[go: up one dir, main page]

JPH09186362A - Group III nitride semiconductor light emitting device - Google Patents

Group III nitride semiconductor light emitting device

Info

Publication number
JPH09186362A
JPH09186362A JP35305095A JP35305095A JPH09186362A JP H09186362 A JPH09186362 A JP H09186362A JP 35305095 A JP35305095 A JP 35305095A JP 35305095 A JP35305095 A JP 35305095A JP H09186362 A JPH09186362 A JP H09186362A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
nitride semiconductor
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35305095A
Other languages
Japanese (ja)
Other versions
JP3637662B2 (en
Inventor
Shinya Asami
慎也 浅見
Masayoshi Koike
正好 小池
Shigeo Mori
茂雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP35305095A priority Critical patent/JP3637662B2/en
Priority to TW090200903U priority patent/TW492578U/en
Priority to KR1019960037785A priority patent/KR100289595B1/en
Publication of JPH09186362A publication Critical patent/JPH09186362A/en
Application granted granted Critical
Publication of JP3637662B2 publication Critical patent/JP3637662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/8215Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping

Landscapes

  • Led Devices (AREA)

Abstract

(57)【要約】 【課題】紫外線領域の発光強度を増加させること。 【解決手段】p層61,62、n層4,3、p層とn層
とに挟まれた発光層5を有し、各層が3族窒化物半導体
から成る発光素子において、発光層5の厚さを1〜200nm
とした。又、発光層5をGa0.92In0.08N とし、SiとZn
を 1×1017〜 5×1018/cm3で添加した。380nm の発光強
度は、発光層5の厚さが400nm の場合に比べて5倍に増
加した。
(57) Abstract: To increase the emission intensity in the ultraviolet region. A light emitting device having a p-layer (61, 62), an n-layer (4, 3) and a light-emitting layer (5) sandwiched between the p-layer and the n-layer, each layer being made of a group III nitride semiconductor. Thickness is 1 ~ 200nm
And Further, the light emitting layer 5 is Ga 0.92 In 0.08 N, and Si and Zn
Was added at 1 × 10 17 to 5 × 10 18 / cm 3 . The emission intensity at 380 nm increased five times as compared with the case where the thickness of the light emitting layer 5 was 400 nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はバンド端発光の効率
を向上させた3族窒化物半導体を用いた発光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a group III nitride semiconductor with improved band edge emission efficiency.

【0002】[0002]

【従来技術】従来、3族窒化物半導体を用いたバンド端
発光による発光素子として、発光層にIn0.08Ga0.92N 又
はSiが添加されたIn0.08Ga0.92N を用いた素子が知られ
ている。この素子では、Siのドナーレベルと価電子帯と
の間、又は、価電子帯と伝導帯との間での電子・正孔再
結合により波長380nm の光を発光する。
BACKGROUND ART Conventionally, as a light emitting device according to the band edge emission using group III nitride semiconductor, an In 0.08 Ga 0.92 N or Si is used an added In 0.08 Ga 0.92 N elements are known in the light-emitting layer . In this device, light with a wavelength of 380 nm is emitted by recombination of electrons and holes between the Si donor level and the valence band or between the valence band and the conduction band.

【0003】[0003]

【発明が解決しようとする課題】しかし、この構造の発
光素子は、発光層に注入するキャリアの濃度が低く、電
子・正孔再結合が起こり難く、発光効率が良くない。
However, in the light emitting device having this structure, the concentration of carriers injected into the light emitting layer is low, electron-hole recombination hardly occurs, and the light emitting efficiency is not good.

【0004】本発明は上記の課題を解決するために成さ
れたものであり、その目的は、3族窒化物化合物半導体
発光素子においてバンド端発光の発光効率を向上させる
ことである。
The present invention has been made to solve the above problems, and an object thereof is to improve the emission efficiency of band edge emission in a Group III nitride compound semiconductor light emitting device.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、p
層、n層、p層とn層とに挟まれた発光層を有し、各層
が3族窒化物半導体から成る発光素子において、発光層
にドナー不純物とアクセプタ不純物とを共に添加し、発
光層の厚さを1 〜200nm とし、出力される光をドナー不
純物レベルと価電子帯、伝導帯とアクセプタ不純物レベ
ル間、又は、伝導帯と価電子帯との間の電子の遷移によ
る発光波長としたことを特徴とする。発光層の厚さを 1
〜200nm とすることで、注入されたキャリアの閉じ込め
効果が向上する。この結果、不純物レベルの存在に応じ
て、ドナー不純物レベルと価電子帯、伝導帯とアクセプ
タ不純物レベル間、伝導帯と価電子帯との間の電子の遷
移が増加し、不純物レベルとバンド端間又はバンド間の
発光強度及び発光効率が増加する。発光層の厚さが 1nm
よりも薄い場合には結晶性が良くなく望ましくない。但
し、15nmより薄いと界面の良好な均一性を得るのが困難
となるので、15nm以上の厚さがより望ましい。又、発光
層の厚さが200nm よりも厚くなると注入されたキャリア
の閉じ込め効果が低下し望ましくない。
According to the invention of claim 1, p
In a light emitting device having a layer, an n layer, and a light emitting layer sandwiched between ap layer and an n layer, each layer being made of a group III nitride semiconductor, a light emitting layer is formed by adding a donor impurity and an acceptor impurity together. Thickness is 1 to 200 nm, and the output light is the emission wavelength due to the transition of electrons between the donor impurity level and the valence band, the conduction band and the acceptor impurity level, or the conduction band and the valence band. It is characterized by The thickness of the light emitting layer 1
By setting it to ~ 200 nm, the effect of confining the injected carriers is improved. As a result, electron transitions between the donor impurity level and the valence band, between the conduction band and the acceptor impurity level, and between the conduction band and the valence band increase depending on the presence of the impurity level. Alternatively, the emission intensity and emission efficiency between the bands increase. The thickness of the light emitting layer is 1 nm
If it is thinner than this, the crystallinity is not good and it is not desirable. However, if it is thinner than 15 nm, it becomes difficult to obtain good uniformity of the interface, so that the thickness of 15 nm or more is more desirable. Further, if the thickness of the light emitting layer is thicker than 200 nm, the effect of confining the injected carriers is lowered, which is not desirable.

【0006】又、発光層は、4元系、3元系、2元系、
即ち、一般式AlxGayIn1-X-YN(0≦x≦1, 0≦y ≦1, 0≦x
+y ≦1)で表現される3族窒化物半導体を用いることが
可能である。組成比は、発光波長と禁制帯幅との関係及
び格子整合の観点から適正に選択すれば良い。又、少な
くとも1周期以上の量子井戸構造としても良い。特に、
380nm 付近の発光を得るには、発光層をGaxIn1-XN (0≦
x ≦1)とするのが望ましい。
The light emitting layer is composed of a quaternary system, a ternary system, a binary system,
In other words, the general formula Al x Ga y In 1-XY N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x
It is possible to use a group III nitride semiconductor represented by + y ≤1). The composition ratio may be appropriately selected from the viewpoint of the relationship between the emission wavelength and the band gap and the lattice matching. Further, a quantum well structure having at least one period or more may be used. Especially,
To obtain emission near 380 nm, the emission layer should be Ga x In 1-X N (0 ≤
It is desirable that x ≤ 1).

【0007】発光層の厚さを 1〜200nm として、ドナー
不純物とアクセプタ不純物とを共に添加することで、ド
ナー不純物だけを添加した場合に比べて、ドナー不純物
レベルと価電子帯との間の遷移がより大きくなることが
確認されている。
When the thickness of the light emitting layer is set to 1 to 200 nm and the donor impurity and the acceptor impurity are added together, the transition between the donor impurity level and the valence band is increased as compared with the case where only the donor impurity is added. Has been confirmed to be larger.

【0008】ドナー不純物には、シリコン(Si)、テルル
(Te)、イオウ(S) 、又は、セレン(Se)を用い、アクセプ
タ不純物には、マグネシウム(Mg)、又は、亜鉛(Zn)を用
いることができる。これらは、発光波長と禁制帯幅との
関係で選択すれば良い。
Donor impurities include silicon (Si) and tellurium.
(Te), sulfur (S), or selenium (Se) can be used, and magnesium (Mg) or zinc (Zn) can be used as an acceptor impurity. These may be selected according to the relationship between the emission wavelength and the band gap.

【0009】[0009]

【実施例】第1実施例 図1において、発光ダイオード10は、サファイア基板
1を有しており、そのサファイア基板1上に500 ÅのAl
N のバッファ層2が形成されている。そのバッファ層2
の上には、順に、膜厚約5.0 μm、濃度 5×1018/cm3
シリコンドープGaN から成る高キャリア濃度n+ 層3、
膜厚約0.5 μm、濃度 5×1017/cm3のシリコンドープの
GaN から成るn層4、膜厚が約50nmでシリコンと亜鉛
が、それぞれ、 5×1018/cm3にドープされたIn0.08Ga
0.92N から成る発光層5、膜厚約0.5μm、ホール濃度5
×1017/cm3、濃度 5×1020/cm3にマグネシウムがドー
プされたAl0.08Ga0.92N から成るp層61、膜厚約1 μ
m、ホール濃度 7×1018/cm3、マグネシウム濃度 5×10
21/cm3のマグネシウムドープのGaN から成るコンタクト
層62が形成されている。そして、コンタクト層62上
にコンタクト層62に接合するNiから成る電極7が形成
されている。さらに、高キャリア濃度n+ 層3の表面の
一部は露出しており、その露出部上にその層3に接合す
るNiから成る電極8が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment In FIG. 1, a light emitting diode 10 has a sapphire substrate 1 on which 500.degree.
An N 2 buffer layer 2 is formed. The buffer layer 2
Over, in turn, a film thickness of about 5.0 [mu] m, the concentration 5 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3,
A film thickness of about 0.5 μm and a concentration of 5 × 10 17 / cm 3 of silicon-doped
N layer 4 made of GaN, In 0.08 Ga with a thickness of about 50 nm and doped with silicon and zinc at 5 × 10 18 / cm 3 respectively
Light-emitting layer 5 consisting of 0.92 N, film thickness about 0.5 μm, hole concentration 5
P layer 61 made of Al 0.08 Ga 0.92 N doped with magnesium at a concentration of 10 17 / cm 3 and a concentration of 5 10 20 / cm 3 , film thickness of about 1 μm
m, hole concentration 7 × 10 18 / cm 3 , magnesium concentration 5 × 10
A contact layer 62 made of 21 / cm 3 of magnesium-doped GaN is formed. Then, the electrode 7 made of Ni and bonded to the contact layer 62 is formed on the contact layer 62. Further, a part of the surface of the high carrier concentration n + layer 3 is exposed, and an electrode 8 made of Ni and bonded to the layer 3 is formed on the exposed portion.

【0010】次に、この構造の発光ダイオード10の製
造方法について説明する。上記発光ダイオード10は、
有機金属化合物気相成長法( 以下「M0VPE 」と記す) に
よる気相成長により製造された。用いられたガスは、NH
3 とキャリアガスH2又はN2 とトリメチルガリウム(Ga
(CH3)3)(以下「TMG 」と記す) とトリメチルアルミニ
ウム(Al(CH3)3)(以下「TMA 」と記す) とトリメチルイ
ンジウム(In(CH3)3)(以下「TMI 」と記す) とシラン(S
iH4)とシクロペンタジエニルマグネシウム(Mg(C5H5)2)
(以下「CP2Mg 」と記す)とジエチル亜鉛(Zn(C2H5)2)
(以下、「DEZ 」と記す) である。
Next, a method of manufacturing the light emitting diode 10 having this structure will be described. The light emitting diode 10 includes:
It was manufactured by vapor phase growth by an organometallic compound vapor phase growth method (hereinafter referred to as “M0VPE”). The gas used was NH
3 and carrier gas H 2 or N 2 and trimethylgallium (Ga
(CH 3) 3) and (hereinafter referred to as "TMG") and trimethylaluminum (Al (CH 3) 3) (hereinafter referred to as "TMA") and trimethyl indium (an In (CH 3) 3) (hereinafter "TMI" Note) and silane (S
iH 4) and cyclopentadienyl magnesium (Mg (C 5 H 5) 2)
(Hereinafter referred to as “CP 2 Mg”) and diethyl zinc (Zn (C 2 H 5 ) 2 ).
(Hereinafter referred to as "DEZ").

【0011】まず、有機洗浄及び熱処理により洗浄した
a面を主面とする厚さ100 〜400 μmの単結晶のサファ
イア基板1をM0VPE 装置の反応室に載置されたサセプタ
に装着する。次に、常圧でH2を流速2 liter/分で反応室
に流しながら温度1100℃でサファイア基板1を気相エッ
チングした。
First, a 100-400 μm thick single crystal sapphire substrate 1 having an a-plane as a main surface cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a M0VPE apparatus. Next, the sapphire substrate 1 was subjected to gas phase etching at a temperature of 1100 ° C. while flowing H 2 at a flow rate of 2 liter / min at normal pressure into the reaction chamber.

【0012】次に、温度を 400℃まで低下させて、H2
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で供給してAlN のバッファ層2が約 500Åの厚
さに形成された。次に、サファイア基板1の温度を1150
℃に保持し、H2を20 liter/分、NH3 を10 liter/分、
TMG を 1.7×10-4ル/分、H2ガスにより0.86ppm に希釈
されたシランを200ml/分で70分供給して、膜厚約 5μ
m、濃度 5×1018/cm3のシリコンドープのGaN から成る
高キャリア濃度n+ 層3を形成した。
Next, the temperature is lowered to 400 ° C. and H 2 is added.
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
Supplying at mol / min, an AlN buffer layer 2 was formed to a thickness of about 500 °. Next, the temperature of the sapphire substrate 1 was set to 1150
° C, H 2 at 20 liter / min, NH 3 at 10 liter / min,
TMG is supplied at 1.7 × 10 -4 L / min, and silane diluted to 0.86 ppm with H 2 gas is supplied at 200 ml / min for 70 minutes to obtain a film thickness of about 5 μm.
m, to form a high carrier concentration n + layer 3 made of GaN doped with silicon at a concentration 5 × 10 18 / cm 3.

【0013】次に、サファイア基板1の温度を1100℃に
保持し、N2又はH2を10 liter/分、NH3 を 10liter/
分、TMG を1.12×10-4モル/分、及び、H2ガスにより0.
86ppmに希釈されたシランを10×10-9mol/分で、30分供
給して、膜厚約0.5 μm、濃度5×1017/cm3のシリコン
ドープのGaN から成るn層4を形成した。
Next, the temperature of the sapphire substrate 1 is maintained at 1100 ° C., N 2 or H 2 is 10 liter / min, and NH 3 is 10 liter / min.
Min, TMG 1.12 × 10 −4 mol / min, and H 2 gas to 0.
Silane diluted to 86 ppm was supplied at 10 × 10 -9 mol / min for 30 minutes to form an n-layer 4 made of silicon-doped GaN with a film thickness of about 0.5 μm and a concentration of 5 × 10 17 / cm 3 . .

【0014】続いて、温度を850 ℃に保持し、N2又はH2
を20 liter/分、NH3 を 10liter/分、TMG を1.53×10
-4モル/分、及び、TMI を0.02×10-4モル/分、H2ガス
により0.86ppm に希釈されたシランを10×10-8mol/分
で、DEZ を 2×10-4モル/ 分で、15分間供給して厚さ50
nmのシリコンと亜鉛が、それぞれ、 5×1018/cm3にドー
プされたIn0.08Ga0.92N から成る活性層5を形成した。
Subsequently, the temperature was maintained at 850 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 10 liter / min, TMG 1.53 × 10
-4 mol / min, TMI 0.02 × 10 -4 mol / min, silane diluted to 0.86 ppm with H 2 gas at 10 × 10 -8 mol / min, and DEZ 2 × 10 -4 mol / min. In minutes, supply for 15 minutes, thickness 50
An active layer 5 of In 0.08 Ga 0.92 N doped with 5 × 10 18 / cm 3 of silicon and zinc, respectively, was formed.

【0015】続いて、温度を1100℃に保持し、N2又はH2
を20 liter/分、NH3 を 10liter/分、TMG を1.12×10
-4モル/分、TMA を0.47×10-4モル/分、及び、CP2Mg
を2×10-4モル/分で30分間導入し、膜厚約0.5 μmの
マグネシウム(Mg)ドープのAl0.08Ga0.92N から成るp層
61を形成した。p層61のマグネシウムの濃度は 5×
1020/cm3である。この状態では、p層61は、まだ、抵
抗率108 Ωcm以上の絶縁体である。
Subsequently, the temperature was maintained at 1100 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 10 liter / min, TMG 1.12 × 10
-4 mol / min, 0.47 × 10 -4 mol / min of TMA and CP 2 Mg
Was introduced at 2 × 10 −4 mol / min for 30 minutes to form a p-layer 61 made of magnesium (Mg) -doped Al 0.08 Ga 0.92 N with a film thickness of about 0.5 μm. The concentration of magnesium in the p-layer 61 is 5 ×
It is 10 20 / cm 3 . In this state, the p layer 61 is still an insulator having a resistivity of 10 8 Ωcm or more.

【0016】続いて、温度を1100℃に保持し、N2又はH2
を20 liter/分、NH3 を 10liter/分、TMG を1.12×10
-4モル/分、及び、CP2Mg を 4×10-3モル/分の割合で
4分間導入し、膜厚約1 μmのマグネシウム(Mg)ドープ
のGaN から成るコンタクト層62を形成した。コンタク
ト層62のマグネシウムの濃度は 5×1021/cm3である。
この状態では、コンタクト層62は、まだ、抵抗率108
Ωcm以上の絶縁体である。
Subsequently, the temperature is maintained at 1100 ° C. and N 2 or H 2
20 liter / min, NH 3 10 liter / min, TMG 1.12 × 10
-4 mol / min and CP 2 Mg at a rate of 4 × 10 -3 mol / min
After being introduced for 4 minutes, a contact layer 62 made of GaN doped with magnesium (Mg) and having a film thickness of about 1 μm was formed. The magnesium concentration of the contact layer 62 is 5 × 10 21 / cm 3 .
In this state, the contact layer 62 still has a resistivity of 10 8
It is an insulator of Ωcm or more.

【0017】このようにして得られたウエハに、反射電
子線回折装置を用いて電子線を照射した。電子線照射条
件は、加速電圧10kv、試料電流 1μA 、ビームの移動速
度0.2mm/sec 、ビーム径60μmφ、真空度2.1 ×10-5To
rrである。この電子線照射により、コンタクト層62、
p層61は、それぞれ、ホール濃度 7×1017/cm3, 5×
1017/cm3、抵抗率 2Ωcm,0.8 Ωcm のp伝導型半導体
となった。このようにして、多層構造のウエハが得られ
た。
The wafer thus obtained was irradiated with an electron beam by using a reflection electron beam diffractometer. Electron beam irradiation conditions were: acceleration voltage 10 kv, sample current 1 μA, beam moving speed 0.2 mm / sec, beam diameter 60 μmφ, vacuum degree 2.1 × 10 -5 To
rr. By this electron beam irradiation, the contact layer 62,
The p-layer 61 has hole concentrations of 7 × 10 17 / cm 3 and 5 ×, respectively.
It became a p-conduction type semiconductor with a resistivity of 2 Ωcm and 0.8 Ωcm at 10 17 / cm 3 . Thus, a wafer having a multilayer structure was obtained.

【0018】次に、図2に示すように、コンタクト層6
2の上に、スパッタリングによりSiO2層9を2000Åの厚
さに形成し、そのSiO2層9上にフォトレジスト10を塗
布した。そして、フォトリソグラフにより、図2に示す
ように、コンタクト層62上において、高キャリア濃度
+ 層3に対する電極形成部位A' のフォトレジスト1
0を除去した。次に、図3に示すように、フォトレジス
ト10によって覆われていないSiO2層9をフッ化水素酸
系エッチング液で除去した。
Next, as shown in FIG. 2, the contact layer 6
A SiO 2 layer 9 having a thickness of 2000 Å was formed on the No. 2 layer by sputtering, and a photoresist 10 was applied on the SiO 2 layer 9. Then, by photolithography, as shown in FIG. 2, on the contact layer 62, the photoresist 1 of the electrode formation site A for the high carrier concentration n + layer 3 is formed.
0 was removed. Next, as shown in FIG. 3, the SiO 2 layer 9 not covered with the photoresist 10 was removed with a hydrofluoric acid-based etching solution.

【0019】次に、フォトレジスト10及びSiO2層9に
よって覆われていない部位のコンタクト層62、p層6
1、発光層5、n層4を、真空度0.04Torr、高周波電力
0.44W/cm2 、BCl3ガスを10 ml/分の割合で供給しドライ
エッチングした後、Arでドライエッチングした。この工
程で、図4に示すように、高キャリア濃度n+ 層3に対
する電極取出しのための孔Aが形成された。
Next, the contact layer 62 and the p layer 6 which are not covered with the photoresist 10 and the SiO 2 layer 9 are formed.
1, light emitting layer 5, n layer 4, vacuum degree 0.04 Torr, high frequency power
0.44 W / cm 2 and BCl 3 gas were supplied at a rate of 10 ml / min for dry etching, and then Ar was used for dry etching. In this step, as shown in FIG. 4, a hole A for extracting an electrode from the high carrier concentration n + layer 3 was formed.

【0020】次に、試料の上全面に、一様にNiを蒸着
し、フォトレジストの塗布、フォトリソグラフィ工程、
エッチング工程を経て、図1に示すように、高キャリア
濃度n+ 層3及びコンタクト層62に対する電極8,7
を形成した。その後、上記の如く処理されたウエハを各
チップに切断して、発光ダイオードチップを得た。
Next, Ni is vapor-deposited uniformly on the entire surface of the sample, photoresist coating, photolithography process,
Through the etching process, as shown in FIG. 1, the electrodes 8 and 7 for the high carrier concentration n + layer 3 and the contact layer 62 are formed.
Was formed. Then, the wafer treated as described above was cut into each chip to obtain a light emitting diode chip.

【0021】このようにして得られた発光素子は、駆動
電流20mAで、発光ピーク波長380nm、発光強度2mWで
あった。この発光効率は3%であり、従来の構成のもの
に比べて10倍に向上した。
The light emitting device thus obtained had a driving current of 20 mA, an emission peak wavelength of 380 nm and an emission intensity of 2 mW. The luminous efficiency was 3%, which was 10 times higher than that of the conventional structure.

【0022】又、以上のように製造された発光ダイオー
ド10の発光スペクトルを測定した。図5の曲線X1に
示す。380nm のピーク波長が得られていることが分か
る。一方、Siドナー準位とZnアクセプタ準位間の発光に
相当する440nm 付近にも発光が見られるが、380nm の発
光強度は440nm の発光強度に比べて約5倍程大きいこと
が理解される。
The emission spectrum of the light emitting diode 10 manufactured as described above was measured. It is shown by the curve X1 in FIG. It can be seen that the peak wavelength of 380 nm is obtained. On the other hand, light emission is also observed near 440 nm, which corresponds to light emission between the Si donor level and the Zn acceptor level, but it is understood that the emission intensity at 380 nm is about 5 times greater than the emission intensity at 440 nm.

【0023】比較のために、発光層5におけるSiとZnの
濃度を上記実施例と同一にして、発光層5の厚さを400n
m にした発光ダイオードの発光スペクトルを測定した。
その結果を図5の曲線X2に示す。この場合には、逆
に、440nm の発光が支配的であり、その強度は、380nm
の発光強度に比べて約5倍程大きい。このことは、発光
層5の厚さが400nm の場合には、380nm の発光強度を増
加させる効果がないことを意味している。
For comparison, the concentrations of Si and Zn in the light emitting layer 5 are the same as those in the above embodiment, and the thickness of the light emitting layer 5 is 400 n.
The emission spectrum of the light emitting diode set to m was measured.
The result is shown by the curve X2 in FIG. In this case, on the contrary, the emission at 440 nm is dominant and its intensity is 380 nm.
It is about 5 times larger than the emission intensity of. This means that when the thickness of the light emitting layer 5 is 400 nm, there is no effect of increasing the emission intensity of 380 nm.

【0024】さらに、発光層5にSiだけを上記実施例と
同一濃度に添加して、発光層5の厚さを300nm にした発
光ダイオードを製造し、その発光ダイオードの発光スペ
クトルを測定した。その結果を、図5の曲線X3に示
す。この場合には、Znが添加されていないので、440nm
の発光は見られないが、380nm の発光強度は、発光層5
にSiとZnを共に添加した場合の曲線X2と同程度に得ら
れている。このことは、発光層5の厚さが300nm では、
Siドナー準位と価電子帯間の遷移が未だ小さいことを意
味している。発光層5の厚さが200nm 以下となると、38
0nm の発光強度が約5倍以上大きくなることが確認され
ている。
Further, only Si was added to the light emitting layer 5 at the same concentration as in the above-mentioned example to manufacture a light emitting diode having a thickness of the light emitting layer 5 of 300 nm, and the emission spectrum of the light emitting diode was measured. The result is shown by the curve X3 in FIG. In this case, Zn is not added, so 440 nm
Emission is not observed, but the emission intensity at 380 nm is in the emission layer 5.
It is obtained to the same extent as the curve X2 when Si and Zn are added together. This means that when the thickness of the light emitting layer 5 is 300 nm,
This means that the transition between Si donor level and valence band is still small. When the thickness of the light emitting layer 5 is 200 nm or less, 38
It has been confirmed that the emission intensity at 0 nm is about 5 times greater.

【0025】注入されたキャリアの閉じ込め効果を大き
くすることができる発光層5の厚さは200nm 以下であ
り、1nm よりも薄くなると結晶性が悪くなるため、逆
に、発光効率は低下する。よって、発光層5の厚さは 1
〜200nm の範囲が望ましい。又、界面の均一性を向上さ
せるには、15〜200nm の範囲がより望ましい。さらに、
発光層5に添加するSiとZnの濃度は、 1×1017〜 5×10
18/cm3の時に、380nm 以下の紫外線領域の発光強度を増
加させることができる。
The thickness of the light emitting layer 5 capable of increasing the effect of confining the injected carriers is 200 nm or less, and if the thickness is less than 1 nm, the crystallinity deteriorates, and conversely the light emitting efficiency decreases. Therefore, the thickness of the light emitting layer 5 is 1
A range of ~ 200 nm is desirable. Further, in order to improve the uniformity of the interface, the range of 15 to 200 nm is more desirable. further,
The concentration of Si and Zn added to the light emitting layer 5 is 1 × 10 17 to 5 × 10 5.
At 18 / cm 3 , the emission intensity in the ultraviolet region below 380 nm can be increased.

【0026】このように、本発明は、発光層5の厚さを
1〜200nm とすることで、ドナー不純物レベルと価電子
帯、伝導帯とアクセプタ不純物レベル間、又は、伝導帯
と価電子帯との間の電子の遷移を増加させることで、発
光効率の向上と発光波長の制御を可能としたものであ
る。
As described above, according to the present invention, the thickness of the light emitting layer 5 is changed.
1 to 200 nm increases the transition of electrons between the donor impurity level and the valence band, the conduction band and the acceptor impurity level, or between the conduction band and the valence band to improve the emission efficiency. It is possible to control the emission wavelength.

【0027】発光層5にIn0.08Ga0.92N を用いたが、Al
0.03Ga0.89In0.08N 等の4元系の3族窒化物半導体を用
いてもよい。又、添加する不純物はSi,Zn 以外の元素も
用いることが可能でる。要は、要求される発光波長に応
じて、禁制帯幅、添加する不純物の種類を考慮して決定
すれば良い。即ち、上記実施例では、発光波長は紫外線
領域であるが、発光波長を青や緑と言った可視領域とな
るように禁制帯幅を決めても良い。又、発光層はAlxGay
In1-X-YN(0≦x ≦1, 0≦y ≦1, 0≦x+y ≦1)を少なくと
も1層以上積層した量子井戸構造であっても良い。さら
に、発光層5は他の層3、4、61等と格子整合してい
るのが良い。尚、上記実施例では、発光ダイオードにつ
いて示したが、本発明をレーザダイオードにも応用する
ことができる。
In 0.08 Ga 0.92 N was used for the light emitting layer 5,
A quaternary group III nitride semiconductor such as 0.03 Ga 0.89 In 0.08 N may be used. Further, as the impurities to be added, it is possible to use elements other than Si and Zn. In short, it may be determined in consideration of the required emission wavelength in consideration of the forbidden band width and the type of impurities to be added. That is, in the above embodiment, the emission wavelength is in the ultraviolet region, but the forbidden band width may be determined so that the emission wavelength is in the visible region such as blue or green. Further, the light emitting layer is Al x Ga y
A quantum well structure in which at least one layer of In 1-XY N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is stacked may be used. Further, the light emitting layer 5 is preferably lattice-matched with the other layers 3, 4, 61 and the like. Although the light emitting diode is shown in the above embodiment, the present invention can be applied to a laser diode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な実施例に係る発光ダイオード
の構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.

【図2】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 2 is a sectional view showing a manufacturing process of the light-emitting diode of the embodiment.

【図3】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 3 is a sectional view showing a manufacturing step of the light-emitting diode of the embodiment.

【図4】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 4 is a sectional view showing a manufacturing step of the light-emitting diode of the same embodiment.

【図5】発光層の厚さを変化させた各種の発光ダイオー
ドの発光スペクトルを示した測定図。
FIG. 5 is a measurement diagram showing emission spectra of various light emitting diodes in which the thickness of the light emitting layer is changed.

【符号の説明】[Explanation of symbols]

10…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…n層 5…発光層 61…p層 62…コンタクト層 7,8…電極10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... N layer 5 ... Light emitting layer 61 ... P layer 62 ... Contact layer 7, 8 ... Electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】p層、n層、p層とn層とに挟まれた発光
層を有し、各層が3族窒化物半導体から成る発光素子に
おいて、 前記発光層には、ドナー不純物とアクセプタ不純物とが
共に添加されており、 前記発光層の厚さを1 〜200nm とし、出力される光をド
ナー不純物レベルと価電子帯、伝導帯とアクセプタ不純
物レベル間、又は、伝導帯と価電子帯との間の電子の遷
移による発光波長としたことを特徴とする3族窒化物半
導体発光素子。
1. A light-emitting device having a p-layer, an n-layer, and a light-emitting layer sandwiched between the p-layer and the n-layer, each layer being made of a group III nitride semiconductor, wherein the light-emitting layer has a donor impurity and an acceptor. Impurities are added together, and the thickness of the light emitting layer is set to 1 to 200 nm, and the output light is output between the donor impurity level and the valence band, the conduction band and the acceptor impurity level, or the conduction band and the valence band. A group III nitride semiconductor light emitting device, characterized in that the emission wavelength is determined by the transition of electrons between and.
【請求項2】前記発光層はAlxGayIn1-X-YN(0≦x ≦1, 0
≦y ≦1, 0≦x+y ≦1)を少なくとも1層以上積層した量
子井戸構造であることを特徴とする請求項1に記載の3
族窒化物半導体発光素子。
2. The light emitting layer comprises Al x Ga y In 1-XY N (0 ≦ x ≦ 1, 0
3. The quantum well structure according to claim 1, which has a quantum well structure in which at least one or more layers of ≤y ≤1, 0 ≤x + y ≤1) are stacked.
Group nitride semiconductor light emitting device.
【請求項3】前記発光層はGaxIn1-XN (0≦x ≦1)である
ことを特徴とする請求項1に記載の3族窒化物半導体発
光素子。
3. The Group III nitride semiconductor light emitting device according to claim 1, wherein the light emitting layer is Ga x In 1 -X N (0 ≦ x ≦ 1).
【請求項4】前記発光層の厚さは、15〜200nm であるこ
とを特徴とする請求項1に記載の3族窒化物半導体発光
素子。
4. The group III nitride semiconductor light emitting device according to claim 1, wherein the thickness of the light emitting layer is 15 to 200 nm.
【請求項5】前記ドナー不純物はシリコン(Si)、テルル
(Te)、イオウ(S) 、又は、セレン(Se)であり、前記アク
セプタ不純物は、マグネシウム(Mg)、又は、亜鉛(Zn)で
あることを特徴とする請求項1に記載の3族窒化物半導
体発光素子。
5. The donor impurities are silicon (Si) and tellurium.
(Te), sulfur (S), or selenium (Se), and the acceptor impurity is magnesium (Mg) or zinc (Zn). Semiconductor light emitting device.
【請求項6】前記発光層に添加する不純物の濃度は 1×
1017〜 5×1018/cm3であることを特徴とする請求項1に
記載の3族窒化物半導体発光素子。
6. The concentration of impurities added to the light emitting layer is 1 ×
The group III nitride semiconductor light emitting device according to claim 1, wherein the light emitting device has a concentration of 10 17 to 5 × 10 18 / cm 3 .
JP35305095A 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device Expired - Fee Related JP3637662B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35305095A JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device
TW090200903U TW492578U (en) 1995-12-28 1996-08-21 Light emitting device of nitride semiconductor for the element of the third family in periodic table
KR1019960037785A KR100289595B1 (en) 1995-12-28 1996-09-02 Group III-nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35305095A JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09186362A true JPH09186362A (en) 1997-07-15
JP3637662B2 JP3637662B2 (en) 2005-04-13

