JPH1175894A - Measurement of reduced nicotinamide adenine dinucleotide(nadh) or reduced nicotinamide dinucleotide phosphate(nadph) - Google Patents
Measurement of reduced nicotinamide adenine dinucleotide(nadh) or reduced nicotinamide dinucleotide phosphate(nadph)Info
- Publication number
- JPH1175894A JPH1175894A JP23834097A JP23834097A JPH1175894A JP H1175894 A JPH1175894 A JP H1175894A JP 23834097 A JP23834097 A JP 23834097A JP 23834097 A JP23834097 A JP 23834097A JP H1175894 A JPH1175894 A JP H1175894A
- Authority
- JP
- Japan
- Prior art keywords
- nadh
- nadph
- measuring
- potential
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多くの酵素の補酵
素として働く還元型ニコチンアミドアデニンジヌクレオ
チド(以下「NADH」という)または還元型ニコチン
アミドアデニンジヌクレオチドフォスフェート(以下
「NADPH」という)の測定方法およびNADHまた
はNADPHを補酵素とする酵素の活性の測定方法並び
に酵素基質濃度の測定方法に関する。The present invention relates to reduced nicotinamide adenine dinucleotide (hereinafter referred to as "NADH") or reduced nicotinamide adenine dinucleotide phosphate (hereinafter referred to as "NADPH") which acts as a coenzyme for many enzymes. The present invention relates to a method for measuring the activity of an enzyme having NADH or NADPH as a coenzyme and a method for measuring the concentration of an enzyme substrate.
【0002】[0002]
【従来の技術】NADHまたはNADPHは、各種酵素
反応において補酵素として働くことが知られている。例
えば、NADH等は、ある種の脱水素酵素が触媒するα
ヒドロキシ酸から対応するケトン酸への酸化の際に、補
酵素として働く。この具体例の一つとして、下記の反応
式(化1)で表される乳酸のピルビン酸への酸化をあげ
ることができる。2. Description of the Related Art It is known that NADH or NADPH works as a coenzyme in various enzyme reactions. For example, NADH and the like have α
It acts as a coenzyme during the oxidation of the hydroxy acid to the corresponding ketone acid. As one of the specific examples, oxidation of lactic acid to pyruvic acid represented by the following reaction formula (Formula 1) can be mentioned.
【0003】(化1) CH3−CHOH−COOH+NAD+ → CH3CO
−COOH+NADH## STR1 ## CH 3 —CHOH—COOH + NAD + → CH 3 CO
-COOH + NADH
【0004】また、NADHは、GLDH(グルタメー
ト・デヒドロゲナーゼ)の存在下におけるアンモニウム
塩による2−オキソグルタレートのL−グルタメートへ
の変換において補酵素として作用する。[0004] NADH also acts as a coenzyme in the conversion of 2-oxoglutarate to L-glutamate by ammonium salts in the presence of GLDH (glutamate dehydrogenase).
【0005】このようなNADH等の補酵素としての性
質を利用し、酵素活性や酵素基質濃度を調べるために、
NADH等の濃度測定が臨床検査の分野において広く行
われている。たとえば、前記GLDHの場合では、残留
NADHを測定すれば、反応媒体中のアンモニアを定量
することができる。すなわち、基質がNAD+ (または
NADP+ )の存在下酵素反応によって酸化される場合
は、NADH(またはNADPH)が生成する。また、
基質がNADH(またはNADPH)の存在下酵素反応
によって還元される場合は、NAD+ (またはNADP
+ )が生成する。したがって、前者の場合であればNA
DH(またはNADPH)の増加量を、後者の場合であ
ればNADH(またはNADPH)の減少量を測定する
ことにより、酵素基質濃度の変動やNADH等を補酵素
とする酵素の活性を測定することができる。[0005] In order to examine enzyme activity and enzyme substrate concentration by utilizing such properties as a coenzyme such as NADH,
Measurement of the concentration of NADH and the like is widely performed in the field of clinical tests. For example, in the case of the aforementioned GLDH, by measuring the residual NADH, the amount of ammonia in the reaction medium can be determined. That is, when the substrate is oxidized by an enzymatic reaction in the presence of NAD + (or NADP + ), NADH (or NADPH) is generated. Also,
When the substrate is reduced by an enzymatic reaction in the presence of NADH (or NADPH), NAD + (or NADP
+ ) Is generated. Therefore, in the former case, NA
By measuring the amount of increase in DH (or NADPH) and, in the latter case, the amount of decrease in NADH (or NADPH), to measure the change in enzyme substrate concentration and the activity of an enzyme using NADH or the like as a coenzyme. Can be.
【0006】NADHまたはNADPHの測定方法は、
光学的手法と電気化学的手法の2種類に大別できる。A method for measuring NADH or NADPH is as follows:
It can be broadly classified into two types: an optical method and an electrochemical method.
【0007】光学的手法としては、NADHまたはNA
DPH自体の紫外部の光吸収(極大吸収波長:340n
m)を直接測定する方法、NADHまたはNADPH自
体の蛍光を直接測定する方法、触媒の存在下でNADH
またはNADPHとレサズリンの反応によって生成する
レゾルフィンの蛍光を測定する方法などが知られてい
る。As an optical method, NADH or NA is used.
Ultraviolet light absorption of DPH itself (maximum absorption wavelength: 340n
m), directly measuring the fluorescence of NADH or NADPH itself, NADH in the presence of a catalyst.
Alternatively, a method of measuring fluorescence of resorufin generated by a reaction between NADPH and resazurin and the like are known.
【0008】電気化学的手法としては、作用極と対極の
2つの電極を用い、前記作用極に印加してNADHまた
はNADPHを電解酸化し、その際に前記作用極と該対
極との間に通ずる電流を測定する方法が知られている。
この電気化学的手法は、光学的手法に対して比較的簡易
で安価な測定装置を用いて迅速に測定が可能であるとい
う長所を備えているが、光学的手法に比べて感度が低い
という欠点を有する。したがって、従来から、NADH
またはNADPHの電気化学的な測定方法において、感
度の向上を目的とした様々な試みが行われている。As an electrochemical method, two electrodes, a working electrode and a counter electrode, are used, and NADH or NADPH is electrolytically oxidized by applying the working electrode to the working electrode. At this time, there is a passage between the working electrode and the counter electrode. Methods for measuring current are known.
This electrochemical method has the advantage that it can be measured quickly using a relatively simple and inexpensive measuring device compared to the optical method, but has the disadvantage that its sensitivity is lower than that of the optical method. Having. Therefore, conventionally, NADH
Alternatively, in an electrochemical measurement method of NADPH, various attempts have been made to improve sensitivity.
【0009】例えば、特公昭58−16694号公報に
は、NADHが電極表面に直接化学結合で固定化された
酵素電極が開示されている。この技術は、電極表面上で
直接酸化されるべきNADHを、化学結合で電極表面上
に固定することにより、NADHと電極表面とを常に近
接させて酸化効率を向上させることで、感度の向上をが
図るものである。[0009] For example, Japanese Patent Publication No. 58-16694 discloses an enzyme electrode in which NADH is directly immobilized on the electrode surface by chemical bonding. This technology improves the sensitivity by fixing NADH, which is to be oxidized directly on the electrode surface, on the electrode surface by chemical bonding, thereby always bringing NADH close to the electrode surface and improving the oxidation efficiency. Is intended.
【0010】また、特開昭56−35050号公報に
は、NADHを直接電解酸化するのではなく、メルドラ
ブルーをメディエータとして用い、前記メディエータの
還元型を電解酸化する際の電流値から間接的にNADH
を測定する技術が開示されている。この技術では、メデ
ィエータの酸化還元サイクルを利用することで感度の向
上を図っている。JP-A-56-35050 discloses that, instead of electrolytically oxidizing NADH, Meldra Blue is used as a mediator and the current value when electrolytically oxidizing the reduced form of the mediator is used. NADH
There is disclosed a technique for measuring the temperature. In this technique, the sensitivity is improved by using a redox cycle of a mediator.
【0011】そして、特表平1−503409号公報に
は、活性化炭素粒子または活性化グラファイト粒子を天
然樹脂または合成樹脂等の結合剤で結合した多孔質かつ
不均質の樹脂結合層からなる活性化炭素電極を使用した
NADHの電気化学的測定方法が開示されている。この
技術における感度の向上の原因は明瞭ではないが、活性
化炭素または活性化グラファイトの多孔質で不均質な構
造が、電極の実効面積を増大させていることが原因と推
察される。さらに、活性化炭素素または活性化グラファ
イトがNADHとの適合性に優れ、他の材質の電極に比
べて速やかにNADHを酸化できることも感度向上の一
因と推察される。Japanese Patent Application Laid-Open Publication No. 1-503409 discloses an active carbon layer or activated graphite particle comprising a porous and heterogeneous resin binding layer in which a binding agent such as a natural resin or a synthetic resin is used to bind the activated carbon particles or the activated graphite particles. An electrochemical measurement method of NADH using a carbonized electrode is disclosed. Although the cause of the improvement in sensitivity in this technique is not clear, it is assumed that the porous and heterogeneous structure of activated carbon or activated graphite increases the effective area of the electrode. Furthermore, it is supposed that activated carbon or activated graphite is excellent in compatibility with NADH and can oxidize NADH more quickly than electrodes made of other materials, which is also supposed to be a factor of the improvement in sensitivity.
【0012】[0012]
【発明が解決しようとする課題】これらのNADHまた
はNADPHの測定方法のなかで、光学的手法は、電気
化学的手法に比べ、複雑で高価な測定装置を必要とす
る。また、前記光学的手法のなかで、NADH等の紫外
部の光吸収を測定する方法では、光の波長領域が紫外部
であるために、光源および検出器ともに、安価で耐久性
に優れたものを得難いという問題がある。また、前記N
ADH等自体の蛍光を測定する方法若しくはNADH等
との反応で生成したレゾルフィンの蛍光を測定する方法
では、例えば尿を測定対象とする場合、共存物質として
含まれるタンパク質やビリルビン等の蛍光物質の影響を
避け難いという問題がある。Among these methods for measuring NADH or NADPH, the optical method requires a complicated and expensive measuring device as compared with the electrochemical method. Among the above optical methods, in the method of measuring ultraviolet light absorption such as NADH, since the wavelength region of light is ultraviolet, both the light source and the detector are inexpensive and have excellent durability. There is a problem that it is difficult to obtain. The N
In the method of measuring the fluorescence of ADH or the like itself or the method of measuring the fluorescence of resorufin generated by the reaction with NADH or the like, for example, when measuring urine, the influence of a fluorescent substance such as a protein or bilirubin contained as a coexisting substance is used. There is a problem that it is difficult to avoid.
【0013】前記電気化学的手法は、先に述べたよう
に、簡易で安価な測定装置を使用して、簡便に測定を行
うことができるという利点がある。しかし、前記各種の
試みによって感度の向上が図られてはいるものの、依
然、検出下限濃度は、0.1〜1mmol/L程度と充
分でなく、感度の面で光学的手法には及ばない。酵素活
性測定のためのNADHまたはNADPHの検出下限濃
度としては10μmol/L程度が望まれるが、感度が
低い従来の電気化学的な測定方法では、酵素活性や酵素
基質濃度の測定を行うことは、実質的に困難である。As described above, the electrochemical method has an advantage that the measurement can be easily performed using a simple and inexpensive measuring device. However, although the sensitivity has been improved by the above-described various attempts, the lower detection limit concentration is still insufficient at about 0.1 to 1 mmol / L, which is inferior to optical methods in terms of sensitivity. The lower detection limit of NADH or NADPH for enzyme activity measurement is desired to be about 10 μmol / L. However, in a conventional electrochemical measurement method having low sensitivity, it is difficult to measure enzyme activity or enzyme substrate concentration. It is practically difficult.
【0014】そこで、本発明の目的は、高い感度でNA
DHまたはNADPHの濃度を測定することが可能なN
ADHまたはNADPHの電気化学的測定方法を提供す
ることである。Therefore, an object of the present invention is to provide a high sensitivity NA
N capable of measuring the concentration of DH or NADPH
It is to provide a method for electrochemical measurement of ADH or NADPH.
【0015】[0015]
【課題を解決するための手段】前記目的を達成するため
に、本発明のNADHまたはNADPHの測定方法は、
少なくとも作用極および対極の2つの電極を用いてNA
DHまたはNADPHの濃度を電気化学的に測定する方
法であって、前記作用極に対しNADHまたはNADP
Hの電解が起こらない電位範囲で一定電位を印加し、そ
の後、前記作用極にNADHまたはNADPHの電解が
起こる電位範囲でパルス電位を印加し、このパルス電位
を印加してから10〜1000ミリ秒後に前記作用極と
前記対極との間に通ずる電流を測定する方法である。To achieve the above object, a method for measuring NADH or NADPH according to the present invention comprises:
NA using at least two electrodes, a working electrode and a counter electrode
A method for electrochemically measuring the concentration of DH or NADPH, wherein NADH or NADP is applied to the working electrode.
A constant potential is applied in a potential range in which H electrolysis does not occur, and then a pulse potential is applied to the working electrode in a potential range in which NADH or NADPH electrolysis occurs, and 10 to 1000 milliseconds after applying the pulse potential This is a method of measuring a current flowing between the working electrode and the counter electrode later.
【0016】本発明の測定方法において、前記測定方法
における一連の操作を1サイクルとし、この操作を2サ
イクル以上繰り返し、各サイクルで測定した電流の平均
値を算出することが好ましい。In the measuring method of the present invention, it is preferable that a series of operations in the measuring method is one cycle, and this operation is repeated for two or more cycles, and an average value of the current measured in each cycle is calculated.
【0017】この際、2サイクル以上の操作の繰り返し
を時間的に連続して行うことが好ましい。これにより、
一つのサイクルの終点とつぎのサイクル始点において、
NADH等の電解が起こる電位範囲のパルス電位からN
ADH等の電解が起こらない電位範囲の一定電位へ実質
的に瞬間に電位が変動して前記一定電位に保持されるこ
ととなり、これによって電極が安定化されるからであ
る。At this time, it is preferable to repeat the operation for two cycles or more continuously in time. This allows
At the end of one cycle and the beginning of the next cycle,
From the pulse potential in the potential range where electrolysis such as NADH occurs, to N
This is because the potential fluctuates substantially instantaneously to a constant potential within a potential range where electrolysis such as ADH does not occur, and is maintained at the constant potential, thereby stabilizing the electrode.
【0018】すなわち、図2において、Tが1サイクル
の時間、τがパルス電位印加時間、(T−τ)が前記一定
電位印加時間となる。上記のように、パルス電位から一
定電位へ実質的に瞬間に電位を変動させることで電極が
安定化されることがあるので、時間的に連続してサイク
ルを繰り返し、測定した電流の平均値を算出して濃度に
換算する場合では、(T−τ)は電極が安定化するのに必
要な時間とするのが望ましい。なお、図2において、E
iは前記一定電位を示し、△Eはパルス電位と一定電位
の差を示し、Iは作用極と対極との間に流れる電流を示
す。That is, in FIG. 2, T is the time of one cycle, τ is the pulse potential application time, and (T−τ) is the constant potential application time. As described above, the electrode may be stabilized by fluctuating the potential substantially instantaneously from the pulse potential to the constant potential.Therefore, the cycle is repeated continuously in time, and the average value of the measured current is calculated. In the case of calculating and converting to a concentration, (T−τ) is desirably a time required for the electrode to stabilize. In FIG. 2, E
i indicates the constant potential, ΔE indicates a difference between the pulse potential and the constant potential, and I indicates a current flowing between the working electrode and the counter electrode.
【0019】前記一定電位は、−500〜200mV
(vs.Ag/AgCl)であるのが望ましく、前記一
定電位の印加時間は、電極が安定する時間が好ましく、
具体的には1〜120秒の範囲が好ましく、特に好まし
くは2〜10秒である。また、前記パルス電位は、10
0〜1000mV(vs.Ag/AgCl)であるのが
望ましい。前記一定電位、前記一定電位印加時間および
前記パルス電位は、測定試料の温度、pH、使用する電
極の材質と種類などによって好適な値が変動するから、
必要な感度、S/N比などから最適な組み合わせを選ぶ
ことが好ましい。パルス電位を印加してから作用極と対
極の間を通ずる電流を測定するまでの時間は、前記所定
の範囲の時間であるが、この時間も、測定試料の温度、
pH、使用する電極の材質と種類などによって好適な値
が変動するから、必要な感度、S/N比などから最適な
値を選ぶことが好ましい。また、前記作用極の材質は特
に限定されるものではなく、必要に応じて、プラスティ
ックフォームドカーボン、グラッシーカーボン、金、白
金、銀など従来公知の材質の電極を使用することができ
る。このなかで、プラスティックフォームドカーボンが
好ましい。前記作用極の形態についても同様であって、
プローブ型の固体電極であっても良いし、印刷技術を用
いた電極であってもよく、カーボンペースト電極のよう
なペースト電極であっても良い。一方、対極について
も、特に制限するものではなく、従来公知のものを使用
することができ、例えば、白金電極、グラッシーカーボ
ン、金、銀、印刷カーボン、カーボンペースト等が使用
できる。また、本発明において、参照電極を使用するこ
とが好ましく、例えば、銀/塩化銀(Ag/AgCl)
電極などを使用できる。The constant potential is -500 to 200 mV
(Vs. Ag / AgCl), and the application time of the constant potential is preferably a time during which the electrode is stabilized.
Specifically, the range is preferably from 1 to 120 seconds, particularly preferably from 2 to 10 seconds. The pulse potential is 10
It is desirable to be 0-1000 mV (vs. Ag / AgCl). The constant potential, the constant potential application time and the pulse potential, the temperature of the measurement sample, pH, since a suitable value varies depending on the material and type of the electrode to be used,
It is preferable to select an optimal combination from necessary sensitivity, S / N ratio, and the like. The time from the application of the pulse potential to the measurement of the current passing between the working electrode and the counter electrode is the time in the above-mentioned predetermined range.
Since a suitable value varies depending on the pH, the material and type of the electrode used, and the like, it is preferable to select an optimal value from the required sensitivity, S / N ratio, and the like. The material of the working electrode is not particularly limited, and if necessary, an electrode of a conventionally known material such as plastic formed carbon, glassy carbon, gold, platinum, or silver can be used. Among these, plastic-formed carbon is preferred. The same applies to the form of the working electrode,
It may be a probe-type solid electrode, an electrode using a printing technique, or a paste electrode such as a carbon paste electrode. On the other hand, the counter electrode is not particularly limited, and a conventionally known one can be used. For example, a platinum electrode, glassy carbon, gold, silver, printed carbon, carbon paste, or the like can be used. In the present invention, it is preferable to use a reference electrode, for example, silver / silver chloride (Ag / AgCl).
Electrodes and the like can be used.
【0020】また、様々な妨害物質の影響を回避したい
場合には、前記作用極を妨害除去膜によって被覆するこ
とが好ましい。前記妨害除去膜とは、電極の汚染、NA
DHまたはNADPH以外の電気化学活性種などの影響
を低減させるための膜であって、例えば、血液、尿、随
液などの体液を測定試料として使用する場合に電極表面
へタンパク質が吸着するのを妨ぐための透析膜、セルロ
ースアセテート膜、ナフィオン膜等があげられる。When it is desired to avoid the influence of various interfering substances, it is preferable to cover the working electrode with an interference removing film. The interference removal film refers to electrode contamination, NA
This is a membrane for reducing the influence of electrochemically active species other than DH or NADPH. For example, when a bodily fluid such as blood, urine, or any other fluid is used as a measurement sample, it is necessary to prevent protein from adsorbing to the electrode surface. Examples include a dialysis membrane, a cellulose acetate membrane, and a Nafion membrane for blocking.
【0021】本発明の測定方法のNADHまたはNAD
PHの電気化学的な濃度測定では、検出下限10μmo
l/Lの実現が可能である。したがって、本発明の測定
方法によりNADHまたはNADPHを測定することに
より、NADHまたはNADPHを補酵素とする酵素の
活性測定や酵素基質濃度測定が可能となる。NADH or NAD of the measuring method of the present invention
In the electrochemical concentration measurement of PH, the lower detection limit is 10 μmo
1 / L is possible. Therefore, by measuring NADH or NADPH by the measurement method of the present invention, it becomes possible to measure the activity of an enzyme having NADH or NADPH as a coenzyme and the concentration of an enzyme substrate.
【0022】[0022]
【発明の実施の形態】本発明の実施形態を実施例により
比較例と併せて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to examples and comparative examples.
【0023】なお、以下の実施例および比較例における
測定条件は、以下のとおりである。まず、電極は、通常
の3電極系(プローブ型固体電極)を用いた。作用極と
しては、プラスティックフォームドカーボン(PFC)
電極(φ3mm:ビー・エー・エス株式会社製)を用
い、対極としては、白金電極(φ1mm:市村金属株式
会社製)を、参照電極としては、銀/塩化銀(Ag/A
gCl)電極(ビー・エー・エス社製)をそれぞれ用い
た。作用極表面は、タンパクなどの妨害除去のため、透
析膜(Seamless Cellulose Tub
ing、輸入販売元:三光純薬社)で被覆した。測定溶
液は、0.1mol/Lリン酸緩衝液をベース溶液とし
て、NADH濃度が5〜200μmol/Lとなるよう
に調整したものを用いた。測定溶液の温度は、測定中2
5℃で一定となるように調整した。The measurement conditions in the following examples and comparative examples are as follows. First, an ordinary three-electrode system (probe-type solid electrode) was used as an electrode. The working electrode is plastic formed carbon (PFC)
An electrode (φ3 mm: manufactured by BAS Co., Ltd.) was used. A platinum electrode (φ1 mm: manufactured by Ichimura Metal Co., Ltd.) was used as a counter electrode, and silver / silver chloride (Ag / A) was used as a reference electrode.
gCl) electrodes (manufactured by BAS). The working electrode surface is provided with a dialysis membrane (Seamless Cellulose Tub) to remove interference such as proteins.
ing, an import distributor: Sanko Junyaku). As a measurement solution, a solution prepared by using a 0.1 mol / L phosphate buffer as a base solution and adjusting the NADH concentration to 5 to 200 μmol / L was used. The temperature of the measurement solution is 2 during the measurement.
It was adjusted to be constant at 5 ° C.
【0024】(実施例1)上記の条件の下、パルス電位
を用いたNADHの測定を行った。パルス電位印加前に
作用極へ印加しておく初期電位は、−250mV(v
s.Ag/AgCl)とした。パルス電位は、初期電位
からNADHを酸化し得る電位へと印加電位をパルス的
に(実質的に瞬間に)引き上げる際の電位であるが、本
実施例においては500mV(vs.Ag/AgCl)
とした。そして、パルス電位印加後40ミリ秒後の電流
値を測定した。パルス電位を印加する時間幅は40ミリ秒
とした。そして、これらの操作を1サイクルとし、この
1サイクルの時間を3秒として(すなわち前記一定電位
印加時間を3000−40=2960ミリ秒として)1
0サイクルの操作を時間的に連続して行い、10回の測
定の電流の平均値を算出した。この電流の平均値とNA
DH濃度との関係を、図1のグラフに示す。(Example 1) Under the above conditions, NADH was measured using a pulse potential. The initial potential applied to the working electrode before application of the pulse potential is -250 mV (v
s. (Ag / AgCl). The pulse potential is a potential when the applied potential is increased in a pulsed manner (substantially instantaneously) from an initial potential to a potential that can oxidize NADH. In this embodiment, the pulse potential is 500 mV (vs. Ag / AgCl).
And Then, the current value 40 ms after the application of the pulse potential was measured. The time width for applying the pulse potential was 40 milliseconds. These operations are defined as one cycle, and the time of one cycle is set to 3 seconds (that is, the constant potential application time is set to 3000-40 = 2960 milliseconds).
The operation of 0 cycle was continuously performed temporally, and the average value of the current of 10 measurements was calculated. The average value of this current and NA
The relationship with the DH concentration is shown in the graph of FIG.
【0025】前記結果から、この実施例では、NADH
濃度1.0mmol/Lまでの良好な直線性(相関係
数:r=0.999)が得られた。そして、計算によっ
てNADHの検出下限濃度を求めたところ、10μmo
l/Lであった。なお、検出下限濃度の計算は、検量線
(電流―濃度プロットの回帰直線)上で、下記の式(数
1)を与えるXの値(NADH濃度)とした。From the above results, in this embodiment, NADH
Good linearity (correlation coefficient: r = 0.999) was obtained up to a concentration of 1.0 mmol / L. Then, the lower detection limit concentration of NADH was determined by calculation.
1 / L. The lower detection limit concentration was calculated on the calibration curve (regression line of the current-concentration plot) as the value of X (NADH concentration) which gives the following equation (Equation 1).
【0026】(数1) Y = b + 3Sy/x X:NADH濃度 Y:電流値 b:検量線の切片 Sy/x:統計量 Sy/x={Σ(yi−ya)2/
n−2}2 yi:i番目の測定値(電流値) ya:yiの平均値 n:測定ポイント数(yiの数)(Equation 1) Y = b + 3Sy / x X: NADH concentration Y: Current value b: Intercept of calibration curve Sy / x: Statistics Sy / x = {Σ (yi-ya) 2 /
n-2} 2 yy: i-th measured value (current value) ya: average value of yi n: number of measurement points (number of yi)
【0027】(比較例1)以下に示すように、パルス電
位を用いずに一定電位を用いて定常電流を測定する方法
でNADH濃度を測定した。(Comparative Example 1) As shown below, the NADH concentration was measured by a method of measuring a steady-state current using a constant potential without using a pulse potential.
【0028】作用極に650mV(vs.Ag/AgC
l)の一定電位を印加して、NADH濃度を測定し、N
ADH濃度と電流の関係を調べた。印加電位以外の条件
は、パルス電位を用いた実施例1と同一とした。この結
果を図3のグラフに示す。同図に示すように、1.0m
mol/Lまでの良好な直線性(相関係数:r=0.9
99)を得られたものの、実施例1と同様の方法で算出
したNADHの検出下限濃度は、37.7μmol/L
であった。The working electrode has a potential of 650 mV (vs. Ag / AgC).
l) is applied, and the NADH concentration is measured.
The relationship between ADH concentration and current was examined. Conditions other than the applied potential were the same as those in Example 1 using the pulse potential. The results are shown in the graph of FIG. As shown in FIG.
good linearity up to mol / L (correlation coefficient: r = 0.9
99) was obtained, but the lower detection limit concentration of NADH calculated by the same method as in Example 1 was 37.7 μmol / L.
Met.
【0029】これら実施例1および比較例1の結果か
ら、パルス電位を用いた本発明の測定法によれば、検出
下限濃度で比較して、一定電位を用いた定常電流測定に
対して、約4倍の感度向上が得られたといえる。From the results of Example 1 and Comparative Example 1, according to the measurement method of the present invention using the pulse potential, compared with the lower detection limit concentration, the steady-state current measurement using the constant potential is about It can be said that a four-fold improvement in sensitivity was obtained.
【0030】(実施例2)D−3−ヒドロキシ酪酸脱水
素酵素(HBDH)を用いたD−3−ヒドロキシ酪酸の
測定を行った。この酵素反応は、下記の式(化2)で表
される。この式から分かるとおり、NADHの生成量を
測定することにより、D−3−ヒドロキシ酪酸濃度(基
質濃度)を定量することができる。(Example 2) D-3-hydroxybutyric acid was measured using D-3-hydroxybutyrate dehydrogenase (HBDH). This enzymatic reaction is represented by the following formula (Formula 2). As can be seen from this equation, the D-3-hydroxybutyric acid concentration (substrate concentration) can be determined by measuring the amount of NADH produced.
【0031】(化2) (Formula 2)
【0032】実施例1と同様の条件の下、パルス電位印
加後の電流値の測定し、測定した電流値とD−3−ヒド
ロキシ酪酸(基質)濃度との関係を調べた。その結果を
図4のグラフに示す。同図のグラフから分かるように、
70μmol/Lまでの良好な直線性(相関係数:r=
0.990)が得られた。また、実施例1と同様の方法
で算出された基質濃度の検出下限は、9.23μmol
/Lであった。Under the same conditions as in Example 1, the current value after the application of the pulse potential was measured, and the relationship between the measured current value and the D-3-hydroxybutyric acid (substrate) concentration was examined. The results are shown in the graph of FIG. As can be seen from the graph in FIG.
Good linearity up to 70 μmol / L (correlation coefficient: r =
0.990). The lower limit of detection of the substrate concentration calculated by the same method as in Example 1 was 9.23 μmol.
/ L.
【0033】[0033]
【発明の効果】以上のように、本発明の測定方法は、迅
速かつ簡便な電気化学的な測定方法であり、かつNAD
HまたはNADPHを検出限界下限濃度10μmol/
L以下の高い感度で測定できる方法である。すなわち、
本発明の測定方法の適用により、微量のNADH等を迅
速かつ簡便に測定できるとともに、NADH等を補酵素
とする酵素の活性やその基質濃度の迅速かつ簡便な測定
も可能となる。As described above, the measuring method of the present invention is a quick and simple electrochemical measuring method,
H or NADPH at a lower detection limit concentration of 10 μmol /
It is a method that can be measured with a high sensitivity of L or less. That is,
By applying the measurement method of the present invention, a trace amount of NADH or the like can be measured quickly and simply, and the activity of an enzyme using NADH or the like as a coenzyme and the concentration of its substrate can be measured quickly and simply.
【図1】本発明の一実施例における電流とNADH濃度
との関係を示すグラフである。FIG. 1 is a graph showing the relationship between current and NADH concentration in one embodiment of the present invention.
【図2】本発明の測定方法の一例の説明図である。FIG. 2 is an explanatory diagram of an example of the measuring method of the present invention.
【図3】比較例における電流とNADH濃度との関係を
示すグラフである。FIG. 3 is a graph showing the relationship between current and NADH concentration in a comparative example.
【図4】本発明のその他の実施例における電流と基質濃
度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between current and substrate concentration in another example of the present invention.
Claims (12)
極を用いて還元型ニコチンアミドアデニンジヌクレオチ
ド(NADH)または還元型ニコチンアミドアデニンジ
ヌクレオチドフォスフェート(NADPH)の濃度を電
気化学的に測定する方法であって、前記作用極に対しN
ADHまたはNADPHの電解が起こらない電位範囲で
一定電位を印加し、その後、前記作用極に対しNADH
またはNADPHの電解が起こる電位範囲でパルス電位
を印加し、このパルス電位を印加してから10〜100
0ミリ秒後に前記作用極と前記対極との間に通ずる電流
を測定するNADHまたはNADPHの測定方法。1. A method for electrochemically measuring the concentration of reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) using at least two electrodes, a working electrode and a counter electrode. And the working electrode is N
A constant potential is applied within a potential range where electrolysis of ADH or NADPH does not occur, and then NADH is applied to the working electrode.
Alternatively, a pulse potential is applied within a potential range in which NADPH electrolysis occurs, and 10 to 100 after applying the pulse potential.
A method for measuring NADH or NADPH, which measures a current flowing between the working electrode and the counter electrode after 0 millisecond.
の操作を1サイクルとし、この操作を2サイクル以上繰
り返し、各サイクルで測定した電流の平均値を算出して
NADH濃度またはNADPH濃度に換算する測定方
法。2. A series of operations in the measurement method according to claim 1 is defined as one cycle, and this operation is repeated for two or more cycles, and an average value of current measured in each cycle is calculated and converted into a NADH concentration or a NADPH concentration. Measurement method to be performed.
連続して行う請求項2に記載の測定方法。3. The method according to claim 2, wherein a series of operations of two or more cycles are performed continuously in time.
らない範囲で一定電位を印加する時間が、電極が安定す
るのに必要な時間である請求項1〜3のいずれか一項に
記載の測定方法。4. The measuring method according to claim 1, wherein the time for applying a constant potential within a range in which electrolysis of NADH or NADPH does not occur is a time required for the electrodes to stabilize.
らない範囲での一定電位が−500〜200mV(v
s.Ag/AgCl)である請求項1〜4のいずれか一
項に記載の測定方法。5. A constant potential within a range in which electrolysis of NADH or NADPH does not occur is -500 to 200 mV (v
s. (Ag / AgCl) is the measurement method according to any one of claims 1 to 4.
らない範囲で一定電位を印加する時間が、1秒〜120
秒の範囲である請求項1〜5のいずれか一項に記載の測
定方法。6. A time for applying a constant potential within a range in which electrolysis of NADH or NADPH does not occur is 1 second to 120 seconds.
The measuring method according to any one of claims 1 to 5, which is in a range of seconds.
らない範囲で一定電位を印加する時間が、2秒〜10秒
の範囲である請求項1〜5のいずれか一項に記載の測定
方法。7. The measuring method according to claim 1, wherein the time for applying a constant potential within a range in which electrolysis of NADH or NADPH does not occur is in a range of 2 seconds to 10 seconds.
s.Ag/AgCl)である請求項1〜7のいずれか一
項に記載の測定方法。8. A pulse potential of 100 to 1000 mV (v
s. (Ag / AgCl). The method according to claim 1.
ーボン電極である請求項1〜8のいずれか一項に記載の
測定方法。9. The measuring method according to claim 1, wherein the working electrode is a plastic formed carbon electrode.
ている請求項1〜9のいずれか一項に記載の測定方法。10. The measuring method according to claim 1, wherein the working electrode is covered with an interference removing film.
の方法を用いてNADH濃度またはNADPH濃度を測
定することにより、NADHまたはNADPHを補酵素
とする酵素の活性を測定する酵素活性の測定方法。11. An enzyme activity for measuring the activity of an enzyme having NADH or NADPH as a coenzyme by measuring the concentration of NADH or NADPH using the method according to any one of claims 1 to 10. Measuring method.
の方法を用いてNADH濃度またはNADPH濃度を測
定することにより、NADHまたはNADPHを補酵素
とする酵素の基質濃度を測定する酵素基質濃度の測定方
法。12. An enzyme substrate for measuring the concentration of a substrate of an enzyme having NADH or NADPH as a coenzyme by measuring the concentration of NADH or NADPH by using the method according to any one of claims 1 to 10. How to measure the concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23834097A JP3875366B2 (en) | 1997-09-03 | 1997-09-03 | Method for measuring reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23834097A JP3875366B2 (en) | 1997-09-03 | 1997-09-03 | Method for measuring reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1175894A true JPH1175894A (en) | 1999-03-23 |
JP3875366B2 JP3875366B2 (en) | 2007-01-31 |
Family
ID=17028757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23834097A Expired - Fee Related JP3875366B2 (en) | 1997-09-03 | 1997-09-03 | Method for measuring reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3875366B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021509719A (en) * | 2018-01-02 | 2021-04-01 | コリア リサーチ インスティテュート オブ ケミカル テクノロジー | Biosensor electrodes for NADH measurement and their manufacturing methods |
-
1997
- 1997-09-03 JP JP23834097A patent/JP3875366B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021509719A (en) * | 2018-01-02 | 2021-04-01 | コリア リサーチ インスティテュート オブ ケミカル テクノロジー | Biosensor electrodes for NADH measurement and their manufacturing methods |
US11782010B2 (en) | 2018-01-02 | 2023-10-10 | Korea Research Institute Of Chemical Technology | Electrode for biosensor for NADH measurement and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3875366B2 (en) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11091790B2 (en) | Determining analyte concentration from variant concentration distribution in measurable species | |
Bertocchi et al. | Amperometric ammonium ion and urea determination with enzyme-based probes | |
Abbaspour et al. | Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films | |
JP4385219B2 (en) | Concentration measurement method | |
Zhang et al. | A novel nonenzymatic sensor based on LaNi0. 6Co0. 4O3 modified electrode for hydrogen peroxide and glucose | |
Cui et al. | Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip | |
Zen et al. | Voltammetric determination of serotonin in human blood using a chemically modified electrode | |
JPH0777511A (en) | Biosensor for gas measurement and preparation thereof | |
Dempsey et al. | Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a l-lactate biosensor | |
EP1164370B1 (en) | Method of determining substrate, and biosensor | |
Lobo-Castanon et al. | A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate | |
Casero et al. | Peroxidase enzyme electrodes as nitric oxide biosensors | |
JP2000035413A (en) | Biosensor using dehydrogenase and coenzyme | |
Tang et al. | Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2, 6-dichloroindophenol as a redox coupling agent | |
JP3875366B2 (en) | Method for measuring reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) | |
Boujtita et al. | Biosensors for analysis of ethanol in foods | |
Gunasingham et al. | Fiber-optic glucose sensor with electrochemical generation of indicator reagent | |
JPS6152949B2 (en) | ||
JP2004024254A (en) | Method for simply measuring myoinositol | |
JP3803945B2 (en) | Hydrogen peroxide analytical enzyme electrode | |
JP3078966B2 (en) | Lactic acid sensor | |
JP2004069582A (en) | Biosensor | |
KR0166939B1 (en) | Biosensor | |
JP2712290B2 (en) | Measurement method for biological samples | |
de‐los‐Santos‐Álvarez et al. | Electrochemical and catalytic properties of the adenine coenzymes FAD and coenzyme A on pyrolytic graphite electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20061024 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20061026 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20101102 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20121102 |
|
LAPS | Cancellation because of no payment of annual fees |