[go: up one dir, main page]

JPH1168159A - Group-iii nitride semiconductor element and manufacture thereof - Google Patents

Group-iii nitride semiconductor element and manufacture thereof

Info

Publication number
JPH1168159A
JPH1168159A JP4455198A JP4455198A JPH1168159A JP H1168159 A JPH1168159 A JP H1168159A JP 4455198 A JP4455198 A JP 4455198A JP 4455198 A JP4455198 A JP 4455198A JP H1168159 A JPH1168159 A JP H1168159A
Authority
JP
Japan
Prior art keywords
layer
barrier layer
well
nitride semiconductor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4455198A
Other languages
Japanese (ja)
Other versions
JP3646502B2 (en
Inventor
Norikatsu Koide
典克 小出
Masayoshi Koike
正好 小池
Shinya Asami
慎也 浅見
Makoto Asai
誠 浅井
Katsuhisa Sawazaki
勝久 澤崎
Naoki Kaneyama
直樹 兼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP4455198A priority Critical patent/JP3646502B2/en
Publication of JPH1168159A publication Critical patent/JPH1168159A/en
Application granted granted Critical
Publication of JP3646502B2 publication Critical patent/JP3646502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a group-III semiconductor element of a quantum well structure which can prevent the sublimation of a well layer at the time of forming a barrier layer therein, and can control its film thickness with good crystallinity and enhance luminous efficiency. SOLUTION: N2 or H2 gas is supplied at a flow rate of 20 liters/min, an NH3 gas is supplied at a flow rate of 10 liters/min and a TMG is supplied at a flow rate of 2.0×10<-4> mol./min at a substrate temperature of 900 deg.C. to form a barrier layer 51 of GaN having a thickness of about 35 Å. Next, the substrate temperature is reduced down to 600 deg.C, and the supply amount of H2 or NH3 is made constant, under which condition TMG is supplied at a flow rate of 7.2×10<-5> mol./min and TMI is supplied at a flow rate of 0.19×10<-4> mol./min to form a well layer 52 of In0.20 Ga0.80 N having a thickness of about 35 Å. Subsequently, the substrate temperature is kept at 600 deg.C, N2 or H2 is supplied at a flow rate of 20 lit./min, NH3 is supplied at a flow rate of 10 lit./min, and TMG is supplied at a flow rate of 2.0×10<-4> mol./min to form a cap layer 53. (a) Then the substrate temperature is increased from 600 deg.C to 900 deg.C, during which the cap layer 53 disappears due to pyrolysis reaction. (b) When the substrate temperature reaches 900 deg.C, the next barrier layer 51 is formed on the well layer 52 under these conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3族窒化物半導
体、例えばAlXGaYIn1-X-YNから成る素子の製造方法に関
する。特に、井戸層とバリア層とが積層された量子井戸
構造を有した素子の製造方法に関する。
The present invention relates to the group III nitride semiconductor, for example, a method of manufacturing a device comprising a Al X Ga Y In 1-XY N. In particular, the present invention relates to a method for manufacturing a device having a quantum well structure in which a well layer and a barrier layer are stacked.

【0002】[0002]

【従来の技術】従来、3族窒化物半導体においては、発
光ダイオードの発光層、半導体レーザの活性層として、
井戸層と、井戸層よりバンドギャップの広いバリア層と
から成る量子井戸構造を用い、発光強度を向上させた技
術がある。例えば、Ga0.57In0.43Nから成る井戸層を Ga
0.95In0.05NとAl0.1Ga0.9Nから成るバリア層で挟んだ単
一量子井戸(SQW)構造を有した素子(JAPANESE JOUR
NAL OF APPLIED PHYSICS(JJAP),Vol.34(1995)pp.L797-L
799)や、Ga0.8In0.2N から成る井戸層とGa0.95In0.05N
から成るバリア層とが所定周期で積層された多重量子井
戸(MQW)構造を有した素子(JJAP,Vol.35(1996)pp.L
74-L76)等が知られている。これら3族窒化物半導体の
製造における成長温度は井戸層<バリア層となってお
り、発光効率の向上のためには量子井戸構造を構成する
各層の結晶性と共に、各々の膜厚制御が重要なファクタ
ーとなっている。
2. Description of the Related Art Conventionally, in a group III nitride semiconductor, as a light emitting layer of a light emitting diode and an active layer of a semiconductor laser,
There is a technique in which a light emission intensity is improved by using a quantum well structure including a well layer and a barrier layer having a wider band gap than the well layer. For example, a well layer made of Ga 0.57 In 0.43 N
A device with a single quantum well (SQW) structure sandwiched between barrier layers consisting of 0.95 In 0.05 N and Al 0.1 Ga 0.9 N (JAPANESE JOUR
NAL OF APPLIED PHYSICS (JJAP), Vol. 34 (1995) pp. L797-L
799) and a well layer consisting of Ga 0.8 In 0.2 N and Ga 0.95 In 0.05 N
Having a multiple quantum well (MQW) structure in which a barrier layer composed of a plurality of layers is stacked at a predetermined period (JJAP, Vol. 35 (1996) pp. L)
74-L76) are known. The growth temperature in the production of these group III nitride semiconductors is that of a well layer <a barrier layer. In order to improve the luminous efficiency, it is important to control the crystallinity of each layer constituting the quantum well structure and the thickness of each layer. Factor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、井戸層の成長後にバリア層を成長させるた
めの昇温過程において、熱分解により井戸層の一部が昇
華し、バリア層を成長させる際には井戸層が当初の膜厚
より薄くなってしまう。又、昇華により井戸層表面の結
晶性が悪化するという問題がある。加えて、井戸層の面
内の一部分にInの蒸発による組成の不均一な部分ができ
る。又、昇温時間にバラツキがあると、結果として量子
井戸構造、特にMQW構造の場合では各井戸層の膜厚が
不均一になり、不均一な量子準位の形成に伴う発光効率
の低下、不要な発光中心の発生等の問題がある。
However, in the above prior art, in the temperature raising process for growing the barrier layer after the growth of the well layer, a part of the well layer is sublimated by thermal decomposition to grow the barrier layer. In some cases, the well layer becomes thinner than the initial thickness. In addition, there is a problem that the crystallinity of the well layer surface is deteriorated by the sublimation. In addition, a portion having a non-uniform composition due to evaporation of In is formed in a part of the well layer in the plane. In addition, if the temperature rise time varies, as a result, in the case of the quantum well structure, particularly in the case of the MQW structure, the thickness of each well layer becomes non-uniform, and the luminous efficiency decreases due to the formation of non-uniform quantum levels. There is a problem such as generation of an unnecessary emission center.

【0004】従って、本発明の目的は、上記課題に鑑
み、バリア層を成長させる際に井戸層の昇華を防止し、
不要な発光中心の発生を防止し、発光効率を向上させる
ことである。
Accordingly, it is an object of the present invention to prevent sublimation of a well layer when growing a barrier layer,
It is an object to prevent generation of unnecessary light emission centers and improve light emission efficiency.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の手段によれば、3族窒化物半導
体から成る井戸層とバリア層との積層構造を少なくとも
1周期有する量子井戸構造を有した3族窒化物半導体素
子の製造方法において、井戸層の形成後に、井戸層の形
成温度付近で井戸層よりバンドギャップが広く、バリア
層と同じ若しくは狭いバンドギャップを有するキャップ
層を形成し、その後、バリア層の形成時の温度まで昇温
する過程において熱分解によりキャップ層を除去し、井
戸層上にバリア層を形成する。これにより、バリア層の
形成時に、井戸層の昇華を防止して井戸層上にバリア層
を形成できるので、各井戸層の膜厚が均一になり、良好
な結晶性を維持することができる。これにより、不要な
発光中心の発生を防止し、発光効率を向上させることが
できる。
According to the first aspect of the present invention, there is provided a semiconductor device having at least one cycle of a stacked structure of a well layer and a barrier layer made of a group III nitride semiconductor. In the method of manufacturing a group III nitride semiconductor device having a quantum well structure, after formation of a well layer, a cap layer having a band gap wider than that of the well layer near the formation temperature of the well layer and having the same or smaller band gap as the barrier layer After that, the cap layer is removed by thermal decomposition in the process of raising the temperature to the temperature at the time of forming the barrier layer, and the barrier layer is formed on the well layer. Thereby, when forming the barrier layer, the sublimation of the well layer can be prevented and the barrier layer can be formed on the well layer. Therefore, the thickness of each well layer becomes uniform, and good crystallinity can be maintained. As a result, generation of unnecessary light emission centers can be prevented, and light emission efficiency can be improved.

【0006】望ましくは、請求項2に記載の手段の如
く、井戸層をAlX1GaY1In1-X1-Y1N(0≦X1≦1,0≦Y1≦1,
0≦X1+Y1≦1)で構成し、バリア層をAlX2GaY2In1-X2-Y2N
(0≦X2≦1,0≦Y2≦1, 0≦X2+Y2≦1)で構成し、キャップ
層をAlX3GaY3In1-X3-Y3N(0≦X3≦1,0≦Y3≦1, 0≦X3+Y3
≦1)で構成することである。又、請求項3に記載の手段
の如く、井戸層をGaX4In1-X4N(0≦X4≦1)で構成し、バ
リア層をAlX2GaY2In1-X2-Y2N(0≦X2≦1,0≦Y2≦1,0≦X2
+Y2≦1)で構成すること、請求項4に記載の手段の如
く、井戸層をGaX5In1-X5N(0≦X5<1)で構成し、バリア
層をAlX6Ga1-X6N(0≦X6≦1)で構成し、キャップ層をAl
X7Ga1-X7N(0≦X7≦1,X7≦X6)で構成すること、請求項5
に記載の手段の如く、井戸層をGaX5In1-X5N (0≦X5<1)
で構成し、バリア層をAlX6Ga1-X6N(0≦X6≦1)で構成
し、キャップ層をGaX8In1-X8N(0<X8≦1,X5<X8)で構成
すること、請求項6に記載の手段の如く、井戸層をGaX9
In1-X9N(0<X9<1)で構成し、バリア層とキャップ層をG
aN で構成することで、より良好が効果が得られる。
Preferably, the well layer is formed of Al X1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1 ≦ 1,0 ≦ Y1 ≦ 1,
0 ≦ X1 + Y1 ≦ 1), and the barrier layer is Al X2 Ga Y2 In 1-X2-Y2 N
(0 ≦ X2 ≦ 1,0 ≦ Y2 ≦ 1, 0 ≦ X2 + Y2 ≦ 1), and the cap layer is made of Al X3 Ga Y3 In 1-X3-Y3 N (0 ≦ X3 ≦ 1,0 ≦ Y3 ≦ 1, 0 ≦ X3 + Y3
≦ 1). Further, as in the means according to claim 3, the well layer is composed of Ga X4 In 1-X4 N (0 ≦ X4 ≦ 1), and the barrier layer is Al X2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ X2
+ Y2 ≦ 1), the well layer is made of Ga X5 In 1-X5 N (0 ≦ X5 <1), and the barrier layer is made of Al X6 Ga 1-X6. N (0 ≦ X6 ≦ 1), and the cap layer is made of Al
X7Ga1 -X7N (0≤X7≤1, X7≤X6)
The well layer is made of Ga X5 In 1-X5 N (0 ≦ X5 <1)
, The barrier layer is composed of Al X6 Ga 1-X6 N (0 ≦ X6 ≦ 1), and the cap layer is composed of Ga X8 In 1-X8 N (0 <X8 ≦ 1, X5 <X8) The well layer is made of Ga X9.
In 1-X9 N (0 <X9 <1), and barrier layer and cap layer are G
By using aN, better effects can be obtained.