Family

ID=18428234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35305095A Expired - Fee Related JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device

Country Status (3)

Country Link
JP (1) JP3637662B2 (en)
KR (1) KR100289595B1 (en)
TW (1) TW492578U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007393A (en) * 1999-06-08 2001-01-12 Agilent Technol Inc AlGaInN based LED with epitaxial layer
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
JP2009081379A (en) * 2007-09-27 2009-04-16 Showa Denko Kk Group III nitride semiconductor light emitting device
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer
WO2012053331A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element, multi-wavelength-emitting group-iii-nitride semiconductor layer, and method for forming multi-wavelength-emitting group-iii-nitride semiconductor layer
JP5075298B1 (en) * 2011-05-18 2012-11-21 パナソニック株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
CN105428448A (en) * 2015-09-29 2016-03-23 北京大学 Solar cell in bi-component gradual change structure, and preparation method for solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101587B2 (en) * 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light emitting element
JP2564024B2 (en) * 1990-07-09 1996-12-18 シャープ株式会社 Compound semiconductor light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
JP2001007393A (en) * 1999-06-08 2001-01-12 Agilent Technol Inc AlGaInN based LED with epitaxial layer
JP2011205144A (en) * 1999-06-08 2011-10-13 Philips Lumileds Lightng Co Llc AlGaInN-BASED LED WITH EPITAXIAL LAYER
JP2009081379A (en) * 2007-09-27 2009-04-16 Showa Denko Kk Group III nitride semiconductor light emitting device
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer
WO2012053331A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element, multi-wavelength-emitting group-iii-nitride semiconductor layer, and method for forming multi-wavelength-emitting group-iii-nitride semiconductor layer
JP5075298B1 (en) * 2011-05-18 2012-11-21 パナソニック株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
WO2012157198A1 (en) * 2011-05-18 2012-11-22 パナソニック株式会社 Nitride semiconductor light-emitting element and manufacturing method therefor
US8823026B2 (en) 2011-05-18 2014-09-02 Panasonic Corporation Nitride semiconductor light-emitting element and manufacturing method therefor
CN105428448A (en) * 2015-09-29 2016-03-23 北京大学 Solar cell in bi-component gradual change structure, and preparation method for solar cell
CN105428448B (en) * 2015-09-29 2018-06-08 北京大学 A kind of bi-component grading structure solar cell and preparation method thereof

Also Published As

Publication number Publication date
KR970054564A (en) 1997-07-31
TW492578U (en) 2002-06-21
JP3637662B2 (en) 2005-04-13
KR100289595B1 (en) 2001-06-01

Similar Documents

Publication Publication Date Title
JP3209096B2 (en) Group III nitride compound semiconductor light emitting device
JP3753793B2 (en) Group 3 nitride compound semiconductor light emitting device
JPH07202265A (en) Method for manufacturing group III nitride semiconductor
JPH0897471A (en) Group III nitride semiconductor light emitting device
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07297446A (en) Group III nitride semiconductor light emitting device
JPH07263748A (en) Group III nitride semiconductor light emitting device and manufacturing method thereof
JP3772707B2 (en) Method for manufacturing group 3 nitride compound semiconductor light emitting device
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JPH0936423A (en) Group iii nitride semiconductor light emitting element
JP3637662B2 (en) Group 3 nitride semiconductor light emitting device
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JP3727091B2 (en) Group 3 nitride semiconductor device
JP3481305B2 (en) Group III nitride semiconductor light emitting device
JP3557742B2 (en) Group III nitride semiconductor light emitting device
JPH07297447A (en) Group iii nitride semiconductor light emitting element
JPH04163969A (en) Gallium nitride compound semiconductor light emitting device
JPH06291367A (en) Light emitting element of nitrogen-group iii element compound semiconductor
JPH09153643A (en) Group III nitride semiconductor device
JPH1027923A (en) Group-iii nitride semiconductor light emitting element
JP2004158893A (en) 3 group nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees