JPH1187865A - Printed circuit board and its manufacture - Google Patents
Printed circuit board and its manufactureInfo
- Publication number
- JPH1187865A JPH1187865A JP26267097A JP26267097A JPH1187865A JP H1187865 A JPH1187865 A JP H1187865A JP 26267097 A JP26267097 A JP 26267097A JP 26267097 A JP26267097 A JP 26267097A JP H1187865 A JPH1187865 A JP H1187865A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- resin
- thin film
- wiring
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/108—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/425—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
- H05K3/426—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in substrates without metal
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として積み上げ
方式やラミネート方式で製造されるプリント配線板とそ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board manufactured mainly by a stacking method or a laminating method and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、プリント配線板は電子機器の進展
に伴い、配線の高密度化が行われている。従来のプリン
ト配線板の多くは、ガラス布に耐熱性樹脂を含浸した絶
縁基板(コア基板)に銅箔を重ねて一体化した銅張り積
層板を使用し、貫通穴をあけた後、貫通穴の内壁面と銅
箔表面全体に無電解めっきを行って、必要ならばさらに
電解めっきを行って、配線層として必要な厚さとした
後、不要な部分をエッチング除去して、プリント配線板
を製造している。2. Description of the Related Art In recent years, the wiring density of printed wiring boards has been increased with the development of electronic devices. Many conventional printed wiring boards use copper-clad laminates that are made by integrating copper foil on an insulating substrate (core substrate) in which glass cloth is impregnated with a heat-resistant resin. Electroless plating is applied to the inner wall surface and the entire copper foil surface, and if necessary, further electrolytic plating is performed to obtain the required thickness for the wiring layer, and unnecessary parts are etched away to manufacture printed wiring boards. doing.
【0003】[0003]
【発明が解決しようとする課題】ところで、このような
絶縁基板の材料は、ガラス布を使用しているため、表面
にガラス布の布目によるわずかな凹凸が存在する。この
凹凸はその上に形成される配線層の幅や間隔が100μ
mまでならば、あまり加工精度上問題なかったが、今日
要求されているように、配線層の幅、間隔ともに60μ
m以下のような配線層を形成する場合は、この凹凸によ
ってエッチングレジストの形成が精度良く行われなくな
ってきている。またエッチングレジストから露出した銅
は、エッチングの進行とともに除去されていくが、この
凹凸があると、エッチングが絶縁基板の厚さ方向のみな
らず、配線層の幅を減少させる方向にも進行してしま
い、加工精度の低下を引き起こしてしまう。さらに、銅
箔をエッチングして得られるプリント配線板の第1層目
の配線層の厚みは、銅箔部分とその上のめっき層の厚み
と合わせて、おおよそ28〜30μmを有するため、配
線幅100μm以下の配線層を銅箔のエッチングで精度
良く形成するのは、容易なことではない。However, since a glass cloth is used as a material for such an insulating substrate, there are slight irregularities due to the texture of the glass cloth on the surface. This unevenness has a width and a spacing of 100 μm of the wiring layer formed thereon.
Up to m, there was not much problem in processing accuracy, but as required today, both the width and the interval of the wiring layer are 60 μm.
In the case where a wiring layer having a thickness of m or less is formed, the formation of an etching resist cannot be performed accurately due to the unevenness. Also, the copper exposed from the etching resist is removed as the etching proceeds, but if there is this unevenness, the etching proceeds not only in the thickness direction of the insulating substrate but also in the direction of reducing the width of the wiring layer. As a result, the processing accuracy is reduced. Further, the thickness of the first wiring layer of the printed wiring board obtained by etching the copper foil has a thickness of approximately 28 to 30 μm in accordance with the thickness of the copper foil portion and the thickness of the plating layer thereon. It is not easy to accurately form a wiring layer of 100 μm or less by etching a copper foil.
【0004】従来の銅箔では実現困難であったエッチン
グによる配線幅100μm以下の微細配線層の形成も、
微小・無配向の結晶構造をもった銅箔を用いて可能にな
った例もあるが(藤井:ファインライン用銅箔、電子材
料、Vol.34、No.10、p.31(1995))、こういった銅箔は
機械的な投錨効果が得にくいため、これを用いた銅配線
層との密着強度が稼ぎにくいという信頼性上の問題があ
った。The formation of a fine wiring layer having a wiring width of 100 μm or less by etching, which was difficult to realize with a conventional copper foil,
In some cases, this has become possible using copper foil with a microscopic, non-oriented crystal structure (Fujii: Copper foil for fine lines, electronic materials, Vol. 34, No. 10, p. 31 (1995)) However, since such a copper foil is difficult to obtain a mechanical anchoring effect, there is a problem in reliability that it is difficult to obtain an adhesion strength with a copper wiring layer using the copper foil.
【0005】また、銅箔をエッチングして配線層を形成
する工法は、その銅箔とめっきを足した配線層の厚みが
30μ前後と厚いため、絶縁層を積み上げるにつれて基
板表面に凹凸が生ずるという問題もある。こういった凹
凸が基板表面にあると、チップの実装等の面で不利であ
ったり、また、めっきレジストのドライフィルムの密着
追随性が悪くなるので、めっきがだれる等の問題もあ
る。In the method of forming a wiring layer by etching a copper foil, the thickness of the wiring layer obtained by adding the copper foil and plating is as large as about 30 μm, so that irregularities occur on the substrate surface as the insulating layer is stacked. There are also problems. If such irregularities are present on the substrate surface, it is disadvantageous in terms of chip mounting and the like, and the adherence of the plating resist to the dry film is deteriorated, so that there is a problem that the plating is dropped.
【0006】この凹凸を回避する方法としては、エッチ
ングで形成した配線層の間を絶縁樹脂で埋めて段差補正
するという方法が特開昭59―74608号公報や特許
第1912414号公報に開示されているが、樹脂をス
クリーン印刷等で形成する際に生じる印刷樹脂の配線層
上へのダレやにじみの問題や、これを解決するために研
磨などの工程を追加する、など工程上の問題は多い。こ
ういった手間を無くすために、銅箔を用いずに絶縁基板
上に直接無電解めっき等をかけて配線層形成する方法も
あるが、絶縁基板の材質がBT(ビスマレイミド−トリ
アジン)樹脂のように粗化しにくい、つまり、めっき膜
が機械的な投錨効果を得にくい材質であるときは、配線
層とその下の絶縁基板との密着強度が充分に得られない
という問題があった。As a method of avoiding the unevenness, a method of filling a gap between wiring layers formed by etching with an insulating resin and correcting a step is disclosed in Japanese Patent Application Laid-Open No. 59-74608 and Japanese Patent No. 192414. However, there are many process problems, such as the problem of sagging or bleeding of the printed resin on the wiring layer that occurs when forming the resin by screen printing, and adding a process such as polishing to solve this . In order to eliminate such troubles, there is a method of forming a wiring layer by directly applying electroless plating or the like on an insulating substrate without using a copper foil. However, the material of the insulating substrate is BT (bismaleimide-triazine) resin. As described above, when the plating film is made of a material that is difficult to obtain a mechanical anchoring effect, there is a problem that the adhesion strength between the wiring layer and the insulating substrate thereunder cannot be sufficiently obtained.
【0007】これらの従来技術によれば、通常の銅張り
基板をエッチングする工法では100μm以下の微細配
線加工が難しくなり、また、エッチングで微細加工はし
やすいが機械的な投錨効果が得にくい、微小・無配向の
結晶構造をもった銅箔を張った基板を用いる工法では配
線層の密着信頼性に劣る、更に、銅箔を用いる工法では
絶縁層の積み上げに伴う基板表面の凹凸を容易には回避
しにくいという問題があった。また、銅箔を用いずに絶
縁基板上に直接無電解めっき等をかけて回路形成する方
法もあるが、絶縁基板の材質がBT(ビスマレイミド−
トリアジン)樹脂のように粗化しにくい、つまり、めっ
き膜が機械的な投錨効果を得にくい材質であるときは、
配線層の密着強度が出ないという問題があった。また、
その他の材質の絶縁基板表面を直接粗化するために酸化
剤で処理しても、粗化を前提にして成分を調整した絶縁
樹脂材料のように容易に効果的な投錨効果の得られる粗
化面は形成し難いという問題があった。According to these conventional techniques, it is difficult to process fine wiring of 100 μm or less by a conventional method of etching a copper-clad substrate, and it is easy to perform fine processing by etching, but it is difficult to obtain a mechanical anchoring effect. The method using a copper-foiled substrate with a fine and non-oriented crystal structure is inferior in the reliability of the adhesion of the wiring layer. In addition, the method using copper foil easily removes irregularities on the substrate surface due to the stacking of insulating layers. Is difficult to avoid. There is also a method of forming a circuit by directly applying electroless plating or the like on an insulating substrate without using a copper foil, but the material of the insulating substrate is BT (bismaleimide-based).
Triazine) When it is difficult to roughen like a resin, that is, when the plating film is a material that is difficult to obtain a mechanical anchoring effect,
There is a problem that the adhesion strength of the wiring layer is not obtained. Also,
Even if it is treated with an oxidizing agent to directly roughen the surface of an insulating substrate of another material, roughening that can provide an effective anchoring effect as easily as an insulating resin material whose components are adjusted on the premise of roughening There was a problem that the surface was difficult to form.
【0008】本発明では、これらの様々な工法が抱える
複数の問題点を一挙に解決したプリント配線板及びその
製造方法を提供することを目的とする。[0008] It is an object of the present invention to provide a printed wiring board and a method of manufacturing the printed wiring board which can solve a plurality of problems of these various methods at once.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明に係るプリント配線板の構成は、粗
化が困難な耐熱性樹脂からなる絶縁基板と、上記絶縁基
板上に形成され、上記耐熱性樹脂より粗化が容易な樹脂
からなる易粗化性絶縁樹脂層と、上記易粗化性絶縁樹脂
層上に形成された配線層と、を有することを特徴とす
る。To achieve the above object, a printed wiring board according to the first aspect of the present invention comprises an insulating substrate made of a heat-resistant resin, which is difficult to roughen, and an insulating substrate formed on the insulating substrate. Further, it is characterized by having a roughening insulating resin layer made of a resin that is easier to roughen than the heat-resistant resin, and a wiring layer formed on the roughening insulating resin layer.
【0010】このような構造によれば、粗化が困難な耐
熱性樹脂の上面に粗化が容易な易粗化性絶縁樹脂層が形
成されているので、その上に形成される配線層と易粗化
性絶縁樹脂層との間で充分な密着強度が得られる。従っ
て、粗化が困難な耐熱性樹脂を用いても、その上に従来
公知のセミアディティブ法、フルアディティブ法、サブ
トラクティブ法等により配線層を形成することができる
ので、例えば配線層の幅や間隔が100μm以下、特に
60μm以下といった、より微細かつ正確な配線層を形
成できる。[0010] According to such a structure, since the easily roughened insulating resin layer is formed on the upper surface of the heat-resistant resin which is hardly roughened, the wiring layer formed on the easily formed roughened insulating resin layer has Sufficient adhesion strength can be obtained with the easily roughening insulating resin layer. Therefore, even if a heat-resistant resin that is difficult to roughen is used, a wiring layer can be formed thereon by a conventionally known semi-additive method, a full-additive method, a subtractive method, or the like. A finer and more accurate wiring layer having an interval of 100 μm or less, particularly 60 μm or less can be formed.