【0007】請求項7に記載の手段によれば、キャップ
層の厚さを、バリア層の形成温度への昇温が完了し、バ
リア層の形成開始時点において消滅できる厚さとするこ
とにより、井戸層の膜厚をより精度良く均一化できる。
請求項8に記載の手段によれば、キャップ層の成長速度
を10Å/分以上としたので、結晶状態の良好な発光層
(井戸層)が得られるため、発光出力が弱かったり、発
光層の発光にムラが生じたりすることがない。成長速度
を10Å/分以上とした理由は、キャップ層の結晶成長
温度下においても、Inが昇華し易い等の理由で、発光
層が結晶構造上不安定であるため、発光層を短い時間内
にキャップ層で覆う必要があるためである。この成長条
件は、青色発光に望ましい。請求項9に記載の手段によ
れば、キャップ層の成長速度を15Å/分以上、30Å
/分以下としたので、結晶状態の良好な発光層(井戸
層)が得られるため、発光出力が弱かったり、発光層の
発光にムラが生じたりすることがない。成長速度を15
Å/分以上とした理由は、キャップ層の結晶成長温度下
においても、Inが昇華し易い等の理由で、発光層が結
晶構造上不安定であるため、発光層を短い時間内にキャ
ップ層で覆う必要があるためである。また、キャップ層
の成長速度が30Å/分以上となると、キャップ層の結
晶成長速度が速過ぎ、キャップ層が均一に成長しにくく
なり、キャップ層の厚み若しくは構造にムラができ易く
なるため、キャップ層熱分解状態にもムラが生じ、これ
が発光強度の発光層内における空間的ムラの発生原因に
なったり、発光波長に色彩上望ましくないムラを生じさ
せる原因になったりする。このため、キャップ層の成長
速度は30Å/分以下が望ましい。この成長条件は、緑
色発光に望ましい。また、緑色LEDを製造する場合の
方が、青色LEDを製造する場合よりもキャップ層の結
晶成長速度に対する条件が厳しくなる理由は、緑色LE
Dの井戸層のほうが、インジウム(In)の組成比が大
きいため、結晶構造上より不安定であるためである。
[0007] According to the means of the present invention, by setting the thickness of the cap layer to a thickness that can be eliminated at the start of the barrier layer formation when the temperature rise to the formation temperature of the barrier layer is completed. The thickness of the layer can be made uniform with higher accuracy.
According to the means of claim 8, since the growth rate of the cap layer is set to 10 ° / min or more, a light emitting layer (well layer) having a good crystal state can be obtained, so that the light emitting output is weak or the light emitting layer has a low light emitting layer. There is no unevenness in light emission. The reason why the growth rate is set to 10 ° / min or more is that the light emitting layer is unstable in crystal structure due to the fact that In is easily sublimated even at the crystal growth temperature of the cap layer. This is because it is necessary to cover with a cap layer. This growth condition is desirable for blue light emission. According to the means of claim 9, the growth rate of the cap layer is 15 ° / min or more and 30 ° / min.
/ Min or less, a light-emitting layer (well layer) with a good crystalline state can be obtained, so that the light-emission output is not weak and the light-emission of the light-emitting layer is not uneven. 15 growth rate
The reason why the rate is set to 発 光 / min or more is that the light emitting layer is unstable in crystal structure because of the fact that In easily sublimates even under the crystal growth temperature of the cap layer. It is necessary to cover with. Further, when the growth rate of the cap layer is 30 ° / min or more, the crystal growth rate of the cap layer is too high, so that the cap layer is difficult to grow uniformly, and the thickness or structure of the cap layer is likely to be uneven. Non-uniformity also occurs in the layer thermal decomposition state, which causes spatial unevenness in the light-emitting layer of the emission intensity and causes undesired unevenness in the emission wavelength in terms of color. Therefore, the growth rate of the cap layer is desirably 30 ° / min or less. This growth condition is desirable for green emission. The reason why the condition for the crystal growth rate of the cap layer is more strict in the case of manufacturing a green LED than in the case of manufacturing a blue LED is that the green LE
This is because the D well layer has a larger indium (In) composition ratio and is therefore more unstable in crystal structure.

【0008】[0008]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1は、サファイア基板1上に形成
された3族窒化物半導体で形成された発光素子10の模
式的な断面構成図である。基板1の上には窒化アルミニ
ウム(AlN)から成る膜厚約25nmのバッファ層2が設けら
れ、その上にはシリコン(Si)ドープのGaN から成る膜厚
約4.0 μmの高キャリア濃度層3が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. FIG. 1 is a schematic cross-sectional configuration diagram of a light emitting device 10 formed of a group III nitride semiconductor formed on a sapphire substrate 1. A buffer layer 2 made of aluminum nitride (AlN) having a thickness of about 25 nm is provided on a substrate 1, and a high carrier concentration layer 3 made of silicon (Si) doped with GaN having a thickness of about 4.0 μm is provided thereon. Is formed.

【0009】そして、高キャリア濃度層3の上に膜厚約
35ÅのGaN から成るバリア層51と膜厚約35ÅのIn0.20
Ga0.80N から成る井戸層52とが交互に積層されたMQ
W構造の発光層5が形成されている。バリア層51は6
層、井戸層52は5層で構成されている。発光層5の上
にはp型Al0.15Ga0.85N から成る膜厚約50nmのクラッド
層6が形成されている。さらに、クラッド層6の上には
p型GaN から成る膜厚約100nm のコンタクト層7が形成
されている。
Then, a film having a thickness of about
35 ° GaN barrier layer 51 and about 35 mm thick In 0.20
MQ in which well layers 52 of Ga 0.80 N are alternately stacked
A light emitting layer 5 having a W structure is formed. The barrier layer 51 is 6
The layers and well layers 52 are composed of five layers. On the light emitting layer 5, a cladding layer 6 of p-type Al 0.15 Ga 0.85 N having a thickness of about 50 nm is formed. Further, a contact layer 7 of p-type GaN having a thickness of about 100 nm is formed on the cladding layer 6.

【0010】又、コンタクト層7の上には金属蒸着によ
る透光性の電極9が、高キャリア濃度層3上には電極8
が形成されている。透光性の電極9は、コンタクト層7
に接合する膜厚約40Åのコバルト(Co)と、このCoに接合
する膜厚約60Åの金(Au)とで構成されている。電極8は
膜厚約200 Åのバナジウム(V) と膜厚約1.8 μmのアル
ミニウム(Al)又はAl合金で構成されている。
A light-transmitting electrode 9 is formed on the contact layer 7 by metal evaporation, and an electrode 8 is formed on the high carrier concentration layer 3.
Are formed. The light-transmitting electrode 9 is
It is composed of cobalt (Co) having a thickness of about 40 ° and a gold (Au) having a thickness of about 60 ° and being bonded to the Co. The electrode 8 is made of vanadium (V) having a thickness of about 200 ° and aluminum (Al) or an Al alloy having a thickness of about 1.8 μm.

【0011】次に、この発光素子10の製造方法につい
て説明する。上記発光素子10は、有機金属気相成長法
(以下「MOVPE」と略す)による気相成長により製
造された。用いられたガスは、アンモニア(NH3) 、キャ
リアガス(H2,N2) 、トリメチルガリウム(Ga(CH3)3)(以
下「TMG 」と記す)、トリメチルアルミニウム(Al(CH3)
3)(以下「TMA 」と記す)、トリメチルインジウム(In
(CH3)3)(以下「TMI 」と記す)、シラン(SiH4)とシク
ロペンタジエニルマグネシウム(Mg(C5H5)2) (以下「CP
2Mg 」と記す)である。
Next, a method for manufacturing the light emitting device 10 will be described. The light emitting device 10 was manufactured by vapor phase growth by metal organic chemical vapor deposition (hereinafter abbreviated as “MOVPE”). The gases used were ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”), and trimethylaluminum (Al (CH 3 )).
3 ) (hereinafter referred to as “TMA”), trimethylindium (In
(CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter “CP
2 Mg ”).

