energy and quantity of photoelectrons released when X ray to be measured irradiates oxygen. CONSTITUTION:A metal substrate 2 is cooled sufficiently with a cooler 3 full of a liquid helium or the like so that an oxygen adsorbed layer 4 will be formed on the surface thereof. When X ray 1 to be measured irradiates the layer 4, photoelectrons 5 are released therefrom. The photoelectrons 5 are introduced into a kinetic energy discriminator 6 to measure kinetic energy thereof along with the quantity thereof, which provides a spectrum with the kinetic energy corresponding to the wavelength of the X ray and the quantity of photoelectrons corresponding to the luminous intensity thereof. Thus, the spectroscopic value of the X ray is measured. These measurements are conducted in a vacuum vessel 7 to prevent absorption of X ray and scattering of photoelectrons due to air.

Description

【発明の詳細な説明】 本発明はXlll11特に波長17〜23′Aの範囲の
軟X@の波長と強度を簡単に測定できるXs分分光に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to Xs spectroscopy that allows easy measurement of the wavelength and intensity of soft X@ in the wavelength range of 17 to 23'A.

従来のX41分光法は、■半導体検出器を用いるもの、
■回折結晶(又は回折格子)を用いるものに大別され、
ざらに■はΦ回折結晶(又は回折格子)を−一ランド円
周上に移動させつつ計るもの、@回折結晶(又は回折格
子)の置かれた讐−ランド円と同一の胃−ランド円周上
にX1lyイルムを設置するものにわけられる。ところ
で、これらのX!1分光法のうち、■は半導体検出器の
応答速度の点で/psac以下の短いパルスX!Iの分
光光度測定に不適であるはか、波長101以上の軟X線
の検出・分光が困難である。亥た■のΦはパルスX線の
分光光度測定には長時間を要し、実用的でない。また更
に0のo+−xxtsの波長が長くなるに従らて回折結
晶(又は回折格子)の焦点が伸びるためにi置が大形化
する欠点がある。     ゛本発明は上記の事情に鑑
み、パルス放射のX@。
Conventional X41 spectroscopy uses a semiconductor detector;
■It is roughly divided into those using diffraction crystals (or diffraction gratings).
Roughly ■ is measured while moving the Φ diffraction crystal (or diffraction grating) on -1 land circumference, @the same stomach-land circumference as the opposite land circle where the diffraction crystal (or diffraction grating) is placed. It can be divided into those with X1ly illumination installed on top. By the way, these X! 1 spectroscopy, ■ is a short pulse X! of less than / psac in terms of the response speed of the semiconductor detector. Not only is it unsuitable for spectrophotometric measurement of I, but it is also difficult to detect and analyze soft X-rays with wavelengths of 101 or more. Φ of (2) requires a long time for spectrophotometric measurement of pulsed X-rays, and is not practical. Furthermore, as the wavelength of 0 o+-xxts becomes longer, the focal point of the diffraction crystal (or diffraction grating) becomes longer, so there is a drawback that the i-position becomes larger.゛In view of the above circumstances, the present invention utilizes pulsed radiation X@.

連続放射のに線を問わずに軟X線の分光光度の測定が可
能であり、かつ使用する装置の小形化を計ることのでき
るXII分光法を提供するもので、−素に分光すべきX
線を照射し、放出する光電子の運動エネルギーおよび量
を測定することにより波長域l!〜30χの軟XImの
波長および強度を測定することを特徴とするものである
This provides XII spectroscopy, which allows the spectrophotometric measurement of soft X-rays regardless of the line of continuous radiation, and which allows the equipment used to be miniaturized.
By irradiating a beam and measuring the kinetic energy and amount of emitted photoelectrons, the wavelength range l! It is characterized by measuring the wavelength and intensity of soft XIm of ~30χ.

以下、本発明を図面を参照して詳細に開明する。Hereinafter, the present invention will be disclosed in detail with reference to the drawings.

#I1図は本発明の一実施例を示す図であって、この図
においてlは分光すべきX線、3は金属基板、8は冷却
器、会は酸素吸着層、2は光電子、6は光電子の運動エ
ネルギー弁別器、テは真空1器である。
#I1 is a diagram showing an embodiment of the present invention, in which l is the X-ray to be separated, 3 is the metal substrate, 8 is the cooler, 2 is the oxygen adsorption layer, 2 is the photoelectron, and 6 is the The photoelectron kinetic energy discriminator, Te, is a single vacuum device.

金属基板3は清浄な状態に仕上げられたものであって、
例えば液体ヘリウムなどを満した冷却器Sによって充分
に冷却され、その表面には酸素ガスを吸着させることに
より酸l!吸着層慟が形成されている。これに分光すべ
きX1llを照射すれば酸素吸着層から光電子iが放出
される。
The metal substrate 3 is finished in a clean state,
For example, it is sufficiently cooled by a cooler S filled with liquid helium, etc., and by adsorbing oxygen gas on its surface, acid l! An adsorption layer is formed. When this is irradiated with X1ll to be dispersed, photoelectrons i are emitted from the oxygen adsorption layer.

通常酸素のに軌道電子はj3t≦eVの結合エネルギー
で原子核と結合して安全状態を保っているが、振動数ν
のX@の照射をうけると励起されてb y−XII、4
 (−Elk)eVの運動エネルギーを持った光電子と
なって真空中にとび出して来る。X線が種々の振動数を
含んでいるとそれに応じて光電子の運動エネルギーBk
もさ重ざまな値をとる。そこで光電子器を運動エネルギ
ー弁別器6に導いて運動エネルギーを測定し、同時に光
電子の量を測定すれば、XIII波長に対応した運動エ
ネルギーと光度に対応した光電子量として第2図に示す
ようなスペク)ルが得られる。これによりX線の分光光
度が測定される。これらの測定は空気によるXIIの吸
収、光電子の散乱を防止するために真空容器フの中で行
われる。この測定に際し、運動エネルギー弁別器として
写真フィル五タイプのものを用いればX線が短いパルス
の場合にも分光が可能である。
Ordinarily, the orbital electrons of oxygen bond with the atomic nucleus with a binding energy of j3t≦eV and maintain a safe state, but the vibration frequency ν
When it is irradiated with X@, it is excited and b y-XII, 4
It becomes a photoelectron with a kinetic energy of (-Elk)eV and jumps out into the vacuum. When X-rays contain various frequencies, the kinetic energy Bk of photoelectrons changes accordingly.
It takes a variety of values. Therefore, if a photoelectronic device is guided to the kinetic energy discriminator 6 and the kinetic energy is measured, and the amount of photoelectrons is measured at the same time, the spectrum as shown in FIG. ) is obtained. In this way, the spectrophotometric intensity of X-rays is measured. These measurements are performed in a vacuum chamber to prevent absorption of XII and scattering of photoelectrons by air. In this measurement, if a five-type photographic film is used as a kinetic energy discriminator, spectroscopy is possible even when the X-ray is a short pulse.

なお、XII波長カh 1 < j J /、4 @ 
V01件1満す場合、つまり波長がsad以上の波長域
では光電子は極端に減衰する。振動数νのX!Ill射
をうけた酸素はオージェ効果によりic#l−711よ
3eVの光電子も放出するからh*>71よ!なる振動
数に対応する波長tttl以下のX線の分光には不適で
ある。
In addition, XII wavelength power h 1 < j J /, 4 @
When V01 condition 1 is satisfied, that is, photoelectrons are extremely attenuated in the wavelength range of SAD or more. X of frequency ν! Oxygen subjected to illumination also emits photoelectrons of IC#l-711 3 eV due to the Auger effect, so h*>71! It is unsuitable for spectroscopy of X-rays with a wavelength below tttl corresponding to the frequency.

したがって酸素吸着層を用いる場合の測定可能なx11
波長は17〜JJ!である。
Therefore, measurable x11 when using an oxygen adsorption layer
The wavelength is 17~JJ! It is.

重た、第3図は本発明の別の実施例を示す図である。こ
の図において第1WJと同一の構成要素には同一符号を
付しである。この図において酸素ガス9はノズルlOを
通ってxsm射1111内に導かれる。室11内に導か
れた酸素ガスには室11のXaI照射孔1mを通して分
光すべきX1m1が照射される。室11内で得られる光
電子は第1図の場合と内機に運動エネルギー弁別器6に
導かれる。
FIG. 3 is a diagram showing another embodiment of the present invention. In this figure, the same components as those of the first WJ are given the same reference numerals. In this figure, oxygen gas 9 is directed into xsm radiation 1111 through nozzle lO. The oxygen gas led into the chamber 11 is irradiated with X1m1 to be separated through the XaI irradiation hole 1m of the chamber 11. Photoelectrons obtained in the chamber 11 are guided to the kinetic energy discriminator 6 in the case of FIG.

かくしてこの運動エネルギー弁別器6に場かに第1図の
場合と同様の測定を行うことによりX1sの分光光度を
測定することができる。なお、図において18.14は
各々酸素ガスによるX線の吸収、光−子の散乱を防ぐた
めxma射1i 11 %真空容器γ内を排気する排気
口である。
Thus, by performing measurements similar to those shown in FIG. 1 on this kinetic energy discriminator 6, the spectrophotometric intensity of X1s can be measured. In the figure, reference numerals 18 and 14 are exhaust ports for evacuating the inside of the vacuum chamber γ for 1i 11% x-ray radiation in order to prevent absorption of X-rays and scattering of photons by oxygen gas.

以上説明したように、本発明は光電子の運動エネルギー
および量を測定することによりX線の分光を行う。この
本発明によれば、パルス放射のX線、連続放射のXII
を聞わずに軟X線の分光光度の測定を行うことが可能で
あり、かつ使用する装置を小形化できる利点がある。
As explained above, the present invention performs X-ray spectroscopy by measuring the kinetic energy and quantity of photoelectrons. According to the present invention, X-rays of pulsed radiation, XII of continuous radiation
This method has the advantage that it is possible to measure the spectrophotometry of soft X-rays without hearing the noise, and that the equipment used can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1WJは本発明の一実施例を示す開明図、第2図は同
実施例において測定される光電子の強度と運動エネルギ
ーとの関係を示す図、第3図は本発明の別の実施例を示
す説明図である。 l・・・・・・Xls、 s・・・・・・金属基板、8
・・・・・・冷却器、会・・・・・・酸素の吸着層、器
・・・・・・光電子、6・・・・・・運動エネルギー弁
別器、7・・・中真空容器、9・・・・・・酸素ガス、
lO・・・・・・ノズル、ll・・・・−xmm射室1
Iml・・・・・・X1s照射孔。 出願人 日本電信電話公社 第1図 f 第2図 運◆bエネルキ゛− 第3図 45
1st WJ is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the intensity and kinetic energy of photoelectrons measured in the same embodiment, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. l...Xls, s...Metal substrate, 8
...Cooler, unit...Oxygen adsorption layer, vessel...Photoelectron, 6...Kinetic energy discriminator, 7...Medium vacuum container, 9...Oxygen gas,
lO...Nozzle, ll...-xmm firing chamber 1
Iml...X1s irradiation hole. Applicant: Nippon Telegraph and Telephone Public Corporation Figure 1 f Figure 2 Lun◆b Energy Figure 3 45

Claims (1)

【特許請求の範囲】[Claims] 酸素に分光すべきxIIを照射し、放出する光電子の連
動エネルギーおよび量を測定することにより波長域17
〜23xのIIkX線の波長および強度を測定すること
を特徴上するX1m分光法。
By irradiating oxygen with xII to be spectrally dispersed and measuring the interlocking energy and amount of emitted photoelectrons, wavelength range 17
X1m spectroscopy characterized by measuring the wavelength and intensity of IIk X-rays at ~23x.
JP56201386A 1981-12-14 1981-12-14 X ray spectroscopy Pending JPS58102181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201386A JPS58102181A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201386A JPS58102181A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Publications (1)

Publication Number Publication Date
JPS58102181A true JPS58102181A (en) 1983-06-17

Family

ID=16440218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201386A Pending JPS58102181A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Country Status (1)

Country Link
JP (1) JPS58102181A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Similar Documents

Publication Publication Date Title
CN101228609B (en) Determining layer thickness using photoelectron spectrum
Goldsmith et al. HI narrow self-absorption in dark clouds: correlations with molecular gas and implications for cloud evolution and star formation
Bianconi Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES
US7436926B2 (en) Fluorescent X-ray analysis apparatus
Iida et al. Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays
JPS5512500A (en) Partial pressure meter of oxygen
JPS58102181A (en) X ray spectroscopy
Wright Fluorescence excitation spectra and quantum efficiencies of organic crystals
JP6343785B2 (en) Neutron scintillator
Guascito et al. The effect of XPS background removing method on the appraisal of Ti and Fe: The case of phlogopites and brookite
US4435828A (en) Fluorescence laser EXAFS
JP2982262B2 (en) Inverse photoelectron spectrometer
JPS58102179A (en) X ray spectroscopy
Petrov et al. Photodesorption of rubidium atoms from a sapphire surface
Aiginger et al. Principles and development of total reflection X-ray fluorescence analysis
JP2638914B2 (en) X-ray intensity measurement method for exposure
JPS58105076A (en) X ray spectroscopy
JPS62226048A (en) Spectrochemical analysis of crystal solid
Husk et al. Observation of second‐order kinetic damage in sodium salicylate due to soft x rays
Xu et al. Experimental verification of Cerenkov line radiation
USH922H (en) Method for analyzing materials using x-ray fluorescence
JP3946643B2 (en) X-ray analysis method for light particle device
JP2019039728A (en) Inverse photoemission spectrometry device and inverse photoemission spectrometry board, and inverse photoemission spectrometry
Zachmann FT-IR spectroscopy of solid surfaces
JPH0587633A (en) Infrared amount measuring method and infrared amount meter