【0011】次いで、請求項2の発明に係るプリント配
線板の構成は、粗化が困難な耐熱性樹脂からなる絶縁基
板と、該絶縁基板に形成された貫通穴と、上記絶縁基板
の表面および上記貫通穴の内壁面とに形成され、上記耐
熱性樹脂より粗化が容易な樹脂からなる易粗化性絶縁樹
脂層と、上記易粗化性絶縁樹脂層上に形成された配線層
と、を有することを特徴とする。[0011] Next, the configuration of the printed wiring board according to the second aspect of the present invention comprises an insulating substrate made of a heat-resistant resin, which is difficult to roughen, a through hole formed in the insulating substrate, a surface of the insulating substrate, Formed on the inner wall surface of the through hole, an easily roughening insulating resin layer made of a resin that is easier to roughen than the heat resistant resin, and a wiring layer formed on the easily roughening insulating resin layer, It is characterized by having.
【0012】このような構成によれば、粗化が困難な耐
熱性樹脂からなる絶縁基板の表面および該絶縁基板に形
成された貫通穴の内壁面とに易粗化性絶縁樹脂層を設け
ているので、絶縁基板上と貫通穴内において、配線層と
易粗化性樹脂層との密着性が良好なプリント配線板が得
られる。したがって、粗化が困難な耐熱性樹脂からなる
絶縁基板を用いても、その上面や貫通穴内に従来公知の
セミアディティブ法、フルアディティブ法、サブトラク
ティブ法等により配線層を形成することができるので、
より微細かつ正確な配線層が形成できる。According to such a configuration, the easily roughening insulating resin layer is provided on the surface of the insulating substrate made of a heat-resistant resin which is difficult to roughen, and on the inner wall surface of the through hole formed in the insulating substrate. Therefore, a printed wiring board having good adhesion between the wiring layer and the easily roughening resin layer on the insulating substrate and in the through hole can be obtained. Therefore, even if an insulating substrate made of a heat-resistant resin that is difficult to roughen is used, a wiring layer can be formed on the upper surface or in the through hole by a conventionally known semi-additive method, full-additive method, subtractive method, or the like. ,
A finer and more accurate wiring layer can be formed.
【0013】ここでいう耐熱性樹脂からなる絶縁基板
(コア基板)としては、公知の材質、構造を有するもの
が制限なく使用される。代表的なものを挙げると、ガラ
ス基材―BT(ビスマレイミド−トリアジン)レジン樹
脂基板、ガラス基材―エポキシ樹脂基板、ガラス基材―
ポリイミド樹脂基板、紙基材―フェノール樹脂基板、紙
基材―エポキシ樹脂基板、紙基材―テフロン基板、コン
ポジット樹脂基板や、鉄、アルミニウム、銅などを金属
芯にして、ポリイミド、エポキシ、テフロン等の絶縁層
を形成した金属芯基板、ポリイミド樹脂、ポリエステル
樹脂等のフレキシブル基板、あるいはアルミナ、窒化ア
ルミニウム、ガラスセラミック等のセラミック基板等が
挙げられるが、これらの材質に限定されるものではな
い。もちろん、これらの基板は単層基板に限らず、多層
基板であってもよい。該耐熱性絶縁基板に貫通穴が必要
ならば、ドリル、レーザ、プラズマ等の既存の穴あけ技
術が利用できる。As the insulating substrate (core substrate) made of a heat-resistant resin, a substrate having a known material and structure can be used without limitation. Typical examples include a glass substrate-a BT (bismaleimide-triazine) resin resin substrate, a glass substrate-an epoxy resin substrate, a glass substrate-
Polyimide resin substrate, paper substrate-phenol resin substrate, paper substrate-epoxy resin substrate, paper substrate-Teflon substrate, composite resin substrate, polyimide, epoxy, Teflon, etc. with iron, aluminum, copper, etc. as the metal core A flexible substrate made of a polyimide resin, a polyester resin, or the like, or a ceramic substrate made of alumina, aluminum nitride, glass ceramic, or the like. However, the material is not limited to these. Of course, these substrates are not limited to single-layer substrates, but may be multilayer substrates. If a through-hole is required in the heat-resistant insulating substrate, existing drilling techniques such as drilling, laser, and plasma can be used.
【0014】しかし、上記耐熱性樹脂からなる絶縁基板
の材料としては、絶縁性が高く、マイグレーションが生
じにくいという点から、ガラス基材―BT(ビスマレイ
ミド−トリアジン)レジン樹脂基板が最も好ましい。従
って、本発明は、上記耐熱性樹脂からなる絶縁基板が、
ガラス基材―BT(ビスマレイミド−トリアジン)レジ
ン樹脂基板であることを特徴とする場合を含む。However, as a material of the insulating substrate made of the above-mentioned heat-resistant resin, a glass substrate-BT (bismaleimide-triazine) resin resin substrate is most preferable because it has high insulation properties and migration hardly occurs. Therefore, the present invention provides an insulating substrate comprising the heat-resistant resin,
A glass substrate-BT (bismaleimide-triazine) resin resin substrate is included.
【0015】上記耐熱性絶縁樹脂より粗化されやすい易
粗化性樹脂層の材質についても同様に、特に限定される
ものではなく、感光性樹脂、熱硬化性樹脂、熱可塑性樹
脂あるいは、これらの混合物や共重合体等であっても良
い。例えば、感光性樹脂としては、エポキシ樹脂やエポ
キシ化合物をカチオン重合型光開始剤で硬化させる組成
物や、アクリレートエポキシ樹脂やアクリレート化合物
をラジカル重合型光開始剤で硬化させる組成物や、上記
組成物に熱硬化剤と、フェノール樹脂、エポキシ樹脂、
ポリエステル樹脂、メラミン樹脂等の熱硬化性樹脂や、
イソプレンゴム、天然ゴム等のゴム類を添加した組成物
を用いることができる。熱可塑性樹脂としては、テフロ
ン、ポリエーテルサルホン、ポリフェニレンオキシド、
シクロヘキサジエン系のポリマー、あるいはシンジオタ
クチックポリスチレンの様なシンジオタクチック型の置
換基配列を有する、例えばメタロセン触媒を用いたポリ
マー等が挙げられる。Similarly, the material of the easily roughening resin layer, which is more easily roughened than the heat-resistant insulating resin, is not particularly limited, and photosensitive resin, thermosetting resin, thermoplastic resin, or any of these resins can be used. It may be a mixture or a copolymer. For example, as the photosensitive resin, a composition for curing an epoxy resin or an epoxy compound with a cationic polymerization type photoinitiator, a composition for curing an acrylate epoxy resin or an acrylate compound with a radical polymerization type photoinitiator, or the above composition Heat curing agent, phenolic resin, epoxy resin,
Thermosetting resins such as polyester resin and melamine resin,
A composition to which rubbers such as isoprene rubber and natural rubber are added can be used. As the thermoplastic resin, Teflon, polyethersulfone, polyphenylene oxide,
Examples thereof include cyclohexadiene-based polymers and polymers having a syndiotactic-type substituent arrangement such as syndiotactic polystyrene, for example, a polymer using a metallocene catalyst.
【0016】上記粗化が困難な耐熱性絶縁樹脂からなる
絶縁基板上に形成される易粗化性樹脂には、酸化剤によ
るウエットプロセスや、プラズマ法のようなドライプロ
セスにより除去されて、機械的アンカーとなる窪みを生
ずるための有機フィラーまたは無機フィラーの、少なく
とも一方を含んでいてることがその役割上好ましいが、
仮にこのようなフィラー類を含まなくても、何ら本発明
の実施を妨げるものではない。要するに、耐熱性絶縁樹
脂と、耐熱性絶縁樹脂と比べて相対的に粗化が容易な樹
脂との複数の樹脂(層)からなる絶縁基板(コア基板)
が問題になるのである。The easily roughening resin formed on the insulating substrate made of a heat-resistant insulating resin which is difficult to roughen is removed by a wet process using an oxidizing agent or a dry process such as a plasma method. Organic filler or inorganic filler for producing a dent serving as a mechanical anchor, it is preferable in that role to include at least one,
Even if such fillers are not included, the practice of the present invention is not hindered at all. In short, an insulating substrate (core substrate) made of a plurality of resins (layers) of a heat-resistant insulating resin and a resin that is relatively easily roughened compared to the heat-resistant insulating resin.
Is a problem.
【0017】本発明の請求項1または2に記載の絶縁基
板(コア基板)上に積み上げ(ビルドアップ)方式また
はラミネート方式などで形成されていく上層の絶縁樹脂
層の材質も特に限定するものではないが、感光性樹脂、
熱硬化性樹脂、熱可塑性樹脂あるいは、これらの混合物
や共重合体等であっても良い。例えば、感光性樹脂とし
ては、エポキシ樹脂やエポキシ化合物をカチオン重合型
光開始剤で硬化させる組成物や、アクリレートエポキシ
樹脂やアクリレート化合物をラジカル重合型光開始剤で
硬化させる組成物や、上記組成物に熱硬化剤と、フェノ
ール樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン
樹脂等の熱硬化性樹脂や、イソプレンゴム、天然ゴム等
のゴム類を添加した組成物を用いることができる。熱可
塑性樹脂としては、テフロン、ポリエーテルサルホン、
ポリフェニレンオキシド、シクロヘキサジエン系のポリ
マー、あるいはシンジオタクチックポリスチレンの様な
シンジオタクチック型の置換基配列を有する、例えばメ
タロセン触媒を用いたポリマー等が挙げられる。The material of the upper insulating resin layer formed on the insulating substrate (core substrate) according to claim 1 of the present invention by a build-up method or a laminating method is not particularly limited. No, but photosensitive resin,
It may be a thermosetting resin, a thermoplastic resin, or a mixture or copolymer thereof. For example, as the photosensitive resin, a composition for curing an epoxy resin or an epoxy compound with a cationic polymerization type photoinitiator, a composition for curing an acrylate epoxy resin or an acrylate compound with a radical polymerization type photoinitiator, or the above composition A composition in which a thermosetting agent, a thermosetting resin such as a phenol resin, an epoxy resin, a polyester resin, and a melamine resin, and rubbers such as isoprene rubber and natural rubber can be used. As the thermoplastic resin, Teflon, polyether sulfone,
Examples thereof include polyphenylene oxide, cyclohexadiene-based polymers, and polymers having a syndiotactic-type substituent sequence such as syndiotactic polystyrene, for example, a polymer using a metallocene catalyst.
【0018】これらの上層の絶縁樹脂層には、熱膨張特
性や、酸化剤によるウエットプロセスやプラズマ法のよ
うなドライプロセスにより除去されて、機械的アンカー
となる窪みを生ずるための有機フィラーまたは無機フィ
ラーの、少なくとも一方を含んでいても、何ら本発明の
実施を妨げるものではない。なお、絶縁基板上の易粗化
性樹脂層と、絶縁基板(コア基板)の上層に形成される
絶縁樹脂と間での粗化の難易(粗化性)の関係について
は制限を設けてはいないが、それは個別に耐絶縁性等の
特性から比較決定する。The upper insulating resin layer has an organic filler or an inorganic filler for removing thermal expansion characteristics and a dent serving as a mechanical anchor by being removed by a wet process using an oxidizing agent or a dry process such as a plasma process. The inclusion of at least one of the fillers does not hinder the practice of the present invention. It should be noted that there is no restriction on the relationship of the difficulty of roughening (roughening) between the easily roughening resin layer on the insulating substrate and the insulating resin formed on the insulating substrate (core substrate). However, it is determined individually based on characteristics such as insulation resistance.
【0019】本発明は、請求項1または2に記載の絶縁
基板(コア基板)上に積み上げ(ビルドアップ)方式ま
たはラミネート方式などで形成されていく上層の絶縁樹
脂層及び該絶縁樹脂上に形成される配線層の構成とし
て、以下のものを提案する。すなわち、本発明は、下部
配線層の間および上面に亘って形成された粗化が困難な
耐熱性樹脂からなる第1樹脂層と、上記第1樹脂層の上
に形成され、上記第1樹脂層を形成する耐熱性樹脂より
も粗化が容易な樹脂からなる第2樹脂層と、上記第2樹
脂層上に形成される上部配線層と、上記第1樹脂層およ
び上記第2樹脂層を貫通し、上記上部配線層と下部配線
層とを電気的に接続するビアと、を有することを特徴と
する請求項1または2に記載のプリント配線板を含む。According to the present invention, an upper insulating resin layer formed on the insulating substrate (core substrate) according to claim 1 by a build-up method or a laminating method, and formed on the insulating resin. The following is proposed as a configuration of a wiring layer to be performed. That is, the present invention provides a first resin layer made of a heat-resistant resin, which is difficult to roughen, formed between lower wiring layers and over the upper surface, and a first resin layer formed on the first resin layer, A second resin layer made of a resin that is easier to roughen than a heat-resistant resin forming the layer, an upper wiring layer formed on the second resin layer, the first resin layer and the second resin layer, The printed wiring board according to claim 1, further comprising a via that penetrates and electrically connects the upper wiring layer and the lower wiring layer.
【0020】このような構成のプリント配線板を用いれ
ば、粗化が困難な耐熱性樹脂からなる第1樹脂層を下部
配線層の間および上面に亘って形成しても、粗化が容易
な樹脂からなる第2樹脂層によって第1樹脂層が被覆さ
れているので、その上への配線(上部配線層)の形成が
容易である。By using the printed wiring board having such a structure, even if the first resin layer made of a heat-resistant resin, which is difficult to roughen, is formed between the lower wiring layers and over the upper surface, the roughening is easy. Since the first resin layer is covered with the second resin layer made of resin, it is easy to form wiring (upper wiring layer) thereon.
【0021】ここでは、第1樹脂層は下部配線層の間お
よび上面に亘って形成したが、下部配線層間のみに形成
しても良い。すなわち、本発明は、下部配線層の間に形
成された粗化が困難な耐熱性樹脂からなる第1樹脂層
と、上記第1樹脂層および下部配線層の上に形成され、
上記第1樹脂層を形成する耐熱性樹脂よりも粗化が容易
な樹脂からなる第2樹脂層と、上記第2樹脂層上に形成
される上部配線層と、上記第2樹脂層を貫通し、上記上
部配線層と下部配線層とを電気的に接続するビアとを有
することを特徴とする請求項1または2に記載のプリン
ト配線板を含む。Here, the first resin layer is formed between the lower wiring layers and over the upper surface, but may be formed only between the lower wiring layers. That is, the present invention is formed on a first resin layer made of a heat-resistant resin which is difficult to roughen and formed between lower wiring layers, and on the first resin layer and the lower wiring layer,
A second resin layer made of a resin that is more easily roughened than a heat-resistant resin forming the first resin layer, an upper wiring layer formed on the second resin layer, and a second resin layer penetrating the second resin layer; 3. The printed wiring board according to claim 1, further comprising a via for electrically connecting the upper wiring layer and the lower wiring layer.
【0022】このような構成によれば、粗化が困難な耐
熱性樹脂を用いて第1樹脂層を形成しても、上部配線層
は粗化が容易な第2樹脂層上に形成されるので、上部配
線層と第2樹脂絶縁層との密着性が良好であり、微細な
回路配線が形成可能となる。なお、上記第2樹脂層を構
成する樹脂は、上記絶縁基板(コア基板)上の易粗化性
絶縁樹脂層と同じものであっても良いが、異なる樹脂を
用いても良い。According to such a configuration, even if the first resin layer is formed using a heat-resistant resin that is difficult to roughen, the upper wiring layer is formed on the second resin layer that is easily roughened. Therefore, the adhesion between the upper wiring layer and the second resin insulating layer is good, and fine circuit wiring can be formed. The resin constituting the second resin layer may be the same as the easily roughened insulating resin layer on the insulating substrate (core substrate), or a different resin may be used.
【0023】また、本発明のプリント配線板の製造方法
は、耐熱性樹脂からなる絶縁基板上に該耐熱性樹脂より
粗化が容易な樹脂で易粗化性絶縁樹脂層を形成する工程
と、上記易粗化性絶縁樹脂層を形成した絶縁基板に貫通
穴を形成する工程と、上記貫通穴を形成した絶縁基板の
表面を粗化する工程と、上記表面粗化工程の後、絶縁基
板上に薄膜層を形成する工程と、上記薄膜形成した絶縁
基板上にめっきレジスト層を形成する工程と、上記めっ
きレジスト層を露光・現像し、配線パターンの形成が予
定される部位のレジストを除去し、上記薄膜層の一部を
露出させる工程と、上記露出した薄膜層上に電解めっき
層を形成する工程と、上記めっきレジスト層を剥離する
工程と、上記薄膜層のうち上記電解めっき層の下部の薄
膜層以外を除去し、配線層を形成する工程と、を含むこ
とを特徴とする。このような製造方法によれば、銅箔を
エッチングすることなく、配線層が形成できるので、よ
り微細で厚みの薄い配線の形成が可能である。The method of manufacturing a printed wiring board according to the present invention further comprises a step of forming an easily roughened insulating resin layer on a heat-resistant resin-made insulating substrate with a resin that is more easily roughened than the heat-resistant resin. Forming a through hole in the insulating substrate on which the easily roughening insulating resin layer is formed, roughening the surface of the insulating substrate on which the through hole is formed, and, after the surface roughening step, on the insulating substrate. Forming a thin film layer on the insulating substrate on which the thin film is formed, forming a plating resist layer on the insulating substrate, exposing and developing the plating resist layer, and removing a resist at a portion where a wiring pattern is to be formed. Exposing a part of the thin film layer; forming an electrolytic plating layer on the exposed thin film layer; removing the plating resist layer; and lowering the electrolytic plating layer in the thin film layer And remove all but the thin film layer Characterized in that it comprises a step of forming a wiring layer. According to such a manufacturing method, since a wiring layer can be formed without etching a copper foil, a finer and thinner wiring can be formed.
【0024】また、本発明のプリント配線板の製造方法
は、耐熱性樹脂からなる絶縁基板上に貫通穴を形成する
工程と、上記絶縁基板の表面および上記貫通穴の内壁面
に、上記耐熱性樹脂より粗化されやすい樹脂で易粗化性
絶縁樹脂層を形成する工程と、上記絶縁基板の表面を粗
化する工程と、上記表面粗化後の絶縁基板上に薄膜層を
形成する工程と、上記薄膜形成した絶縁基板上にめっき
レジスト層を形成する工程と、上記めっきレジスト層を
露光・現像し、配線パターンの形成が予定される部位の
レジストを除去し、薄膜層を露出させる工程と、上記露
出した薄膜層上に電解めっき層を形成する工程と、上記
めっきレジスト層を剥離する工程と、上記薄膜層のうち
上記電解めっき層の下部の薄膜層以外を除去し、配線層
を形成する工程と、を含むことを特徴とする。このよう
な製造方法によれば、絶縁基板の表面および貫通穴の内
壁面の両方に易粗化性樹脂層が形成されているので、さ
らにその上に形成される配線層との密着性に優れてい
る。Further, in the method for manufacturing a printed wiring board according to the present invention, a step of forming a through hole on an insulating substrate made of a heat resistant resin, and the step of forming the through hole on the surface of the insulating substrate and the inner wall surface of the through hole. A step of forming an easily roughening insulating resin layer with a resin that is more likely to be roughened than a resin, a step of roughening the surface of the insulating substrate, and a step of forming a thin film layer on the insulating substrate after the surface roughening. Forming a plating resist layer on the insulating substrate on which the thin film is formed, exposing and developing the plating resist layer, removing a resist at a portion where a wiring pattern is to be formed, and exposing the thin film layer. Forming an electrolytic plating layer on the exposed thin film layer, removing the plating resist layer, and removing the thin film layers other than the thin film layer below the electrolytic plating layer to form a wiring layer Process and Characterized in that it comprises a. According to such a manufacturing method, since the easily roughening resin layer is formed on both the surface of the insulating substrate and the inner wall surface of the through hole, the adhesiveness with the wiring layer formed thereon is further excellent. ing.
【0025】耐熱性絶縁基板上に、該耐熱性樹脂より粗
化されやすい樹脂層を形成する方法としては、液状物を
用いるにあたっては、ロールコータ、カーテンコータ、
スクリーン印刷等の既存の技術を利用できる。貫通穴の
内壁における導体の密着性を上げる必要があるのなら、
メタルマスク等を用いた既存のスルーホール印刷技術よ
り、貫通穴の内壁面にも該易粗化性の樹脂層を形成でき
る。また、フィルム状物を用いるにあたっては、既存の
ラミネート技術を利用できる。形成される該易粗化性樹
脂層の厚みについては、5〜40μmの範囲が用いられ
る。該易粗化性樹脂層の厚みが5μm以下の場合、配線
導体の密着強度が低下し、40μmを上回ると、絶縁層
としての信頼性に問題がでる可能性がある。好ましくは
10〜30μm、より好ましくは15〜25μmの範囲
が用いられる。As a method for forming a resin layer which is more easily roughened than the heat-resistant resin on the heat-resistant insulating substrate, when using a liquid material, a roll coater, a curtain coater,
Existing technologies such as screen printing can be used. If you need to improve the adhesion of the conductor on the inner wall of the through hole,
The easily roughening resin layer can be formed also on the inner wall surface of the through-hole by the existing through-hole printing technique using a metal mask or the like. When using a film-like material, an existing laminating technique can be used. The thickness of the easily roughening resin layer to be formed is in the range of 5 to 40 μm. When the thickness of the easily roughening resin layer is 5 μm or less, the adhesion strength of the wiring conductor decreases, and when it exceeds 40 μm, there is a possibility that a problem may occur in the reliability as an insulating layer. Preferably, a range of 10 to 30 μm, more preferably, 15 to 25 μm is used.
【0026】耐熱性絶縁基板上に形成した、該耐熱性樹
脂と同等もしくは、より粗化されやすい樹脂層は、酸化
剤によるウェットプロセスや、プラズマ法のようなドラ
イプロセスにより、その表面を粗化される。該粗化面に
は、無電解めっき、スパッタ、あるいは銀、白金等の有
機金属化合物の分解等のあらゆる薄膜形成技術を用い
て、金属の薄膜層が形成できる。ここでいう薄膜とは、
いわゆるスパッタリング等で形成される薄膜のみなら
ず、無電解めっきや有機金属化合物の分解等で形成され
る、1μm以下の導体層も含むものとする。The resin layer formed on the heat-resistant insulating substrate, which is equal to or more easily roughened than the heat-resistant resin, has its surface roughened by a wet process using an oxidizing agent or a dry process such as a plasma process. Is done. A metal thin film layer can be formed on the roughened surface by using any thin film forming technique such as electroless plating, sputtering, or decomposition of an organic metal compound such as silver or platinum. The thin film here means
Not only a thin film formed by so-called sputtering or the like but also a conductor layer of 1 μm or less formed by electroless plating or decomposition of an organic metal compound is included.
【0027】すなわち、本発明は、上記薄膜層が無電解
めっき、スパッタ、または有機金属化合物の分解で形成
された薄膜からなることを特徴とする場合を含む。本発
明では、耐熱性樹脂を用いつつも、その表面が易粗化性
樹脂層で覆われているので、その表面を容易に粗化でき
る。従って、その表面に容易に無電解めっき、スパッ
タ、または有機金属化合物の分解により上記薄膜層を形
成することができる。That is, the present invention includes a case where the thin film layer is formed of a thin film formed by electroless plating, sputtering, or decomposition of an organometallic compound. In the present invention, since the surface is covered with the easily roughening resin layer while using the heat-resistant resin, the surface can be easily roughened. Therefore, the thin film layer can be easily formed on the surface by electroless plating, sputtering, or decomposition of an organometallic compound.
【0028】該薄膜層を形成した絶縁基板上には、続い
てめっきレジストが形成される。めっきレジストを形成
する方法としては、液状物を用いるにあたっては、ロー
ルコータ、カーテンコータ、スクリーン印刷等の既存の
技術を利用できる。また、フィルム状物を用いるにあた
っては、既存のラミネート技術を利用できる。Next, a plating resist is formed on the insulating substrate on which the thin film layer is formed. As a method of forming a plating resist, when using a liquid material, existing techniques such as a roll coater, a curtain coater, and screen printing can be used. When using a film-like material, an existing laminating technique can be used.
【0029】めっきレジストを露光・現像して配線用開
口パターンを形成して下層の薄膜層を露出させた後、電
解めっきにより電解銅メッキ層を形成する。その後、不
要な薄膜層をエッチング除去して配線層を形成する。こ
のように銅張り基板を使わずにフォトリソ技術を用いる
ことにより、絶縁基板の第1層目から100μm以下の
微細な配線層が容易に形成できる。After exposing and developing the plating resist to form a wiring opening pattern and exposing the underlying thin film layer, an electrolytic copper plating layer is formed by electrolytic plating. Thereafter, an unnecessary thin film layer is removed by etching to form a wiring layer. By using the photolithography technique without using the copper-clad substrate, a fine wiring layer of 100 μm or less can be easily formed from the first layer of the insulating substrate.
【0030】基板表面や貫通穴の内壁に形成される配線
層の材質は、導電性を有する公知の材質が制限なく使用
できる。例を挙げれば、銅、ニッケル、アルミニウム、
金、クロム等を選択することができる。このうち、銅が
最も好適に使用される。また、これらの表面には、銅め
っきや銅とニッケル、亜鉛、コバルト等からなる合金め
っきにより針状あるいは粒状めっきや、公知の技術によ
る黒化処理、過硫酸塩系エッチング液や硫酸―過酸化水
素系エッチング液等を用いたエッチング(ソフトエッチ
ング)を施しても良い。As the material of the wiring layer formed on the substrate surface or the inner wall of the through hole, a known conductive material can be used without any limitation. For example, copper, nickel, aluminum,
Gold, chrome, etc. can be selected. Of these, copper is most preferably used. In addition, these surfaces are subjected to acicular or granular plating by copper plating or an alloy plating of copper and nickel, zinc, cobalt, or the like, blackening treatment by a known technique, a persulfate etching solution or sulfuric acid-peroxide. Etching (soft etching) using a hydrogen-based etching solution or the like may be performed.
【0031】必要に応じて、微細な配線層が形成された
絶縁基板の上方には、ビルドアップ工法等により、絶縁
樹脂層と配線層とが交互に積層され、多層基板が形成さ
れる。必要に応じて、第2層目以降の配線層とこの配線
層間絶縁樹脂層との間にも該易粗化性樹脂層が形成され
ても、本発明の主旨から外れるものではない。If necessary, an insulating resin layer and a wiring layer are alternately laminated above the insulating substrate on which the fine wiring layer is formed by a build-up method or the like to form a multilayer substrate. If necessary, even if the easily roughening resin layer is formed between the second and subsequent wiring layers and the wiring interlayer insulating resin layer, it does not depart from the gist of the present invention.
【0032】本発明によれば、絶縁基板の第1層目か
ら、フォソリソ技術を用いて、配線幅100μm以下の
微細配線層を形成したプリント配線板が得られる。ま
た、該微細な配線層と絶縁基板との間に、易粗化性樹脂
層を設けたことにより、機械的投錨効果による密着信頼
性の高い微細配線層を有するプリント配線板が得られ
る。また、絶縁基板に銅箔を張ったもの(銅張り基板)
をエッチングして配線層を形成したものと比較して、本
発明では配線層の厚みが薄くできるため、多層化したと
きに表面に凹凸がでにくいプリント配線板が得られる。According to the present invention, a printed wiring board is obtained in which a fine wiring layer having a wiring width of 100 μm or less is formed from the first layer of the insulating substrate by using the foliolithography technique. Further, by providing the easily roughening resin layer between the fine wiring layer and the insulating substrate, a printed wiring board having a fine wiring layer with high adhesion reliability due to a mechanical anchoring effect can be obtained. Insulating board with copper foil (copper-clad board)
Since the thickness of the wiring layer can be reduced in the present invention as compared with the case where the wiring layer is formed by etching, a printed wiring board with less unevenness on the surface when multilayered is obtained.
【0033】[0033]
【発明の実施の形態】以下に、本発明の実施の形態を図
面とともに説明する。 (実施形態1)図2(b)は本発明の実施形態1に係る
プリント配線板100の断面図である。この配線基板1
00は、BT(ビスマレイミド−トリアジン)樹脂−ガ
ラス複合材からなる絶縁基板1の上下面に厚み25μm
の易粗化性のエポキシ絶縁樹脂からなる被覆層2が形成
されている。被覆層2および貫通穴3の内壁面には薄膜
層7および電解銅めっき層8からなる配線層9、9が形
成されている。この配線層9は薄膜層7と電解銅めっき
層8とを併せて、厚みが18μmに形成されている。プ
リント基板100の上下面に形成された配線層9、9は
貫通穴内の配線層(貫通穴内導体10)を介して互いに
導通している。Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 2B is a sectional view of a printed wiring board 100 according to Embodiment 1 of the present invention. This wiring board 1
00 has a thickness of 25 μm on the upper and lower surfaces of the insulating substrate 1 made of a BT (bismaleimide-triazine) resin-glass composite material.
A coating layer 2 made of an easily insulating epoxy insulating resin is formed. On the inner wall surfaces of the coating layer 2 and the through hole 3, wiring layers 9 and 9 composed of a thin film layer 7 and an electrolytic copper plating layer 8 are formed. The wiring layer 9 has a thickness of 18 μm including the thin film layer 7 and the electrolytic copper plating layer 8. The wiring layers 9, 9 formed on the upper and lower surfaces of the printed circuit board 100 are electrically connected to each other via the wiring layer (the conductor 10 in the through hole) in the through hole.
【0034】次に、このプリント基板100の製造方法
について、図1乃至図2を参照しつつ説明する。図1
(a)に示すように、銅張り層を有しないBT(ビスマ
レイミド−トリアジン)樹脂―ガラス複合材からなる絶
縁基板1の表面にロールコータを用いて易粗化性のエポ
キシ絶縁樹脂を厚み32μmで印刷した後、150℃で
2時間キュアして、易粗化性樹脂の被覆層2を形成す
る。次に、図1(b)に示すように、ドリルを用いて貫
通穴3を形成する。続いて、絶縁基板1上の被覆層2の
表面をその厚みが25μmになるように研磨して整面し
た後、貫通穴3の内壁面を洗浄する。Next, a method of manufacturing the printed circuit board 100 will be described with reference to FIGS. FIG.
As shown in (a), an epoxy insulating resin, which is easily roughened, is applied to a surface of a BT (bismaleimide-triazine) resin-glass composite material having no copper-clad layer by a roll coater to a thickness of 32 μm. And then cured at 150 ° C. for 2 hours to form the coating layer 2 of the easily roughening resin. Next, as shown in FIG. 1B, a through hole 3 is formed using a drill. Subsequently, the surface of the coating layer 2 on the insulating substrate 1 is polished so as to have a thickness of 25 μm, and the inner surface of the through hole 3 is cleaned.
【0035】続いて、被覆層2の表面を過マンガン酸カ
リウム溶液(45g/l)で粗化する。次に、Sn−P
dコロイド溶液(奥野製薬製;OPC−80)に浸漬し
てPd触媒核を吸着させる。ついで、図1(c)に示す
ように、無電解銅めっき(奥野製薬製;ビルドカッパ
ー)により易粗化性樹脂からなる被覆層2と貫通穴3を
含む絶縁基板1の表面全体に0.5〜1.0μmの薄膜
層4を形成する。Subsequently, the surface of the coating layer 2 is roughened with a potassium permanganate solution (45 g / l). Next, Sn-P
d) dipped in a colloid solution (Okuno Pharmaceutical; OPC-80) to adsorb the Pd catalyst nuclei. Next, as shown in FIG. 1 (c), the entire surface of the insulating substrate 1 including the coating layer 2 and the through hole 3 made of the easily roughening resin is formed by electroless copper plating (Okuno Pharmaceutical; build copper). The thin film layer 4 having a thickness of 5 to 1.0 μm is formed.
【0036】そして、図1(d)に示すように、ホット
ラミネータを用いて厚さ25μmの感光性ドライフィル
ムレジストDF1(日本合成化学製;NIT−225)
を薄膜層4上にラミネートして、レジスト層5を形成す
る。ついで、フォトマスク6を介して上下面の配線層の
パターンを露光し、1%炭酸ナトリウム水溶液を用いて
現像し、図2(a)に示すように、配線用開口パターン
7を形成する。Then, as shown in FIG. 1D, a photosensitive dry film resist DF1 (Nippon Gohsei; NIT-225) having a thickness of 25 μm was formed using a hot laminator.
Is laminated on the thin film layer 4 to form a resist layer 5. Next, the patterns of the wiring layers on the upper and lower surfaces are exposed through a photomask 6 and developed using a 1% aqueous solution of sodium carbonate to form a wiring opening pattern 7 as shown in FIG.
【0037】その後、配線用開口パターン7内の薄膜層
4上のレジスト残さを酸性脱脂により除去し、露出した
薄膜層4の表面を硫酸―過酸化水素系エッチング液(奥
野製薬製;OPC−400)により活性化する。これに
より薄膜層4と次述する電解銅めっき層8との密着性を
向上できる。ついで、図2(b)に示すように、薄膜層
4を通じて硫酸銅系の電解めっきを行い、露出した薄膜
層4の上に電解銅めっき層8を形成する。Thereafter, the resist residue on the thin film layer 4 in the wiring opening pattern 7 is removed by acidic degreasing, and the exposed surface of the thin film layer 4 is exposed to a sulfuric acid-hydrogen peroxide-based etchant (OPC-400 manufactured by Okuno Pharmaceutical Co., Ltd.). ). Thereby, the adhesion between the thin film layer 4 and the electrolytic copper plating layer 8 described below can be improved. Then, as shown in FIG. 2B, copper sulfate electrolytic plating is performed through the thin film layer 4 to form an electrolytic copper plating layer 8 on the exposed thin film layer 4.
【0038】そして、図2(c)に示すように、残った
めっきレジスト層5を剥離する。その後、過硫酸塩系エ
ッチング剤(荏原コージライト製;PB−228)によ
り、電解銅めっき層8から露出する薄膜層4、および電
解銅めっき層8の表層近傍をソフトエッチングして除去
して、図2(d)に示すように、電解銅めっき層8とそ
の下方の薄膜層4からなる第1層目の配線層9、および
貫通穴3内の配線層である貫通穴内導体10を形成す
る。Then, as shown in FIG. 2C, the remaining plating resist layer 5 is peeled off. Thereafter, the thin film layer 4 exposed from the electrolytic copper plating layer 8 and the vicinity of the surface layer of the electrolytic copper plating layer 8 are soft-etched and removed using a persulfate-based etching agent (manufactured by Ebara Cordierite; PB-228). As shown in FIG. 2D, a first wiring layer 9 including an electrolytic copper plating layer 8 and a thin film layer 4 therebelow, and a through-hole conductor 10 as a wiring layer in the through-hole 3 are formed. .
【0039】(実施形態2)図4(d)は本発明の第2
の実施形態に係るプリント配線板200の断面図であ
る。この配線基板200は、BT(ビスマレイミド−ト
リアジン)樹脂−ガラス複合材からなる絶縁基板11の
上下面に厚み25μmの易粗化性のエポキシ絶縁樹脂か
らなる被覆層12が形成され、さらに絶縁基板11に設
けられた貫通穴13の内壁面に貫通穴内被覆層12'が
形成されている。被覆層12には薄膜層14および電解
銅めっき層18からなる配線層19、19が形成されて
おり、貫通穴内被覆層12'上には薄膜層14および電
解銅めっき層18からなる貫通穴導体20が形成されて
いる。この配線層19は薄膜層14と電解銅めっき層1
8とを併せて、厚みが18μmに形成されている。プリ
ント基板200の上下面に形成された配線層19、19
は貫通穴内の配線層(貫通穴内導体20)を介して互い
に電気的に導通している。(Embodiment 2) FIG. 4D shows a second embodiment of the present invention.
It is sectional drawing of the printed wiring board 200 which concerns on embodiment. In the wiring board 200, a coating layer 12 made of an easily roughening epoxy insulating resin having a thickness of 25 μm is formed on upper and lower surfaces of an insulating substrate 11 made of a BT (bismaleimide-triazine) resin-glass composite material. A through-hole inner coating layer 12 ′ is formed on the inner wall surface of the through-hole 13 provided in 11. Wiring layers 19 and 19 each including a thin film layer 14 and an electrolytic copper plating layer 18 are formed on the coating layer 12, and a through-hole conductor including the thin film layer 14 and the electrolytic copper plating layer 18 is formed on the coating layer 12 ′ in the through hole. 20 are formed. This wiring layer 19 is composed of the thin film layer 14 and the electrolytic copper plating layer 1.
8 together with a thickness of 18 μm. Wiring layers 19, 19 formed on the upper and lower surfaces of printed circuit board 200
Are electrically connected to each other via a wiring layer (the conductor 20 in the through hole) in the through hole.
【0040】図3(a)に示すように、銅張り層を有し
ないBT(ビスマレイミド−トリアジン)樹脂―ガラス
複合材からなる絶縁基板11にドリルを用いて貫通穴1
3を形成する。次に、図3(b)に示すように、メタル
マスク(図示しない)を用いて貫通穴13の内壁面に易
粗化性のエポキシ絶縁樹脂を厚み25μmでスルーホー
ル印刷した後、150℃で2時間キュアして、易粗化性
樹脂からなる貫通穴内被覆層12'を形成する。次に、
図3(c)に示すように、スクリーンマスク(図示しな
い)を用いて絶縁基板11の貫通穴13以外の面に易粗
化性のエポキシ絶縁樹脂を厚み32μmで印刷した後、
150℃で2時間キュアして、易粗化性樹脂の被覆層1
2を形成する。その後、絶縁基板11上の被覆層12の
表面をその厚みが25μmになるように研磨して整面し
た後、貫通穴13の内壁面となる貫通穴内被覆層12'
を洗浄する。As shown in FIG. 3A, a through-hole 1 is formed by drilling on an insulating substrate 11 made of a BT (bismaleimide-triazine) resin-glass composite material having no copper-clad layer.
Form 3 Next, as shown in FIG. 3 (b), a roughening epoxy insulating resin having a thickness of 25 μm is printed on the inner wall surface of the through hole 13 using a metal mask (not shown) at a thickness of 25 μm. After curing for 2 hours, a coating layer 12 'in the through-hole made of the easily roughening resin is formed. next,
As shown in FIG. 3 (c), after using a screen mask (not shown), the surface of the insulating substrate 11 other than the through holes 13 is printed with an easily roughening epoxy insulating resin to a thickness of 32 μm.
Cure at 150 ° C. for 2 hours to form coating layer 1 of easily roughening resin.
Form 2 After that, the surface of the coating layer 12 on the insulating substrate 11 is polished so as to have a thickness of 25 μm, and the surface thereof is leveled.
Wash.
【0041】続いて、該基板上の易粗化性樹脂からなる
被覆層12および12'の表面を過マンガン酸カリウム溶
液(45g/l)で粗化する。次に、Sn−Pdコロイ
ド溶液(奥野製薬製;OPC−80)に浸漬してPd触
媒核を吸着させた後、図3(d)に示すように、無電解
銅めっき(奥野製薬製;ビルドカッパー)により易粗化
性樹脂被覆層12および12'の表面全体に0.5〜
1.0μmの薄膜層14を形成した。Subsequently, the surfaces of the coating layers 12 and 12 'made of the easily roughening resin on the substrate are roughened with a potassium permanganate solution (45 g / l). Next, after immersing in a Sn-Pd colloid solution (Okuno Pharmaceutical; OPC-80) to adsorb the Pd catalyst nucleus, as shown in FIG. 3D, electroless copper plating (Okuno Pharmaceutical; Build 0.5) on the entire surface of the easily roughening resin coating layers 12 and 12 '
A 1.0 μm thin film layer 14 was formed.
【0042】さらに、図3(e)に示すように、ホット
ラミネータを用いて厚さ25μmの感光性ドライフィル
ムレジストDF1(日本合成化学製;NIT−225)
を薄膜層14上にラミネートして、レジスト層15を形
成する。ついで、フォトマスク16を介して上下面の配
線パターンを露光し、1%炭酸ナトリウム水溶液を用い
て現像し、図4(a)に示すように、配線用開口パター
ン17を形成する。Further, as shown in FIG. 3 (e), a photosensitive dry film resist DF1 (Nippon Gohsei; NIT-225) having a thickness of 25 μm was formed using a hot laminator.
Is laminated on the thin film layer 14 to form a resist layer 15. Next, the wiring patterns on the upper and lower surfaces are exposed through a photomask 16 and developed using a 1% aqueous solution of sodium carbonate to form a wiring opening pattern 17 as shown in FIG.
【0043】その後、酸性脱脂により開口パターン17
内のレジスト残さを除去し、露出した薄膜層14の表面
を硫酸―過酸化水素系エッチング液(奥野製薬製;OP
C−400)により活性化する。これにより薄膜層14
と次述する電解銅めっき層18との密着性を向上でき
る。ついで、図4(b)に示すように、薄膜層14を通
じて硫酸銅系の電解めっきを行い、露出した薄膜層17
の上に厚さ約22μmの電解銅めっき層18を形成す
る。Thereafter, the opening pattern 17 is formed by acidic degreasing.
The resist residue in the inside is removed, and the surface of the exposed thin film layer 14 is exposed to a sulfuric acid-hydrogen peroxide-based etchant (Okuno Pharmaceutical; OP
C-400). Thereby, the thin film layer 14
And the adhesion with the electrolytic copper plating layer 18 described below can be improved. Then, as shown in FIG. 4B, copper sulfate-based electrolytic plating is performed through the thin film layer 14 to expose the exposed thin film layer 17.
An electrolytic copper plating layer 18 having a thickness of about 22 μm is formed on the substrate.
【0044】そして、図4(c)に示すように、残った
めっきレジスト層15を剥離した後、過硫酸塩系エッチ
ング剤(荏原コージライト製;PB−228)で薄膜層
14と電解銅めっき層18の表層近傍をソフトエッチン
グして除去して、図4(d)に示すように、電解銅めっ
き層18とその下方の薄膜層14とからなる第1層目の
配線層19および貫通穴内導体20を有するプリント配
線板200が形成される。Then, as shown in FIG. 4C, after the remaining plating resist layer 15 is peeled off, the thin film layer 14 and the electrolytic copper plating are etched with a persulfate-based etching agent (Ebara Cordierite; PB-228). The vicinity of the surface layer of the layer 18 is removed by soft etching, and as shown in FIG. 4D, the first wiring layer 19 including the electrolytic copper plating layer 18 and the thin film layer 14 thereunder and the inside of the through hole are formed. A printed wiring board 200 having the conductor 20 is formed.
【0045】上記において、本発明の実施形態1および
2にかかるプリント配線板100および200のうち、
本発明の特徴部分である第1層目について説明したが、
各プリント配線板の第2層目以上について説明する。 (実施形態3)図5(a)に示すように、第1層目の配
線層9および貫通穴内導体10の形成、接続を完了した
図2(d)の貫通穴3に絶縁性樹脂を穴埋め印刷した
後、150℃で2時間キュアして、充填層30を形成す
る。In the above, of the printed wiring boards 100 and 200 according to the first and second embodiments of the present invention,
Although the first layer which is a feature of the present invention has been described,
The second and subsequent layers of each printed wiring board will be described. (Embodiment 3) As shown in FIG. 5A, the insulating resin is filled in the through hole 3 of FIG. 2D in which the formation and connection of the first wiring layer 9 and the conductor 10 in the through hole are completed. After printing, it is cured at 150 ° C. for 2 hours to form the filling layer 30.
【0046】その後、図5(b)に示すように、プリン
ト配線板100の第1層目の配線層9、充填層30およ
び粗化済みの被覆層2の表面にロールコータを用いてB
T樹脂からなる絶縁樹脂を厚み60μmで塗布した後、
150℃で2時間キュアして、BT樹脂の絶縁層21を
形成する。絶縁層21は、BT樹脂からなるため、絶縁
性に優れる反面、表面粗化が困難である。Then, as shown in FIG. 5B, the surface of the first wiring layer 9, the filling layer 30, and the roughened coating layer 2 of the printed wiring board 100 are coated with a roll coater using a roll coater.
After applying an insulating resin made of T resin with a thickness of 60 μm,
After curing at 150 ° C. for 2 hours, an insulating layer 21 of BT resin is formed. Since the insulating layer 21 is made of a BT resin, the insulating layer 21 has excellent insulation properties, but has difficulty in surface roughening.
【0047】続いて、図5(c)に示すように、粗化が
容易でないBT樹脂の絶縁層21の表面に易粗化性のエ
ポキシ絶縁樹脂を厚み32μmで印刷した後、150℃
で2時間キュアして、易粗化性樹脂の表面被覆層22を
形成する。そして、エキシマレーザを用いて、図6
(a)に示すように留め穴ビア用の開口パターン23形
成し、配線層4の一部を露出させる。Subsequently, as shown in FIG. 5C, an epoxy insulating resin having a thickness of 32 μm is printed on the surface of the insulating layer 21 of the BT resin, which is not easily roughened, at a temperature of 150 ° C.
For 2 hours to form the surface coating layer 22 of the easily roughening resin. Then, using an excimer laser, FIG.
As shown in (a), an opening pattern 23 for a retaining hole via is formed, and a part of the wiring layer 4 is exposed.
【0048】続いて、表面被覆層22および絶縁層21
に形成した留め穴ビア用の開口パターン23の内壁面を
過マンガン酸カリウム溶液(45g/l)で粗化する。
次に、Sn−Pdコロイド溶液(奥野製薬製;OPC−
80)に浸漬してPd触媒核を吸着させる。その後、無
電解銅めっき(奥野製薬製;ビルドカッパー)により露
出した配線層9の上面および留め穴ビア用の開口パター
ン23の内壁面に0.5〜1.0μmの薄膜層24を形
成した。そして、ホットラミネータを用いて厚さ25μ
mの図示しない感光性ドライフィルムレジストDF1
(日本合成化学製;NIT−225)を無電解銅めっき
の薄膜層24上にラミネートして、レジスト層を形成す
る。ついで、フォトマスクを介して上下面の配線層パタ
ーンを露光し、1%炭酸ナトリウム水溶液を用いて現像
し、配線用開口パターンを形成する。次いで、薄膜層2
4を通じて硫酸銅系の電解めっきを行い、露出した薄膜
層24の上に厚さ約22μmの電解銅めっき層28を形
成する。そして、残っためっきレジスト層を剥離した
後、過硫酸塩系エッチング剤(荏原コージライト製;P
B−228)で露出した薄膜層24と電解銅めっき層2
8の表層近傍をソフトエッチングして除去して、図6
(b)に示すように、第2層目の配線層29および留め
穴めっき導体25の形成し、プリント配線板300を得
る。Subsequently, the surface coating layer 22 and the insulating layer 21
Is roughened with a potassium permanganate solution (45 g / l).
Next, a Sn-Pd colloid solution (Okuno Pharmaceutical; OPC-
80) to adsorb the Pd catalyst nuclei. Thereafter, a thin film layer 24 of 0.5 to 1.0 μm was formed on the upper surface of the wiring layer 9 exposed by electroless copper plating (manufactured by Okuno Pharmaceutical; build copper) and on the inner wall surface of the opening pattern 23 for the retaining hole via. Then, using a hot laminator, thickness 25μ
m not shown photosensitive dry film resist DF1
(NIT-225 manufactured by Nippon Synthetic Chemical Co., Ltd.) is laminated on the electroless copper plating thin film layer 24 to form a resist layer. Next, the wiring layer patterns on the upper and lower surfaces are exposed through a photomask, and are developed using a 1% aqueous sodium carbonate solution to form a wiring opening pattern. Next, the thin film layer 2
4, copper sulfate-based electrolytic plating is performed to form an electrolytic copper plating layer 28 having a thickness of about 22 μm on the exposed thin film layer 24. Then, after removing the remaining plating resist layer, a persulfate-based etching agent (Ebara Cordierite; P
B-228) Exposed thin film layer 24 and electrolytic copper plating layer 2
8 is removed by soft etching around the surface layer of FIG.
As shown in (b), the second wiring layer 29 and the retaining hole plated conductor 25 are formed to obtain the printed wiring board 300.
【0049】(実施形態4)図4(d)のプリント配線
板200についても、実施形態3と同様の工程を経て積
層し、図6(c)に示すような、プリント配線板400
を得る。プリント配線板400は、貫通穴13に形成さ
れた充填層40、被覆層12および配線層19の上に絶
縁層31が形成されている。絶縁層31は、BT樹脂か
らなるため絶縁性に優れる反面、表面粗化が困難である
ので、絶縁層31の表面はエポキシ系の易粗化性樹脂か
らなる表面被覆層32によって被覆されている。表面被
覆層の表面には、薄膜層34および電解銅めっき層38
からなる配線層39が形成されている。この配線層39
は、留め穴めっき導体35を介して下層の配線層19と
電気的に接続されている。(Embodiment 4) The printed wiring board 200 of FIG. 4D is also laminated through the same steps as in Embodiment 3 to form a printed wiring board 400 as shown in FIG.
Get. In the printed wiring board 400, the insulating layer 31 is formed on the filling layer 40, the covering layer 12, and the wiring layer 19 formed in the through holes 13. The insulating layer 31 is made of a BT resin and has excellent insulation properties, but is difficult to roughen. Therefore, the surface of the insulating layer 31 is covered with a surface coating layer 32 made of an epoxy-based easily roughening resin. . On the surface of the surface coating layer, a thin film layer 34 and an electrolytic copper plating layer 38
Is formed. This wiring layer 39
Are electrically connected to the lower wiring layer 19 via the retaining hole plated conductor 35.
【0050】さらに、プリント配線板100および20
0の2層目以上の形成方法について、別の実施形態を説
明する。 (実施形態5)図2(b)のプリント配線板100を用
意し、図7(a)に示すように、貫通穴3に絶縁性樹脂
を穴埋め印刷した後、150℃で2時間キュアして、絶
縁性穴埋め充填層50を形成する。Further, the printed wiring boards 100 and 20
Another embodiment will be described with respect to a method for forming the second layer or more of layer 0. (Embodiment 5) A printed wiring board 100 shown in FIG. 2B is prepared, and as shown in FIG. 7A, an insulating resin is filled and printed in the through holes 3 and then cured at 150 ° C. for 2 hours. Then, an insulating filling layer 50 is formed.
【0051】その後、第1層目の配線層8、絶縁性穴埋
め樹脂層19および粗化済みの絶縁樹脂被覆層2の表面
にスクリーン印刷にてBT樹脂からなる絶縁樹脂を厚み
30μmで塗布した後、150℃で2時間キュアする。
そして、表面を研磨して配線層9を露出させ、図7
(b)に示すように、第1層目の配線層9間にBT樹脂
からなる配線間絶縁層41を形成する。配線間絶縁層4
1は、BT樹脂からなるため絶縁性に優れるが、粗化が
困難である。Thereafter, an insulating resin made of BT resin is applied to the surface of the first wiring layer 8, the insulating filling resin layer 19 and the roughened insulating resin coating layer 2 by screen printing to a thickness of 30 μm. Cure at 150 ° C. for 2 hours.
Then, the surface is polished to expose the wiring layer 9, and FIG.
As shown in (b), an inter-wiring insulating layer 41 made of BT resin is formed between the first wiring layers 9. Wiring insulating layer 4
No. 1 is excellent in insulation because it is made of a BT resin, but roughening is difficult.
【0052】その後、図7(c)に示すように、第1層
目の配線層9、絶縁性穴埋め充填層50および配線間絶
縁層41の表面にロールコータを用いてエポキシ樹脂か
らなる粗化が容易な絶縁樹脂を厚み60μmで塗布した
後、150℃で2時間キュアして、易粗化性絶縁樹脂か
らなる被覆層42を形成する。さらに、エキシマレーザ
を用いて、図8(a)に示すように留め穴ビア用の開口
パターン43を形成し、配線層9の上面の一部を露出さ
せる。Thereafter, as shown in FIG. 7C, the surfaces of the first wiring layer 9, the insulating filling and filling layer 50 and the inter-wiring insulating layer 41 are roughened with an epoxy resin using a roll coater. Is applied at a thickness of 60 μm and cured at 150 ° C. for 2 hours to form a coating layer 42 made of an easily roughened insulating resin. Further, using an excimer laser, an opening pattern 43 for a retaining hole via is formed as shown in FIG. 8A, and a part of the upper surface of the wiring layer 9 is exposed.
【0053】続いて、被覆層42および留め穴ビア用の
開口パターン43の内壁面を過マンガン酸カリウム溶液
(45g/l)で粗化する。次に、Sn−Pdコロイド
溶液(奥野製薬製;OPC−80)に浸漬してPd触媒
核を吸着させる。その後、無電解銅めっき(奥野製薬
製;ビルドカッパー)により被覆層27、留め穴ビア用
の開口パターン43の内壁面および露出した配線層29
に0.5〜1.0μmの薄膜層44を形成した。そし
て、ホットラミネータを用いて厚さ25μmの図示しな
い感光性ドライフィルムレジストDF1(日本合成化学
製;NIT−225)を薄膜層44上にラミネートし
て、レジスト層(図示しない)を形成する。ついで、フ
ォトマスクを介して上下面の配線層パターンを露光し、
1%炭酸ナトリウム水溶液を用いて現像し、配線用開口
パターン(図示しない)を形成する。次いで、薄膜層4
4を通じて硫酸銅系の電解めっきを行い、露出した薄膜
層44の上に厚さ約22μmの電解銅めっき層48を形
成する。そして、残っためっきレジスト層を剥離した
後、過硫酸塩系エッチング剤(荏原コージライト製;P
B−228)で露出した薄膜層と電解銅めっき層48の
表層近傍をソフトエッチングして除去して、図8(b)
に示すように、電解めっき層48とその下方の薄膜層4
4とからなる第2層目の配線層49および留め穴めっき
導体45を形成し、プリント配線板500を得る。Subsequently, the inner wall surface of the coating layer 42 and the opening pattern 43 for the via hole is roughened with a potassium permanganate solution (45 g / l). Next, it is immersed in a Sn-Pd colloidal solution (Okuno Pharmaceutical; OPC-80) to adsorb the Pd catalyst core. Thereafter, the coating layer 27, the inner wall surface of the opening pattern 43 for the retaining hole via and the exposed wiring layer 29 are formed by electroless copper plating (manufactured by Okuno Pharmaceutical; build copper).
Then, a thin film layer 44 of 0.5 to 1.0 μm was formed. Then, using a hot laminator, a photosensitive dry film resist DF1 (not shown) having a thickness of 25 μm (manufactured by Nippon Gohsei; NIT-225) is laminated on the thin film layer 44 to form a resist layer (not shown). Next, the upper and lower wiring layer patterns are exposed through a photomask,
Develop using a 1% aqueous solution of sodium carbonate to form a wiring opening pattern (not shown). Next, the thin film layer 4
4, copper sulfate-based electrolytic plating is performed to form an electrolytic copper plating layer 48 having a thickness of about 22 μm on the exposed thin film layer 44. Then, after removing the remaining plating resist layer, a persulfate-based etching agent (Ebara Cordierite; P
B-228), the thin film layer exposed in step B-228) and the vicinity of the surface layer of the electrolytic copper plating layer 48 are soft-etched and removed, and FIG.
As shown in FIG. 5, the electrolytic plating layer 48 and the thin film layer 4 thereunder are formed.
4 to form a printed wiring board 500.
【0054】(実施形態6)図4(d)のプリント配線
板200についても、実施形態5と同様の工程を経て、
図8(c)に示すような、プリント配線板600を得
る。プリント配線板600は、貫通穴13が充填層60
により充填され、配線層19の間に配線間絶縁層51が
形成されている。配線間絶縁層51は、BT樹脂からな
るため絶縁性に優れる反面、表面粗化が困難である。配
線間絶縁層51、充填層60および配線層19の上面に
は、エポキシ系の易粗化性樹脂からなる表面被覆層52
が形成されている。表面被覆層の表面には、薄膜層54
および電解銅めっき層58からなる配線層59が形成さ
れている。この配線層59は、留め穴めっき導体55を
介して下層の配線層19と電気的に接続されている。(Embodiment 6) The printed wiring board 200 shown in FIG.
A printed wiring board 600 as shown in FIG. 8C is obtained. In the printed wiring board 600, the through hole 13 is
And an inter-wiring insulating layer 51 is formed between the wiring layers 19. Since the inter-wiring insulating layer 51 is made of BT resin, it has excellent insulating properties, but it is difficult to roughen the surface. On the upper surfaces of the inter-wiring insulating layer 51, the filling layer 60, and the wiring layer 19, a surface coating layer 52 made of an epoxy-based roughening resin is provided.
Are formed. A thin film layer 54 is provided on the surface of the surface coating layer.
And a wiring layer 59 composed of an electrolytic copper plating layer 58 is formed. The wiring layer 59 is electrically connected to the lower wiring layer 19 via the retaining hole plated conductor 55.
【0055】[0055]
【発明の効果】以上記述したように、本発明のプリント
配線板の構造とその製造方法によれば、BT樹脂のよう
に粗化が困難な樹脂からなる絶縁基板を用いても、その
第1層目から微細な配線層が形成でき、また、粗化が困
難な樹脂からなる樹脂層の上に、この樹脂よりも粗化が
容易な樹脂からなる易粗化性樹脂層を形成してあるた
め、配線層と該易粗化性樹脂層との密着性を上げる投錨
効果が容易に得られる。As described above, according to the structure of the printed wiring board and the method of manufacturing the same of the present invention, even if an insulating substrate made of a resin that is difficult to roughen, such as a BT resin, is used, the first substrate can be used. A fine wiring layer can be formed from the first layer, and an easily roughening resin layer made of a resin that is more easily roughened than this resin is formed on a resin layer made of a resin that is difficult to roughen. Therefore, an anchoring effect for improving the adhesion between the wiring layer and the easily roughening resin layer can be easily obtained.
【図1】本発明の実施形態1に係るプリント配線板10
0およびその製造方法を示す部分拡大断面図である。FIG. 1 shows a printed wiring board 10 according to a first embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図2】本発明の実施形態1に係るプリント配線板10
0およびその製造方法を示す部分拡大断面図である。FIG. 2 is a printed wiring board 10 according to the first embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図3】本発明の実施形態2に係るプリント配線板20
0およびその製造方法を示す部分拡大断面図である。FIG. 3 is a printed wiring board 20 according to a second embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図4】本発明の実施形態2に係るプリント配線板20
0およびその製造方法を示す部分拡大断面図である。FIG. 4 is a printed wiring board 20 according to a second embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図5】本発明の実施形態3に係るプリント配線板30
0およびその製造方法を示す部分拡大断面図である。FIG. 5 is a printed wiring board 30 according to a third embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図6】本発明の実施形態3および4に係るプリント配
線板300、400およびその製造方法を示す部分拡大
断面図である。FIG. 6 is a partially enlarged cross-sectional view showing printed wiring boards 300 and 400 according to Embodiments 3 and 4 of the present invention and a method for manufacturing the same.
【図7】本発明の実施形態5に係るプリント配線板50
0およびその製造方法を示す部分拡大断面図である。FIG. 7 shows a printed wiring board 50 according to a fifth embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a No. 0 and a manufacturing method thereof.
【図8】本発明の実施形態5および6に係るプリント配
線板500、600およびその製造方法を示す部分拡大
断面図である。FIG. 8 is a partially enlarged cross-sectional view showing printed wiring boards 500 and 600 according to Embodiments 5 and 6 of the present invention and a method for manufacturing the same.
1、11:絶縁基板 2、12:被覆層 4、14、24、34、44、45:薄膜層 8、18、28、38、48、58:電解銅めっき層 9、19、29、39、49、59:配線層 10、20:貫通穴内導体 12':貫通穴内被覆層 30、40、50、60:充填層 45、55:留め穴めっき導体 1, 11: insulating substrate 2, 12: coating layer 4, 14, 24, 34, 44, 45: thin film layer 8, 18, 28, 38, 48, 58: electrolytic copper plating layer 9, 19, 29, 39, 49, 59: wiring layer 10, 20: conductor in through hole 12 ': coating layer in through hole 30, 40, 50, 60: filling layer 45, 55: fastening hole plated conductor
フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/46 H05K 3/46 E Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 3/46 H05K 3/46 E
Claims (6)
と、 上記絶縁基板上に形成され、上記耐熱性樹脂より粗化が
容易な樹脂からなる易粗化性絶縁樹脂層と、 上記易粗化性絶縁樹脂層上に形成された配線層と、を有
することを特徴とするプリント配線板。An insulating substrate made of a heat-resistant resin that is difficult to roughen; an easily-roughened insulating resin layer formed on the insulating substrate and made of a resin that is more easily roughened than the heat-resistant resin; A printed wiring board, comprising: a wiring layer formed on an easily roughening insulating resin layer.
と、 該絶縁基板に形成された貫通穴と、 上記絶縁基板の表面および上記貫通穴の内壁面とに形成
され、上記耐熱性樹脂より粗化が容易な樹脂からなる易
粗化性絶縁樹脂層と、 上記易粗化性絶縁樹脂層上に形成された配線層と、を有
することを特徴とするプリント配線板。2. An insulating substrate made of a heat-resistant resin which is difficult to roughen, a through hole formed in the insulating substrate, a surface of the insulating substrate and an inner wall surface of the through hole, A printed wiring board, comprising: a roughening insulating resin layer made of a resin that is easier to roughen than a resin; and a wiring layer formed on the roughening insulating resin layer.
れた粗化の困難な耐熱性樹脂からなる第1樹脂層と、 上記第1樹脂層の上部に形成され、上記第1樹脂層を形
成する耐熱性樹脂よりも粗化が容易な樹脂からなる第2
樹脂層と、 上記第2樹脂層上に形成された上部配線層と、 上記第1樹脂層および上記第2樹脂層を貫通し、上記上
部配線層と下部配線層とを電気的に接続するビアと、を
有することを特徴とする請求項1または2に記載のプリ
ント配線板。3. A first resin layer made of a heat-resistant resin, which is difficult to roughen, formed between lower wiring layers and over the upper surface, and a first resin layer formed on the first resin layer, Of a resin that is easier to roughen than a heat-resistant resin that forms
A resin layer, an upper wiring layer formed on the second resin layer, a via penetrating the first resin layer and the second resin layer, and electrically connecting the upper wiring layer and the lower wiring layer. The printed wiring board according to claim 1, comprising:
耐熱性樹脂からなる第1樹脂層と、 上記第1樹脂層および下部配線層の上に形成され、上記
第1樹脂層を形成する耐熱性樹脂よりも粗化が容易な樹
脂からなる第2樹脂層と、 上記第2樹脂層上に形成された上部配線層と、上記第2
樹脂層を貫通し、上記上部配線層と下部配線層とを電気
的に接続するビアと、を有することを特徴とする請求項
1または2に記載のプリント配線板。4. A first resin layer formed between a lower wiring layer and made of a heat-resistant resin which is difficult to roughen, and a first resin layer formed on the first resin layer and the lower wiring layer. A second resin layer made of a resin that is easier to roughen than a heat-resistant resin forming the second resin layer; an upper wiring layer formed on the second resin layer;
The printed wiring board according to claim 1, further comprising a via penetrating through the resin layer and electrically connecting the upper wiring layer and the lower wiring layer.
樹脂より粗化が容易な樹脂で易粗化性絶縁樹脂層を形成
する工程と、 上記易粗化性絶縁樹脂層を形成した絶縁基板に貫通穴を
形成する工程と、上記貫通穴を形成した絶縁基板の表面
を粗化する工程と、 上記表面粗化工程の後、絶縁基板上に薄膜層を形成する
工程と、 上記薄膜形成した絶縁基板上にめっきレジスト層を形成
する工程と、 上記めっきレジスト層を露光・現像し、配線パターンの
形成が予定される部位のレジストを除去し、上記薄膜層
の一部を露出させる工程と、 上記露出した薄膜層上に電解めっき層を形成する工程
と、 上記めっきレジスト層を剥離する工程と、 上記薄膜層のうち上記電解めっき層の下部の薄膜層以外
を除去し、配線層を形成する工程と、を含むことを特徴
とする請求項第1項記載のプリント配線板の製造方法。5. A step of forming an easily roughened insulating resin layer on a insulating substrate made of a heat resistant resin using a resin which is easier to roughen than the heat resistant resin; and forming the easily roughened insulating resin layer. A step of forming a through hole in the insulating substrate, a step of roughening the surface of the insulating substrate having the through hole, a step of forming a thin film layer on the insulating substrate after the surface roughening step, A step of forming a plating resist layer on the formed insulating substrate; a step of exposing and developing the plating resist layer to remove a resist at a portion where a wiring pattern is to be formed and exposing a part of the thin film layer Forming an electrolytic plating layer on the exposed thin film layer, removing the plating resist layer, removing the thin film layer other than the thin film layer below the electrolytic plating layer, forming a wiring layer Forming 2. The method for manufacturing a printed wiring board according to claim 1, wherein:
形成する工程と、 上記絶縁基板の表面および上記貫通穴の内壁面に、上記
耐熱性樹脂より粗化されやすい樹脂で易粗化性絶縁樹脂
層を形成する工程と、 上記絶縁基板の表面を粗化する工程と、 上記表面粗化後の絶縁基板上に薄膜層を形成する工程
と、 上記薄膜形成した絶縁基板上にめっきレジスト層を形成
する工程と、 上記めっきレジスト層を露光・現像し、配線パターンの
形成が予定される部位のレジストを除去し、薄膜層を露
出させる工程と、 上記露出した薄膜層上に電解めっき層を形成する工程
と、 上記めっきレジスト層を剥離する工程と、 上記薄膜層のうち上記電解めっき層の下部の薄膜層以外
を除去し、配線層を形成する工程と、 を含むことを特徴とする、請求項第2項記載のプリント
配線板の製造方法。6. A step of forming a through-hole on an insulating substrate made of a heat-resistant resin, and the step of forming a through-hole on the surface of the insulating substrate and the inner wall surface of the through-hole with a resin which is more easily roughened than the heat-resistant resin. A step of forming a conductive insulating resin layer; a step of roughening the surface of the insulating substrate; a step of forming a thin film layer on the insulating substrate after the surface roughening; and a plating resist on the insulating substrate on which the thin film is formed. Forming a layer, exposing and developing the plating resist layer, removing a resist at a portion where a wiring pattern is to be formed, and exposing the thin film layer; and forming an electrolytic plating layer on the exposed thin film layer. Forming a wiring layer, removing the plating resist layer, removing the thin film layer other than the thin film layer below the electrolytic plating layer in the thin film layer, and forming a wiring layer. , Claim 2 Method for manufacturing a printed wiring board according.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26267097A JPH1187865A (en) | 1997-09-09 | 1997-09-09 | Printed circuit board and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26267097A JPH1187865A (en) | 1997-09-09 | 1997-09-09 | Printed circuit board and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1187865A true JPH1187865A (en) | 1999-03-30 |
Family
ID=17378979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26267097A Pending JPH1187865A (en) | 1997-09-09 | 1997-09-09 | Printed circuit board and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1187865A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000076281A1 (en) * | 1999-06-02 | 2000-12-14 | Ibiden Co., Ltd. | Multilayer printed wiring board and method of manufacturing multilayer printed wiring board |
JP2001223467A (en) * | 2000-02-10 | 2001-08-17 | Ibiden Co Ltd | Printed-wiring board and its manufacturing method |
JP2009111358A (en) * | 2007-10-12 | 2009-05-21 | Shinko Electric Ind Co Ltd | Wiring board |
EP2111087A3 (en) * | 1999-08-06 | 2010-03-31 | Ibiden Co., Ltd. | Electroplating solution, method for fabricating multilayer printed wiring board using the solution, and multilayer printed wiring board |
JP2010135477A (en) * | 2008-12-03 | 2010-06-17 | Hitachi Chem Co Ltd | Insulating resin material for wiring board, multilayer wiring board, and method of manufacturing multilayer wiring board |
JP2010141180A (en) * | 2008-12-12 | 2010-06-24 | Nichicon Corp | Solid-state electrolytic capacitor, and method of manufacturing the same |
WO2011016641A2 (en) * | 2009-08-03 | 2011-02-10 | 주식회사 일렉켐 | Substrate for ball grid array semiconductor package and fabrication method thereof |
KR101045565B1 (en) * | 2011-04-08 | 2011-06-30 | 주식회사 일렉켐 | Plates for ball grid array semiconductor package, and its manufacturing process |
JP2011171423A (en) * | 2010-02-17 | 2011-09-01 | Sumitomo Electric Ind Ltd | Method for manufacturing of flexible printed circuit board |
TWI410189B (en) * | 2010-09-16 | 2013-09-21 | Zhen Ding Technology Co Ltd | Printed ciucuit board substrate and method for manufacturing the same |
-
1997
- 1997-09-09 JP JP26267097A patent/JPH1187865A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7985930B2 (en) | 1999-06-02 | 2011-07-26 | Ibiden Co., Ltd. | Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board |
US6828510B1 (en) | 1999-06-02 | 2004-12-07 | Ibiden Co., Ltd. | Multilayer printed wiring board and method of manufacturing multilayer printed wiring board |
WO2000076281A1 (en) * | 1999-06-02 | 2000-12-14 | Ibiden Co., Ltd. | Multilayer printed wiring board and method of manufacturing multilayer printed wiring board |
US8822828B2 (en) | 1999-06-02 | 2014-09-02 | Ibiden Co., Ltd. | Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board |
US8288664B2 (en) | 1999-06-02 | 2012-10-16 | Ibiden Co., Ltd. | Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board |
US8288665B2 (en) | 1999-06-02 | 2012-10-16 | Ibiden Co., Ltd. | Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board |
US8283573B2 (en) | 1999-06-02 | 2012-10-09 | Ibiden Co., Ltd. | Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board |
EP2111087A3 (en) * | 1999-08-06 | 2010-03-31 | Ibiden Co., Ltd. | Electroplating solution, method for fabricating multilayer printed wiring board using the solution, and multilayer printed wiring board |
US7812262B2 (en) | 1999-08-06 | 2010-10-12 | Ibiden Co., Ltd. | Multilayer printed circuit board |
US7993510B2 (en) | 1999-08-06 | 2011-08-09 | Ibiden Co., Ltd. | Electroplating solution, method for manufacturing multilayer printed circuit board using the same solution, and multilayer printed circuit board |
JP2001223467A (en) * | 2000-02-10 | 2001-08-17 | Ibiden Co Ltd | Printed-wiring board and its manufacturing method |
JP2009111358A (en) * | 2007-10-12 | 2009-05-21 | Shinko Electric Ind Co Ltd | Wiring board |
JP2010135477A (en) * | 2008-12-03 | 2010-06-17 | Hitachi Chem Co Ltd | Insulating resin material for wiring board, multilayer wiring board, and method of manufacturing multilayer wiring board |
JP2010141180A (en) * | 2008-12-12 | 2010-06-24 | Nichicon Corp | Solid-state electrolytic capacitor, and method of manufacturing the same |
KR101045561B1 (en) * | 2009-08-03 | 2011-06-30 | 주식회사 일렉켐 | Substrate for ball grid array semiconductor package and manufacturing method thereof |
WO2011016641A3 (en) * | 2009-08-03 | 2011-04-21 | 주식회사 일렉켐 | Substrate for ball grid array semiconductor package and fabrication method thereof |
WO2011016641A2 (en) * | 2009-08-03 | 2011-02-10 | 주식회사 일렉켐 | Substrate for ball grid array semiconductor package and fabrication method thereof |
JP2011171423A (en) * | 2010-02-17 | 2011-09-01 | Sumitomo Electric Ind Ltd | Method for manufacturing of flexible printed circuit board |
TWI410189B (en) * | 2010-09-16 | 2013-09-21 | Zhen Ding Technology Co Ltd | Printed ciucuit board substrate and method for manufacturing the same |
KR101045565B1 (en) * | 2011-04-08 | 2011-06-30 | 주식회사 일렉켐 | Plates for ball grid array semiconductor package, and its manufacturing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3229286B2 (en) | Manufacturing method of printed circuit board | |
JPWO2011002022A1 (en) | Printed wiring board and printed wiring board manufacturing method | |
JPH1187865A (en) | Printed circuit board and its manufacture | |
JP3037662B2 (en) | Multilayer wiring board and method of manufacturing the same | |
KR100752017B1 (en) | Manufacturing method of printed circuit board | |
JP2003124637A (en) | Multilayer wiring board | |
JPH06275950A (en) | Manufacture of wiring board | |
KR20040061410A (en) | PCB with the plated through holes filled with copper with copper and the fabricating method thereof | |
JPH05327224A (en) | Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture | |
KR100704920B1 (en) | Printed circuit board and manufacturing method using bump board | |
JPH098458A (en) | Printed-wiring board and manufacture thereof | |
JP2002076633A (en) | Manufacturing method of multilayer interconnection board and plating method | |
JP4159136B2 (en) | Multilayer printed wiring board | |
JP3713158B2 (en) | Manufacturing method of multilayer wiring board | |
JP3261314B2 (en) | Method of manufacturing multilayer printed wiring board and multilayer printed wiring board | |
JP2002271026A (en) | Multi-layer printed wiring board and manufacturing method therefor | |
JP3432534B2 (en) | Printed wiring board | |
JP7461505B2 (en) | Wiring Board | |
KR20070034766A (en) | Full Layer Inner Via Printed Circuit Board Using Peel Plating and Its Manufacturing Method | |
KR100342335B1 (en) | Resin laminated wiring sheet, wiring structure using the same, and production method thereof | |
KR100704917B1 (en) | Printed Circuit Board and Manufacturing Method | |
JPH10224036A (en) | Build-up printed wiring board and method of manufacturing the same | |
JPH1168291A (en) | Printed wiring board and manufacturing method thereof | |
JPH1154932A (en) | Manufacture of multilayered wiring board | |
JPS63137499A (en) | Manufacture of multilayer printed interconnection board |