【0012】まず、有機洗浄及び熱処理により洗浄した
a面を主面とした単結晶の基板1をMOVPE装置の反
応室に載置されたサセプタに装着する。次に、常圧でH2
を流速2 liter/分で約30分間反応室に流しながら温度11
00℃で基板1をベーキングした。次に、温度を400 ℃ま
で低下させて、H2を20liter/分、NH3 を10liter/分、TM
A を1.8 ×10-5モル/分で供給してAlN から成るバッフ
ァ層2を約25nmの膜厚に形成した。次に、基板1の温度
を1150℃に保持し、H2を20liter/分、NH3 を10liter/
分、TMG を1.7 ×10-4モル/分、H2ガスにより0.86ppm
に希釈されたシランを20×10-8モル/分で供給し、膜厚
約4.0 μm、電子濃度2 ×1018/cm3、Si濃度4 ×1018/c
m3のGaN から成る高キャリア濃度層3を形成した。
First, a single-crystal substrate 1 whose main surface is the a-plane cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, H 2 at normal pressure
At a flow rate of 2 liter / min for about 30 minutes while
The substrate 1 was baked at 00 ° C. Then, by lowering the temperature to 400 ° C., the H 2 20liter / min and NH 3 10liter / min, TM
A was supplied at 1.8 × 10 −5 mol / min to form a buffer layer 2 of AlN having a thickness of about 25 nm. Next, the temperature of the substrate 1 was maintained at 1150 ° C., H 2 was 20 liter / min, and NH 3 was 10 liter / min.
Min, TMG 1.7 × 10 -4 mol / min, 0.86 ppm by H 2 gas
Silane diluted at 20 × 10 -8 mol / min, the film thickness is about 4.0 μm, the electron concentration is 2 × 10 18 / cm 3 , and the Si concentration is 4 × 10 18 / c
A high carrier concentration layer 3 made of m 3 GaN was formed.

【0013】上記の高キャリア濃度層3を形成した後、
図2に模式的に示す方法によりMQW構造の発光層5を
形成した。まず、基板1の温度を900 ℃にしてN2又はH2
を20liter/分、NH3 を10liter/分、TMG を2.0 ×10-4
ル/分で供給して、膜厚約35ÅのGaN から成るバリア層
51を形成した。次に、基板1の温度を600 ℃まで低下
させ、N2又はH2、NH3 の供給量を一定として、TMG を7.
2 ×10-5モル/分、TMI を0.19×10-4モル/分で供給し
て、膜厚約35ÅのIn0.20Ga0.80N から成る井戸層52を
形成した。次に、基板1の温度を600 ℃に保持し、N2
はH2を20liter/分、NH3 を10liter/分、TMG を2.0 ×10
-4モル/分で供給して、膜厚約35ÅのGaN から成るキャ
ップ層53を形成した(図2(a)参照)。そして、基
板1の温度を600 ℃から900 ℃に昇温する。この昇温の
過程でキャップ層53が熱分解により消失する(図2
(b)参照)。基板1の温度が900 ℃になった時点で、
井戸層52上に次のバリア層51を上記条件にて形成し
た(第5の工程、図2(c)参照)。図2に示される方
法により、バリア層51と井戸層52を5周期形成し、
その上にGaN から成るバリア層51を形成した。このよ
うにして5周期のMQW構造の発光層5を形成した。
After forming the high carrier concentration layer 3 described above,
The light emitting layer 5 having the MQW structure was formed by a method schematically shown in FIG. First, the temperature of the substrate 1 is set to 900 ° C. and N 2 or H 2
Was supplied at a rate of 20 liter / min, NH 3 was supplied at a rate of 10 liter / min, and TMG was supplied at a rate of 2.0 × 10 −4 mol / min to form a GaN barrier layer 51 having a thickness of about 35 °. Next, the temperature of the substrate 1 was lowered to 600 ° C., and the supply amount of N 2, H 2 , and NH 3 was kept constant, and TMG was changed to 7.
The well layer 52 of In 0.20 Ga 0.80 N having a thickness of about 35 ° was formed by supplying 2 × 10 −5 mol / min and TMI at 0.19 × 10 −4 mol / min. Next, the temperature of the substrate 1 was maintained at 600 ° C., N 2 or H 2 was 20 liter / min, NH 3 was 10 liter / min, and TMG was 2.0 × 10 2
At a rate of -4 mol / min, a cap layer 53 made of GaN having a thickness of about 35 ° was formed (see FIG. 2A). Then, the temperature of the substrate 1 is increased from 600 ° C. to 900 ° C. In the course of this temperature rise, the cap layer 53 disappears due to thermal decomposition (FIG. 2).
(B)). When the temperature of the substrate 1 reaches 900 ° C,
The next barrier layer 51 was formed on the well layer 52 under the above conditions (fifth step, see FIG. 2C). According to the method shown in FIG. 2, the barrier layer 51 and the well layer 52 are formed in five periods,
A barrier layer 51 made of GaN was formed thereon. Thus, the light emitting layer 5 having the MQW structure having five periods was formed.

【0014】次に、基板1の温度を1100℃に保持し、N2
又はH2を10liter/分、NH3 を10liter/分、TMG を1.0 ×
10-4モル/分、TMA を1.0 ×10-4モル/分、CP2Mg を2
×10-5モル/分で供給して、膜厚約50nm、濃度5 ×1019
/cm3のマグネシウム(Mg)をドープしたp型Al0.15Ga0.85
N から成るクラッド層6を形成した。次に、基板1の温
度を1100℃に保持し、N2又はH2を20liter/分、NH3 を10
liter/分、TMG を1.12×10-4モル/分、CP2Mg を2 ×10
-5モル/分で供給して、膜厚約100nm 、濃度5 ×1019/c
m3のMgをドープしたp型GaN から成るコンタクト層7を
形成した。
[0014] Then, maintaining the temperature of the substrate 1 to 1100 ° C., N 2
Or H 2 10liter / min and NH 3 10liter / min, 1.0 × the TMG
10 -4 mol / min, TMA 1.0 × 10 -4 mol / min, CP 2 Mg 2
X 10 -5 mol / min, film thickness about 50 nm, concentration 5 x 10 19
/ cm 3 p-type Al 0.15 Ga 0.85 doped with magnesium (Mg)
A cladding layer 6 made of N was formed. Next, the temperature of the substrate 1 was maintained at 1100 ° C., N 2 or H 2 was 20 liter / min, and NH 3 was 10 liter / min.
liter / min, TMG 1.12 × 10 -4 mol / min, CP 2 Mg 2 × 10
-5 mol / min, supplied at a film thickness of about 100 nm and a concentration of 5 × 10 19 / c
A contact layer 7 made of p-type GaN doped with m 3 Mg was formed.

【0015】次に、コンタクト層7の上にエッチングマ
スクを形成し、所定領域のエッチングマスクを除去し
て、エッチングマスクで覆われていない部分のコンタク
ト層7、クラッド層6、発光層5及び高キャリア濃度層
3の一部を塩素を含むガスによる反応性イオンエッチン
グによりエッチングし、高キャリア濃度層3の表面を露
出させた。次に、エッチングマスクを残した状態で、全
面にフォトレジストを塗布し、フォトリソグラフィによ
り高キャリア濃度層3の露出面上の所定領域に窓を形成
し、10-6Torrオーダ以下の高真空に排気した後、膜厚約
200 Åのバナジウム(V) と膜厚約1.8 μmのAlを蒸着す
る。この後、フォトレジスト及びエッチングマスクを除
去する。
Next, an etching mask is formed on the contact layer 7, the etching mask in a predetermined region is removed, and the portions of the contact layer 7, the cladding layer 6, the light emitting layer 5 and the high portions not covered with the etching mask are removed. A part of the carrier concentration layer 3 was etched by reactive ion etching using a gas containing chlorine to expose the surface of the high carrier concentration layer 3. Next, with the etching mask left, a photoresist is applied to the entire surface, a window is formed in a predetermined region on the exposed surface of the high carrier concentration layer 3 by photolithography, and a high vacuum of the order of 10 −6 Torr or less is formed. After exhausting, the film thickness
200 mm of vanadium (V) and about 1.8 μm thick Al are deposited. Thereafter, the photoresist and the etching mask are removed.

【0016】続いて、表面上にフォトレジストを塗布
し、フォトリソグラフによりコンタクト層7上の電極形
成部分のフィトレジストを除去して窓を形成し、コンタ
クト層7を露出させる。露出させたコンタクト層7の上
に、10-6Torrオーダ以下の高真空に排気した後、Coを膜
厚約40Åに成膜し、このCo上にAuを膜厚約60Åに成膜す
る。次に、試料を蒸着装置から取り出し、リフトオフ法
によりフォトレジスト上に堆積したCoとAuとを除去し、
コンタクト層7に対する透光性の電極9を形成する。
Subsequently, a photoresist is applied on the surface, and the phytoresist of the electrode forming portion on the contact layer 7 is removed by photolithography to form a window, and the contact layer 7 is exposed. After evacuating the exposed contact layer 7 to a high vacuum of the order of 10 -6 Torr or less, Co is deposited to a thickness of about 40 °, and Au is deposited to a thickness of about 60 ° on the Co. Next, the sample was taken out of the vapor deposition apparatus, and Co and Au deposited on the photoresist by a lift-off method were removed,
A translucent electrode 9 for the contact layer 7 is formed.

【0017】この後、試料雰囲気を真空ポンプで排気
し、O2ガスを供給して圧力3Paとし、その状態で雰囲気
温度を約550 ℃にして、3分程度、加熱し、コンタクト
層7、クラッド層6をp型低抵抗化すると共にコンタク
ト層7と電極9との合金化処理、高キャリア濃度層3と
電極8との合金化処理を行った。このようにして、高キ
ャリア濃度層3に対する電極8とコンタクト層7に対す
る電極9を形成した。
Thereafter, the sample atmosphere is evacuated by a vacuum pump, and O 2 gas is supplied to a pressure of 3 Pa. At that time, the atmosphere temperature is set to about 550 ° C., and heating is performed for about 3 minutes. The p-type resistance of the layer 6 was reduced, and the alloying treatment of the contact layer 7 and the electrode 9 and the alloying treatment of the high carrier concentration layer 3 and the electrode 8 were performed. Thus, an electrode 8 for the high carrier concentration layer 3 and an electrode 9 for the contact layer 7 were formed.

【0018】上記に示されるように、井戸層52上にキ
ャップ層53を形成した後にバリア層51を形成するこ
とにより、昇温過程でキャップ層53が熱分解して除去
されるが、井戸層52はダメージを受けることがないの
で、各井戸層52の結晶性を損なうことなく、均一な膜
厚を形成することができる。これにより、不要な発光中
心の発生を防止でき、発光効率を向上させることができ
る。
As described above, by forming the cap layer 53 on the well layer 52 and then forming the barrier layer 51, the cap layer 53 is thermally decomposed and removed during the temperature rise. Since the layer 52 is not damaged, a uniform film thickness can be formed without deteriorating the crystallinity of each well layer 52. Thereby, generation of unnecessary light emission centers can be prevented, and light emission efficiency can be improved.

【0019】青色LEDについては、キャップ層53の
成長速度を各種変化させた試料を多数作成し、それぞれ
発光出力を測定した。その結果を図3に示す。図3から
も判るように、キャップ層の結晶成長速度を10Å/分
以上にすると、結晶状態の良好な発光層(井戸層)が得
られるため、発光出力が弱かったり、発光層の発光にム
ラが生じたりすることがなく、望ましいLEDが製造で
きる。より望ましくは、キャップ層の結晶成長速度を1
2Å/分以上にすると、最も高い発光出力が得られる。
また、緑色LEDについても、キャップ層53の成長速
度を各種変化させた試料を多数作成し、それぞれ発光出
力を測定した。その結果を図4に示す。図4からも判る
ように、キャップ層の結晶成長速度を15〜30Å/分
にすると、結晶状態の良好な発光層(井戸層)が得られ
るため、発光出力が弱かったり、発光層の発光にムラが
生じたりすることがなく、望ましいLEDが製造でき
る。より望ましくは、キャップ層の結晶成長速度を20
〜25Å/分にすると、最も高い発光出力が得られる。
例えば、上記の実施例において、キャップ層の結晶成長
速度を10〜30Å/分とするためには、井戸層52を
形成後基板1の温度を600 ℃に保持し、N2又はH2を15
〜23liter/分、NH3 を8〜12liter/分、TMG を8×
10-6〜2.4 ×10-5モル/分の割合で供給すればよい。
With respect to the blue LED, a number of samples with various growth rates of the cap layer 53 were prepared, and the emission output was measured. The result is shown in FIG. As can be seen from FIG. 3, when the crystal growth rate of the cap layer is 10 ° / min or more, a light emitting layer (well layer) having a good crystalline state can be obtained. , And a desirable LED can be manufactured. More preferably, the crystal growth rate of the cap layer is set to 1
If it is 2 ° / min or more, the highest light emission output can be obtained.
Also, for the green LED, a number of samples with various growth rates of the cap layer 53 were prepared, and the luminescence output was measured. FIG. 4 shows the results. As can be seen from FIG. 4, when the crystal growth rate of the cap layer is set to 15 to 30 ° / min, a light emitting layer (well layer) having a good crystal state can be obtained, so that the light emitting output is weak or the light emitting layer emits light. A desirable LED can be manufactured without causing unevenness. More preferably, the crystal growth rate of the cap layer is set at 20.
When the angle is set to Å25 ° / min, the highest light emission output is obtained.
For example, in the above embodiment, in order to make the crystal growth rate of the cap layer 10 to 30 ° / min, the temperature of the substrate 1 is maintained at 600 ° C. after the well layer 52 is formed, and N 2 or H 2 is reduced to 15 ° C.
~23Liter / min, the NH 3 8~12liter / min, 8 × the TMG
It may be supplied at a rate of 10 −6 to 2.4 × 10 −5 mol / min.

【0020】本実施例ではバリア層51の組成をGaN と
したが、AlX2GaY2In1-X2-Y2N(0≦X2≦1,0≦Y2≦1,0≦X2
+Y2≦1)を満たしていればよい。又、井戸層52の組成
をIn0.20Ga0.80Nとしたが、AlX1GaY1In1-X1-Y1N(0≦X1
≦1,0≦Y1≦1, 0≦X1+Y1≦1)を満たしていればよい。例
えば、井戸層52をGaX4In1-X4N (0≦X4≦1)で構成し、
バリア層51をAlX2GaY2In1-X2-Y2N(0≦X2≦1,0≦Y2≦
1, 0≦X2+Y2≦1)で構成してもよい。又、キャップ層5
3の組成をGaNとしたが、AlX3GaY3In1-X3-Y3N(0≦X3≦
1,0≦Y3≦1,0≦X3+Y3≦1)を満たしていればよい。例え
ば、井戸層52をGaX5In1-X5N(0≦X5<1)で構成し、バ
リア層51をAlX6Ga1-X6N(0≦X6≦1)で構成し、キャッ
プ層53をAlX7Ga1-X7N(0≦X7≦1,X7≦X6)で構成しても
よい。又、井戸層52をGaX5In1-X5N(0≦X5<1)で構成
し、バリア層51をAlX6Ga1-X6N(0≦X6≦1)で構成し、
キャップ層53をGaX8In1-X8N(0<X8≦1,X5<X8)で構成
してもよく、井戸層52をGaX9In1-X9N(0<X9<1)で構
成し、バリア層51とキャップ層53をGaNで構成して
もよい。又、本実施例では、キャップ層53は昇温の過
程で熱分解により消失する厚さにしたが、これより厚く
てもよい。この場合には、バリア層51形成温度に達し
た後、キャップ層53が消失するまでその温度を保持す
ればよい。又、本実施例では、発光素子10の発光層5
をMQW構造としたが、SQW構造でもよい。又、本実
施例では、キャップ層53の形成時の温度を井戸層52
の形成温度と同一の600 ℃にしたが、600 〜650 ℃の範
囲で形成してもよい。又、本発明はLEDやLDなどの
発光素子や受光素子に適用できる。
In this embodiment, the composition of the barrier layer 51 is GaN, but Al X2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ X2
+ Y2 ≦ 1). The composition of the well layer 52 was In 0.20 Ga 0.80 N, but Al X1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1
≦ 1,0 ≦ Y1 ≦ 1, 0 ≦ X1 + Y1 ≦ 1). For example, the well layer 52 is composed of Ga X4 In 1-X4 N (0 ≦ X4 ≦ 1),
The barrier layer 51 is formed of Al X2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1,0 ≦ Y2 ≦
1, 0 ≦ X2 + Y2 ≦ 1). Also, the cap layer 5
3 was GaN, but Al X3 Ga Y3 In 1-X3-Y3 N (0 ≦ X3 ≦
It suffices that 1,0 ≦ Y3 ≦ 1,0 ≦ X3 + Y3 ≦ 1) is satisfied. For example, the well layer 52 is composed of Ga X5 In 1-X5 N (0 ≦ X5 <1), the barrier layer 51 is composed of Al X6 Ga 1-X6 N (0 ≦ X6 ≦ 1), and the cap layer 53 is It may be composed of Al X7 Ga 1-X7 N (0 ≦ X7 ≦ 1, X7 ≦ X6). Further, the well layer 52 is composed of Ga X5 In 1-X5 N (0 ≦ X5 <1), the barrier layer 51 is composed of Al X6 Ga 1-X6 N (0 ≦ X6 ≦ 1),
The cap layer 53 may be composed of Ga X8 In 1-X8 N (0 <X8 ≦ 1, X5 <X8), and the well layer 52 is composed of Ga X9 In 1-X9 N (0 <X9 <1). Alternatively, the barrier layer 51 and the cap layer 53 may be made of GaN. Further, in this embodiment, the thickness of the cap layer 53 is such that it disappears due to thermal decomposition during the process of raising the temperature. In this case, after the temperature reaches the barrier layer 51 formation temperature, the temperature may be maintained until the cap layer 53 disappears. In this embodiment, the light emitting layer 5 of the light emitting element 10 is used.
Is an MQW structure, but may be an SQW structure. In this embodiment, the temperature at the time of forming the cap layer 53 is
Although the temperature was set to 600 ° C., which is the same as the formation temperature, the film may be formed in the range of 600 to 650 ° C. In addition, the present invention can be applied to light emitting elements such as LEDs and LDs and light receiving elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な実施例に係わるGaN 系化合物
半導体の製造方法を用いて得られた発光素子の構成を示
した模式図。
FIG. 1 is a schematic view showing a configuration of a light emitting device obtained by using a method of manufacturing a GaN-based compound semiconductor according to a specific example of the present invention.

【図2】本発明の具体的な実施例に係わるGaN 系化合物
半導体の製造方法を示した模式図。
FIG. 2 is a schematic view illustrating a method for manufacturing a GaN-based compound semiconductor according to a specific example of the present invention.

【図3】本発明を適用して試作した青色LED用半導体
発光素子のキャップ層の結晶成長速度を変えて測定した
発光出力の測定結果を示すグラフ。
FIG. 3 is a graph showing a measurement result of a light emission output measured by changing a crystal growth rate of a cap layer of a semiconductor light emitting device for a blue LED prototyped by applying the present invention.

【図4】本発明を適用して試作した緑色LED用半導体
発光素子のキャップ層の結晶成長速度を変えて測定した
発光出力の測定結果を示すグラフ。
FIG. 4 is a graph showing a measurement result of a light emission output measured by changing a crystal growth rate of a cap layer of a green LED semiconductor light emitting device prototyped by applying the present invention.

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 バッファ層 3 高キャリア濃度層 5 発光層 51 バリア層 52 井戸層 53 キャップ層 6 クラッド層 7 コンタクト層 8 電極 9 透光性電極 10 発光素子 DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Buffer layer 3 High carrier concentration layer 5 Light emitting layer 51 Barrier layer 52 Well layer 53 Cap layer 6 Cladding layer 7 Contact layer 8 Electrode 9 Translucent electrode 10 Light emitting element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅見 慎也 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 浅井 誠 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 澤崎 勝久 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 兼山 直樹 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinya Asami 1 Ochiai Nagahata, Kasuga-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. Inside Toyoda Gosei Co., Ltd. (72) Inventor Katsuhisa Sawazaki 1 Ochiai Nagahata, Kasuga-machi, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. Inside the corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 3族窒化物半導体から成る井戸層とバリ
ア層との積層構造を少なくとも1周期有する量子井戸構
造を有した3族窒化物半導体の製造方法において、 前記井戸層の形成後に、前記井戸層の形成温度付近で前
記井戸層よりバンドギャップが広く、前記バリア層と同
じ若しくは狭いバンドギャップを有するキャップ層を形
成し、 その後、前記バリア層の形成時の温度まで昇温する過程
において熱分解により前記キャップ層を除去し、前記井
戸層上に前記バリア層を形成することを特徴とする3族
窒化物半導体素子の製造方法。
1. A method of manufacturing a Group III nitride semiconductor having a quantum well structure having at least one cycle of a stacked structure of a well layer made of a Group III nitride semiconductor and a barrier layer, the method comprising: Forming a cap layer having a band gap wider than that of the well layer near the formation temperature of the well layer and having the same or narrower band gap as the barrier layer, and then increasing heat to a temperature at the time of formation of the barrier layer. A method for manufacturing a group III nitride semiconductor device, comprising: removing the cap layer by decomposition to form the barrier layer on the well layer.
【請求項2】 前記井戸層がAlX1GaY1In1-X1-Y1N(0≦X1
≦1,0≦Y1≦1,0≦X1+Y1≦1)から成り、前記バリア層がA
lX2GaY2In1-X2-Y2N(0≦X2≦1,0≦Y2≦1,0≦X2+Y2≦1)か
ら成り、前記キャップ層がAlX3GaY3In1-X3-Y3N(0≦X3≦
1,0≦Y3≦1,0≦X3+Y3≦1) から成ることを特徴する請求
項1に記載の3族窒化物半導体素子の製造方法。
2. The method according to claim 1, wherein the well layer is formed of Al X1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1
≦ 1,0 ≦ Y1 ≦ 1,0 ≦ X1 + Y1 ≦ 1), wherein the barrier layer is A
l X2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ X2 + Y2 ≦ 1), and the cap layer is Al X3 Ga Y3 In 1-X3-Y3 N (0 ≦ X3 ≦
2. The method for manufacturing a group III nitride semiconductor device according to claim 1, wherein the method comprises: 1,0 ≦ Y3 ≦ 1,0 ≦ X3 + Y3 ≦ 1).
【請求項3】 前記井戸層がGaX4In1-X4N (0≦X4≦1)か
ら成り、前記バリア層がAlX2GaY2In1-X2-Y2N(0≦X2≦1,
0≦Y2≦1, 0≦X2+Y2≦1)から成ることを特徴とする請求
項2に記載の3族窒化物半導体素子の製造方法。
The well layer is made of Ga X4 In 1-X4 N (0 ≦ X4 ≦ 1), and the barrier layer is made of Al X2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1,
3. The method of claim 2, wherein 0 ≦ Y2 ≦ 1, 0 ≦ X2 + Y2 ≦ 1).
【請求項4】 前記井戸層がGaX5In1-X5N (0≦X5<1)か
ら成り、前記バリア層がAlX6Ga1-X6N(0≦X6≦1)から成
り、前記キャップ層がAlX7Ga1-X7N(0≦X7≦1,X7≦X6)
から成ることを特徴とする請求項2に記載の3族窒化物
半導体素子の製造方法。
4. The method according to claim 1, wherein the well layer is made of Ga X5 In 1 -X5 N (0 ≦ X5 <1), the barrier layer is made of Al X6 Ga 1 -X6 N (0 ≦ X6 ≦ 1), and the cap layer is Is Al X7 Ga 1-X7 N (0 ≦ X7 ≦ 1, X7 ≦ X6)
3. The method for manufacturing a group III nitride semiconductor device according to claim 2, comprising:
【請求項5】 前記井戸層がGaX5In1-X5N (0≦X5<1)か
ら成り、前記バリア層がAlX6Ga1-X6N(0≦X6≦1)から成
り、前記キャップ層がGaX8In1-X8N(0<X8≦1,X5<X8)
から成ることを特徴を特徴とする請求項2に記載の3族
窒化物半導体素子の製造方法。
5. The well layer is made of Ga X5 In 1-X5 N (0 ≦ X5 <1), the barrier layer is made of Al X6 Ga 1-X6 N (0 ≦ X6 ≦ 1), and the cap layer is Is Ga X8 In 1-X8 N (0 <X8 ≦ 1, X5 <X8)
3. The method for manufacturing a group III nitride semiconductor device according to claim 2, comprising:
【請求項6】 前記井戸層がGaX9In1-X9N (0<X9<1)か
ら成り、前記バリア層と前記キャップ層がGaN から成る
ことを特徴とする請求項2に記載の3族窒化物半導体素
地の製造方法。
6. The group 3 according to claim 2, wherein said well layer is made of Ga X9 In 1-X9 N (0 <X9 <1), and said barrier layer and said cap layer are made of GaN. A method for producing a nitride semiconductor substrate.
【請求項7】 前記キャップ層の厚さは、前記バリア層
の形成温度への昇温が完了し、前記バリア層の形成開始
時点において消滅できる厚さであることを特徴とする請
求項1乃至6のいずれか1項に記載の3族窒化物半導体
素子の製造方法。
7. The method according to claim 1, wherein the thickness of the cap layer is a thickness that can be eliminated at the start of the formation of the barrier layer after the temperature rise to the formation temperature of the barrier layer is completed. 7. The method for manufacturing a group III nitride semiconductor device according to any one of the above items 6.
【請求項8】 前記キャップ層の結晶成長速度は、10
Å/分以上であることを特徴とする請求項1乃至7のい
ずれか1項に記載の3族窒化物半導体素子の製造方法。
8. The crystal growth rate of the cap layer is 10
The method of manufacturing a group III nitride semiconductor device according to any one of claims 1 to 7, wherein the rate is Å / min or more.
【請求項9】 前記キャップ層の結晶成長速度は、15
Å/分以上、30Å/分以下であることを特徴とする請
求項1乃至8のいずれか1項に記載の3族窒化物半導体
素子の製造方法。
9. The crystal growth rate of the cap layer is 15
The method for manufacturing a Group III nitride semiconductor device according to any one of claims 1 to 8, wherein the temperature is not less than Å / min and not more than 30 ° / min.
JP4455198A 1997-06-13 1998-02-09 Method for manufacturing group 3 nitride semiconductor device Expired - Fee Related JP3646502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4455198A JP3646502B2 (en) 1997-06-13 1998-02-09 Method for manufacturing group 3 nitride semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-173033 1997-06-13
JP17303397 1997-06-13
JP4455198A JP3646502B2 (en) 1997-06-13 1998-02-09 Method for manufacturing group 3 nitride semiconductor device

Publications (2)

Publication Number Publication Date
JPH1168159A true JPH1168159A (en) 1999-03-09
JP3646502B2 JP3646502B2 (en) 2005-05-11

Family

ID=26384492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4455198A Expired - Fee Related JP3646502B2 (en) 1997-06-13 1998-02-09 Method for manufacturing group 3 nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP3646502B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021012A1 (en) * 2001-09-03 2003-03-13 Toyoda Gosei Co., Ltd. Semiconductor crystal producing method
JP2006279025A (en) * 2005-03-25 2006-10-12 Univ Of Tokushima Method for producing nonpolar a-plane gallium nitride single crystal
JP2006310819A (en) * 2005-03-31 2006-11-09 Showa Denko Kk Gallium nitride compound semiconductor laminate and manufacturing method thereof
JP2007201146A (en) * 2006-01-26 2007-08-09 Toyoda Gosei Co Ltd Light emitting element and its manufacturing method
JP2009260397A (en) * 2001-05-30 2009-11-05 Cree Inc Group iii nitride based light emitting diode structure with quantum well and superlattice
DE112005001337B4 (en) 2004-06-10 2010-07-01 Toyoda Gosei Co., Ltd., Nishikasugai-gun Process for producing a FET
US9252325B2 (en) 2012-12-04 2016-02-02 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor light-emitting device
CN110957403A (en) * 2019-12-24 2020-04-03 湘能华磊光电股份有限公司 A kind of LED epitaxial structure growth method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8546787B2 (en) 2001-05-30 2013-10-01 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8227268B2 (en) 2001-05-30 2012-07-24 Cree, Inc. Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
JP2009260397A (en) * 2001-05-30 2009-11-05 Cree Inc Group iii nitride based light emitting diode structure with quantum well and superlattice
WO2003021012A1 (en) * 2001-09-03 2003-03-13 Toyoda Gosei Co., Ltd. Semiconductor crystal producing method
US6946370B2 (en) 2001-09-03 2005-09-20 Toyoda Gosei Co., Ltd. Semiconductor crystal producing method
US7981744B2 (en) 2004-06-10 2011-07-19 Toyoda Gosei Co., Ltd. Field-effect transistor, semiconductor device, a method for manufacturing them, and a method of semiconductor crystal growth
DE112005001337B4 (en) 2004-06-10 2010-07-01 Toyoda Gosei Co., Ltd., Nishikasugai-gun Process for producing a FET
US7348200B2 (en) * 2005-03-25 2008-03-25 Samsung Electro-Mechanics Co. Ltd. Method of growing non-polar a-plane gallium nitride
JP2006279025A (en) * 2005-03-25 2006-10-12 Univ Of Tokushima Method for producing nonpolar a-plane gallium nitride single crystal
JP2006310819A (en) * 2005-03-31 2006-11-09 Showa Denko Kk Gallium nitride compound semiconductor laminate and manufacturing method thereof
JP2007201146A (en) * 2006-01-26 2007-08-09 Toyoda Gosei Co Ltd Light emitting element and its manufacturing method
US9252325B2 (en) 2012-12-04 2016-02-02 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor light-emitting device
CN110957403A (en) * 2019-12-24 2020-04-03 湘能华磊光电股份有限公司 A kind of LED epitaxial structure growth method
CN110957403B (en) * 2019-12-24 2022-09-30 湘能华磊光电股份有限公司 LED epitaxial structure growth method

Also Published As

Publication number Publication date
JP3646502B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
US6861663B2 (en) Group III nitride compound semiconductor light-emitting device
JPH11251632A (en) Manufacture of gallium nitride semiconductor element
JP3675044B2 (en) Group 3 nitride semiconductor light emitting device
US6562646B2 (en) Method for manufacturing light-emitting device using a group III nitride compound semiconductor
JP4214859B2 (en) Method for manufacturing gallium nitride (GaN) substrate
JP3646502B2 (en) Method for manufacturing group 3 nitride semiconductor device
US20070015306A1 (en) Manufacturing method of P type group III nitride semiconductor layer and light emitting device
JPH11145063A (en) Semiconductor device having gallium nitride semiconductor layer and its manufacture
JPH09129929A (en) Blue light emitting element and its manufacture
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JP3836245B2 (en) Gallium nitride compound semiconductor device
JPH09266327A (en) Group iii nitride chemical compound semiconductor light emitting element
JP2000091629A (en) Gallium nitride-based compound semiconductor light emitting element
JPH10303458A (en) Gallium nitride compound semiconductor element
JP3288300B2 (en) Semiconductor manufacturing method
JPH1126812A (en) Iii element nitride semiconductor element and its manufacture
JP3575657B2 (en) Method for manufacturing gallium nitride based compound semiconductor device
JP3555419B2 (en) Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
JP2004363401A (en) Method for manufacturing semiconductor device
JPH09186362A (en) Group III nitride semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP2000091630A (en) Gallium nitride-based compound semiconductor light emitting element
JPH07283436A (en) Group 3-5 compound semiconductor and light emitting device
JP2000091631A (en) Gallium nitride-based compound semiconductor light emitting element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees