JPH1161616A - Sound insulating laminated material and double-wall sound insulating structural material containing the same - Google Patents
Sound insulating laminated material and double-wall sound insulating structural material containing the sameInfo
- Publication number
- JPH1161616A JPH1161616A JP9231117A JP23111797A JPH1161616A JP H1161616 A JPH1161616 A JP H1161616A JP 9231117 A JP9231117 A JP 9231117A JP 23111797 A JP23111797 A JP 23111797A JP H1161616 A JPH1161616 A JP H1161616A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- softening point
- nonwoven fabric
- sound insulation
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Manufacturing Of Multi-Layer Textile Fabrics (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、外部からの振動
および/または騒音の入射を防ぐ為に設置される二重壁
タイプの遮音構造体に関するもので、特に自動車のフロ
ア鋼板等からの振動・騒音の入射を防止・遮断するため
に設置されるフロアインシュレータカーペット等に適す
る。また、本発明の遮音用積層体は、低周波領域におけ
る遮音性能を向上させるために、特に通気性を制御した
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-walled sound insulation structure installed to prevent external vibration and / or noise from entering, and more particularly to vibration and noise from floor steel plates of automobiles. Suitable for floor insulator carpets etc. installed to prevent / block noise. Further, the sound insulating laminate of the present invention is one in which air permeability is particularly controlled in order to improve sound insulating performance in a low frequency region.
【0002】[0002]
【従来の技術】一般に自動車用フロアインシュレータ
は、図1に示すように車室を外部と区画するフロアパネ
ル1の車室内側に遮音用積層体2が位置し、車外から車
室内への騒音の伝達を防止する役目を有する。従来の遮
音用積層体2は、図示のようにフェルト、ポリウレタン
フォーム、不織布等の多孔質基材からなる低密度層3
と、充填材を混入したEVA材シート、ポリエチレンシ
ート等の通気性の全くない材料で形成された高密度層4
の積層体で構成されている。そして上記低密度層3によ
り車外からの騒音を吸収するとともに、フロアパネル1
と高密度層4との間に低密度層3を介在させた2重壁遮
音構造体となすことにより、上記遮音効果と併せて良好
な防音性能を発揮するように構成されている。5はカー
ペット表皮である。2. Description of the Related Art Generally, as shown in FIG. 1, a floor insulator for an automobile has a sound insulation laminate 2 located on the interior side of a floor panel 1 which partitions the interior of the automobile from the outside, so that noise from the exterior to the interior of the automobile is reduced. Has the role of preventing transmission. As shown in the figure, a conventional sound insulating laminate 2 includes a low-density layer 3 made of a porous base material such as felt, polyurethane foam, or nonwoven fabric.
And a high-density layer 4 formed of a material having no air permeability such as an EVA material sheet or a polyethylene sheet mixed with a filler.
Is composed of a laminate. The low-density layer 3 absorbs noise from outside the vehicle, and the floor panel 1
By forming a double-walled sound insulation structure in which the low-density layer 3 is interposed between the high-density layer 4 and the high-density layer 4, it is configured to exhibit good sound insulation performance in addition to the sound insulation effect. 5 is a carpet skin.
【0003】[0003]
【発明が解決しようとする課題】このような従来のフロ
アインシュレータの2重壁遮音構造体においては、高密
度層4は通気性を有しないために、高周波域での遮音性
能に優れているが、自動車用フロア部品の遮音性能上重
要となる低周波域では共振点付近での性能低下が見ら
れ、積層体全体の質量により決定される音響透過損失
(TL)の質量則の遮音レベルに対する優位性が小さ
い。In such a conventional double-walled sound insulating structure of a floor insulator, the high-density layer 4 does not have air permeability, so that it has excellent sound insulating performance in a high frequency range. In the low-frequency range, which is important for the sound insulation performance of automotive floor components, the performance is reduced near the resonance point, and the sound transmission loss (TL) determined by the mass of the entire laminate is superior to the sound insulation level of the mass rule. The nature is small.
【0004】本発明はこのような事情に鑑みてなされた
もので、成形体からなる通気性を有する遮音用積層体に
おいて、通気性を制御することで共振点付近での性能を
向上させることにより、低周波域での遮音性能を高めた
遮音用積層体を提供することを目的とするものである。[0004] The present invention has been made in view of such circumstances, and in a sound-insulating laminate made of a molded article, the performance near the resonance point is improved by controlling the air permeability. It is another object of the present invention to provide a sound insulating laminate having improved sound insulating performance in a low frequency range.
【0005】[0005]
【課題を解決するための手段】上記目的は、それぞれ繊
維径20〜200μmで繊維長30〜100mmの熱可
塑性合成繊維で構成された高密度不織布層(1)と低密
度不織布層(2)とを含んでなる積層体であって、高密
度不織布層(1)は高軟化点繊維(繊維A)高々80重
量%と、該繊維Aの軟化点より少なくとも20℃低い軟
化点を有する低軟化点繊維(繊維B)少なくとも20重
量%とで構成され、0.1〜1.0kg/cm2 の面密
度(目付)と1〜10mmの厚みとを有し、且つ空気圧
0.01kg/cm2 における通気量が1200〜37
00cc/cm2 ・min.であり、低密度不織布層
(2)は高軟化点繊維(繊維C)70〜90重量%と、
該繊維Cの軟化点より少なくとも20℃低い軟化点を有
する低軟化点繊維(繊維B’)10〜30重量%とで構
成され、0.4〜2.0kg/cm2 の面密度と15〜
50mmの厚みとを有し、且つ空気圧0.01kg/c
m2 における通気量が1500〜4000cc/cm2
・min.であり、上記2層の空気圧0.01kg/c
m2 における通気量の差が300〜2800cc/cm
2 ・min.であることを特徴とする遮音用積層体によ
り達成される。The object of the present invention is to provide a high-density nonwoven fabric layer (1) and a low-density nonwoven fabric layer (2) each composed of thermoplastic synthetic fibers having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm. Wherein the high-density nonwoven fabric layer (1) has a high softening point fiber (fiber A) of at most 80% by weight and a low softening point having a softening point at least 20 ° C. lower than the softening point of the fiber A. Fiber (fiber B) at least 20% by weight, has an area density (basis weight) of 0.1 to 1.0 kg / cm 2 , a thickness of 1 to 10 mm, and an air pressure of 0.01 kg / cm 2 . Aeration rate of 1200-37
00 cc / cm 2 · min. The low-density nonwoven fabric layer (2) has a high softening point fiber (fiber C) of 70 to 90% by weight,
Low softening point fiber (fiber B ′) having a softening point at least 20 ° C. lower than the softening point of the fiber C (10 to 30% by weight), an area density of 0.4 to 2.0 kg / cm 2 ,
Having a thickness of 50 mm and an air pressure of 0.01 kg / c
The air flow rate in m 2 is 1500 to 4000 cc / cm 2
-Min. And the air pressure of the two layers is 0.01 kg / c.
The difference in air flow rate in m 2 is 300 to 2800 cc / cm
2 min. This is achieved by the sound insulating laminate.
【0006】[0006]
【発明の実施の形態】本発明の遮音用積層体を外部隔
壁、例えば自動車のフロアパネルの車室内側に添設して
遮音性能を向上させるには、第1に、高密度不織布層は
その通気量を必要量に制御し低減することが効果的であ
る。不織布層の通気量はその面密度と厚みとによって決
定される層の密度、構成繊維の繊維径、繊維断面形状等
の様々な要因に依存するが、中でも面密度を増加するこ
と及び不織布を構成する繊維の平均径を小さくすること
は通気性の低下に極めて有効である。しかし単なる密度
の増加に頼ることは全体の重量増加につながり、車輛に
搭載するには不向きとなるのみならず材料費も高くなる
不利がある。BEST MODE FOR CARRYING OUT THE INVENTION To improve the sound insulation performance by attaching the sound insulation laminate of the present invention to an external partition, for example, the interior side of an automobile floor panel, first, the high-density nonwoven fabric layer is It is effective to control and reduce the amount of ventilation to a required amount. The air permeability of the non-woven fabric layer depends on various factors such as the density of the layer determined by its surface density and thickness, the fiber diameter of the constituent fibers, and the fiber cross-sectional shape. Reducing the average diameter of the fibers to be formed is extremely effective in reducing air permeability. However, relying on mere increase in density leads to an increase in overall weight, which is disadvantageous in that it is not suitable for mounting on a vehicle, but also increases material costs.
【0007】第2に、外部隔壁と高密度不織布層とが低
密度不織布層を介して2重壁遮音構造体を形成させるこ
とが必要となる。2重壁遮音構造体を形成すると遮音性
能向上の効果が増大することは既に知られている。しか
しながら、このような2重壁遮音構造体においても、上
述の重量増加等の不利を避けつつ更に遮音性能を向上さ
せるためには、繊維配合、面密度、厚み等の操作で通気
性、剛性等の物性を適宜に制御することが望ましい。従
って、本発明の遮音用積層体は、外部隔壁との間で優れ
た遮音性能を示す2重壁遮音構造体を形成し得るよう
に、高密度不織布層の通気量を上記構成繊維の構造、配
合、面密度および厚みの選定を主体として好適な範囲に
制御することが理想的である。Second, it is necessary that the outer partition walls and the high-density nonwoven fabric layer form a double-walled sound insulation structure via the low-density nonwoven fabric layer. It is already known that forming a double-walled sound insulation structure increases the effect of improving sound insulation performance. However, even in such a double-walled sound insulation structure, in order to further improve the sound insulation performance while avoiding the disadvantages such as the increase in weight described above, it is necessary to perform operations such as fiber blending, surface density, and thickness to improve the air permeability, rigidity, and the like. It is desirable to appropriately control the physical properties of the material. Therefore, the laminated body for sound insulation of the present invention, the air permeability of the high-density nonwoven fabric layer of the above-described constituent fibers, so that a double-walled sound insulation structure showing excellent sound insulation performance with the external partition can be formed. It is ideal to control the blending, the areal density and the thickness in a suitable range mainly by selecting the thickness.
【0008】第3に、通気性の指標となる通気抵抗は、
繊維径、面密度、厚みに依存して変化する。Third, the airflow resistance, which is an index of air permeability, is:
It changes depending on the fiber diameter, area density and thickness.
【0009】第4に、振動伝達率を低減させるほど遮音
性能は向上する。ここで、振動伝達率はその物体の動的
バネ定数に大きく依存し、従って遮音性能向上には動的
バネ定数の低減が必要となる。バネ定数は繊維径に依存
して変化する。[0009] Fourth, the sound insulation performance improves as the vibration transmission rate decreases. Here, the vibration transmissibility greatly depends on the dynamic spring constant of the object. Therefore, it is necessary to reduce the dynamic spring constant to improve the sound insulation performance. The spring constant changes depending on the fiber diameter.
【0010】第5に、低密度不織布層の吸音率は高いほ
ど遮音性能は向上する。吸音率は不織布層の面密度と厚
みとによって決定される層の密度、構成繊維の繊維径、
繊維断面形状等の様々な要因に依存するが、中でも面密
度を増加すること及び不織布を構成する繊維の平均径を
小さくすることは吸音率の向上に極めて有効である。し
かし単なる密度の増加に頼ることは全体の重量増加につ
ながり、車輛に搭載するには不向きとなるのみならず材
料費も高くなる不利がある。Fifth, the higher the sound absorption coefficient of the low-density nonwoven fabric layer, the better the sound insulation performance. Sound absorption is the density of the layer determined by the surface density and thickness of the nonwoven fabric layer, the fiber diameter of the constituent fibers,
Although it depends on various factors such as the cross-sectional shape of the fiber, increasing the surface density and reducing the average diameter of the fibers constituting the nonwoven fabric are extremely effective for improving the sound absorption coefficient. However, relying on mere increase in density leads to an increase in overall weight, which is disadvantageous in that it is not suitable for mounting on a vehicle, but also increases material costs.
【0011】また、本発明は遮音積層構造体を外部隔壁
と高密度不織布層との間に低密度不織布層が挟まれるよ
うに設置することにより、高密度不織布層と外部隔壁と
により2重壁遮音構造体を形成し、この共振点をより低
周波側に任意に移行させることで、周波数に対する遮音
性能曲線全体を低周波側にシフトして性能向上を図るこ
とができる。即ち、高密度不織布層の繊維配合、密度、
通気量、剛性、弾性率、引張り強度及びスプリング硬
さ、並びに、低密度不織布層の繊維配合、厚さ、密度、
動的バネ定数及び通気量を操作することにより、1次共
振周波数を50〜300Hzの任意の周波数に設定する
ことが可能なことを特徴とする。[0011] The present invention also provides a sound insulation laminated structure in which a low-density nonwoven fabric layer is sandwiched between an external partition and a high-density nonwoven fabric layer. By forming the sound insulation structure and arbitrarily shifting this resonance point to a lower frequency side, the entire sound insulation performance curve with respect to the frequency can be shifted to the lower frequency side to improve the performance. That is, the fiber composition, density,
Air permeability, rigidity, elastic modulus, tensile strength and spring hardness, as well as fiber composition, thickness, density,
The primary resonance frequency can be set to an arbitrary frequency of 50 to 300 Hz by manipulating the dynamic spring constant and the air flow rate.
【0012】遮音性能を向上させるには、当該遮音積層
体を用いて外部隔壁とにより2重壁遮音積層体を形成さ
せる必要がある。但し、2重壁遮音構造体が形成された
ときの特性として、遮音性能曲線上のある周波数で共振
現象が発生する。このときこの共振点をより低周波側に
移行させると、周波数に対する遮音性能曲線全体が低周
波側に移行して性能向上が図れる。本発明は、共振点を
任意に設定することが可能であり、それによって遮音性
能向上の目標を達成することができる。In order to improve the sound insulation performance, it is necessary to form a double-walled sound insulation laminate by using the sound insulation laminate and an external partition. However, as a characteristic when the double-walled sound insulation structure is formed, a resonance phenomenon occurs at a certain frequency on the sound insulation performance curve. At this time, if the resonance point is shifted to a lower frequency side, the entire sound insulation performance curve with respect to the frequency is shifted to the lower frequency side, so that the performance can be improved. According to the present invention, the resonance point can be set arbitrarily, thereby achieving the goal of improving the sound insulation performance.
【0013】中間層として低密度不織布層を介在させた
2重壁遮音構造体の1次共振周波数(f)は一般的に下
記(1)式で近似される。The primary resonance frequency (f) of a double-walled sound insulation structure having a low-density nonwoven fabric layer as an intermediate layer is generally approximated by the following equation (1).
【0014】 f=1/2π・[{(m1 +m2 )/m1 ・m2 }・E/d]1/2 …(1) ここで、m1 、m2 は外部隔壁および高密度不織布層の
それぞれ面密度、Eは低密度不織布層のヤング率、dは
低密度不織布層の厚さであり、ヤング率は弾性率等より
算出する。F = 1 / 2π · [{(m 1 + m 2 ) / m 1 · m 2 } · E / d] 1/2 (1) where m 1 and m 2 are the outer partition and the high density The areal density of each nonwoven fabric layer, E is the Young's modulus of the low density nonwoven fabric layer, d is the thickness of the low density nonwoven fabric layer, and the Young's modulus is calculated from the elastic modulus and the like.
【0015】しかし本発明によって構成される2重壁遮
音構造体は完全な2重壁を形成していないので、(1)
式だけでは1次共振周波数を決定できない。そこで共振
点を任意に設定する具体的手段として、特に低周波に設
定するには上記の範囲内で高密度不織布層の繊維配合、
密度を操作し、通気量を制御し、剛性、弾性率、引張り
強度、スプリング硬さを操作し、また低密度不織布層の
繊維配合、密度を操作し、厚みを増加させ、通気量を制
御し、動的バネ定数を低減するといった方法が有効であ
る。これらすべてを同時に行うことで更に精密な共振点
設定が可能となるが、特に限定はされない。However, since the double-walled sound insulation structure constituted by the present invention does not form a complete double-walled structure, (1)
The primary resonance frequency cannot be determined only by the equation. Therefore, as a specific means for arbitrarily setting the resonance point, especially for setting to a low frequency, the fiber blending of the high-density nonwoven fabric layer within the above range,
Manipulating density, controlling air flow, manipulating stiffness, modulus, tensile strength, spring hardness, manipulating fiber composition and density of low-density nonwoven layer, increasing thickness, controlling air flow A method of reducing the dynamic spring constant is effective. Performing all of these at the same time enables more precise resonance point setting, but is not particularly limited.
【0016】本発明の遮音積層体は、1次共振周波数を
50〜300Hzの周波数に設定することが好ましい。
300Hz超の周波数に共振点を設定すると1kHz以
下の低周波数域で遮音性能が低下してしまい目的が達成
できない。50Hz未満に共振点を設定するには上記操
作において特に密度増加の影響が大きくなり、重量増加
につながるため好ましくない。In the sound insulation laminate of the present invention, the primary resonance frequency is preferably set to a frequency of 50 to 300 Hz.
If the resonance point is set to a frequency higher than 300 Hz, the sound insulation performance is reduced in a low frequency range of 1 kHz or less, and the object cannot be achieved. Setting the resonance point at less than 50 Hz is not preferable because the effect of the density increase particularly in the above operation increases the weight.
【0017】次いで、質量則との遮音性能比較について
説明する。本発明の遮音構造体を用いた2重壁遮音構造
体において、遮音積層体全体の質量により決定される音
響透過損失(TL)の質量則の遮音レベルに対して、該
2重壁遮音構造体は300Hz〜1kHzの周波数領域
において、その周波数平均で音響透過損失が1〜3dB
向上する。Next, comparison of sound insulation performance with the mass law will be described. In the double-walled sound-insulating structure using the sound-insulating structure of the present invention, the double-walled sound-insulating structure for the sound insulation level of the mass rule of sound transmission loss (TL) determined by the mass of the entire sound-insulating laminate. In the frequency range of 300 Hz to 1 kHz, the sound transmission loss is 1 to 3 dB on the average frequency.
improves.
【0018】遮音構造体を構成する遮音積層体全体の質
量は遮音性能を決定する要因の一つである。質量則と
は、この遮音積層体の質量によって周波数ごとの遮音性
能が決定されるものである。しかし遮音積層体が外部隔
壁と共に2重壁遮音構造体を形成すると前記のように共
振域では質量則を下回るが、それ以外の領域では質量則
を上回る遮音性能を得ることができる。そこで2重壁遮
音構造体を形成し、前記のように共振点を操作すること
で任意の周波数領域で遮音性能を向上させることが可能
となる。本発明の遮音積層体は以上の手段を用いること
で300Hz〜1kHzの周波数領域において、音響透
過損失(TL)の質量則の遮音レベルを1〜3dB上回
ることが可能となる。The mass of the entire sound insulation laminate constituting the sound insulation structure is one of the factors that determine the sound insulation performance. The mass rule is that the sound insulation performance for each frequency is determined by the mass of the sound insulation laminate. However, when the sound insulation laminate forms a double-walled sound insulation structure together with the external partition, as described above, the sound insulation performance falls below the mass law in the resonance region, but exceeds the mass law in other regions. Therefore, by forming a double-walled sound insulation structure and operating the resonance point as described above, it is possible to improve the sound insulation performance in an arbitrary frequency region. By using the above means, the sound insulation laminate of the present invention can exceed the sound insulation level of the mass rule of sound transmission loss (TL) by 1 to 3 dB in the frequency range of 300 Hz to 1 kHz.
【0019】以上の観点から、先ず、積層体全体の面密
度は0.5〜3.0kg/m2 の範囲であることが好ま
しい。遮音性能を確保する上で積層体の面密度は高いほ
ど良いが、3.0kg/m2 を超えると実使用の上で重
すぎて好ましくない。また面密度が0.5kg/m2 未
満では吸音性能等の遮音性能向上の目的達成が困難とな
るので好ましくない。From the above viewpoints, first, the areal density of the entire laminate is preferably in the range of 0.5 to 3.0 kg / m 2 . In order to ensure sound insulation performance, the surface density of the laminate is preferably as high as possible, but if it exceeds 3.0 kg / m 2 , it is not preferable because it is too heavy for practical use. If the areal density is less than 0.5 kg / m 2, it is difficult to achieve the purpose of improving sound insulation performance such as sound absorption performance, which is not preferable.
【0020】積層体全体の厚みは16〜60mmの範囲
であることが好ましい。上記範囲の面密度で16mm未
満の厚みでは通気量が過小となり、特に低周波領域で共
振点付近における充分な遮音性能を得難い。また、吸音
性能の向上には厚みは大きいほど良いが、60mmを超
えると実際に使用する上でスペース確保等の観点から好
ましくない。The thickness of the entire laminate is preferably in the range of 16 to 60 mm. If the area density is less than 16 mm in the above range, the air permeability becomes too small, and it is difficult to obtain sufficient sound insulation performance near the resonance point, especially in a low frequency region. The thickness is preferably as large as possible to improve the sound absorbing performance. However, if the thickness exceeds 60 mm, it is not preferable from the viewpoint of securing a space for practical use.
【0021】積層体に充分な遮音性能を付与するには、
高密度不織布層が外部隔壁と2重壁遮音構造体を形成す
る上で必要な通気抵抗を確保し、且つ低密度不織布層を
その吸音率向上及びバネ定数の低減に必要な通気抵抗に
制御することを要する。そのためには、高密度不織布層
と低密度不織布層の通気量差を、空気圧0.01kg/
cm2 において300〜2800cc/cm2 ・mi
n.の範囲内としなければならない。通気量差が300
cc/cm2 ・min.未満では、単層構造体と実質的
に同じとなり、2重壁遮音構造体を形成しなくなる。通
気量差が2800cc/cm2 ・min.を超えると低
密度不織布層の遮音性能目標が達せられない。In order to impart sufficient sound insulation performance to the laminate,
The high-density nonwoven fabric layer secures the ventilation resistance required for forming the outer partition and the double-walled sound insulating structure, and controls the low-density nonwoven fabric layer to the ventilation resistance necessary for improving its sound absorption coefficient and reducing the spring constant. I need to do that. For this purpose, the difference in air permeability between the high-density non-woven fabric layer and the low-density non-woven fabric layer is determined by using an air pressure of 0.01 kg /
In cm 2 300~2800cc / cm 2 · mi
n. Must be within the range. Aeration difference is 300
cc / cm 2 · min. If it is less than the above, the structure becomes substantially the same as the single-layer structure, and the double-wall sound insulation structure is not formed. The difference in the amount of ventilation is 2800 cc / cm 2 · min. If the ratio exceeds, the target of the sound insulation performance of the low-density nonwoven fabric layer cannot be achieved.
【0022】通気量は、構成繊維の繊維径、積層体の面
密度、厚みに依存して変化する。繊維径が小さいほど、
つまり不織布中の繊維表面積が大きいほど通気抵抗は増
大し通気量は低下する。しかし細デニールの繊維は高価
であり且つカーディング特性が劣り不織布の形成が困難
である上、一定面密度下で相対的に繊維の本数が増加し
て機械的強度が増加するため低周波域での遮音性能の目
標が達成できない。特に、繊維径20μm未満の細デニ
ール繊維は、技術的に製造困難なため安定供給が難しく
コスト増加を伴い、また、他の繊維と混ざりにくく均一
な不織布を得難いので経済性、成形性の両面から好まし
くない。一方、繊維径が200μmを超えると充分な通
気抵抗が得られず遮音性能の向上を期し難い。The amount of ventilation varies depending on the fiber diameter of the constituent fibers, the surface density and the thickness of the laminate. The smaller the fiber diameter,
That is, as the fiber surface area in the nonwoven fabric increases, the airflow resistance increases and the airflow decreases. However, fine denier fibers are expensive and have poor carding characteristics, making it difficult to form a nonwoven fabric. In addition, the number of fibers relatively increases under a constant surface density, and the mechanical strength increases, so that the fibers have a low mechanical strength in the low frequency range. Cannot achieve the target of sound insulation performance. In particular, fine denier fibers having a fiber diameter of less than 20 μm are difficult to manufacture technically, so that stable supply is difficult and cost increases, and it is difficult to mix with other fibers to obtain a uniform nonwoven fabric. Not preferred. On the other hand, if the fiber diameter exceeds 200 μm, sufficient airflow resistance cannot be obtained, and it is difficult to improve sound insulation performance.
【0023】不織布の通気量を制御する上で繊維表面積
への影響や、カーディング特性等の不織布製造時の作業
性、不織布の機械的強度向上等の観点から、構成繊維の
繊維長は30〜100mmであることを要する。繊維長
が30mm未満では不織布製造時の作業性に劣り、10
0mmを超えると不織布中に均一に分散させることが困
難となり、良好且つ均一な品質の不織布層を形成し難く
なる。The fiber length of the constituent fibers is from 30 to 30 from the viewpoints of controlling the air permeability of the nonwoven fabric, affecting the surface area of the fiber, improving the workability during production of the nonwoven fabric, such as carding characteristics, and improving the mechanical strength of the nonwoven fabric. It needs to be 100 mm. If the fiber length is less than 30 mm, the workability during the production of the nonwoven fabric is inferior.
If it exceeds 0 mm, it will be difficult to uniformly disperse it in the nonwoven fabric, and it will be difficult to form a nonwoven fabric layer of good and uniform quality.
【0024】熱可塑性合成繊維としては、ポリエステル
が流通性、機械的強度、剛性等の点から適しており、コ
ストパフォーマンスも高い。しかしながら、ナイロン等
のポリアミド系、ポリアクリロニトリル等のポリビニル
系、及びポリエチレン、ポリプロピレン等のポリオレフ
ィン系等の繊維形成性合成重合体或いはセルロースアセ
テート等の半合成重合体も使用可能であり、上記繊維径
の繊維を製造して不織布化することにより、ほぼ同等の
通気抵抗を有するものが得られる。As the thermoplastic synthetic fiber, polyester is suitable in terms of flowability, mechanical strength, rigidity and the like, and has high cost performance. However, polyamide-based polyamides such as nylon, polyvinyl-based polymers such as polyacrylonitrile, and polyethylene, a fiber-forming synthetic polymer such as polyolefins such as polypropylene or semi-synthetic polymers such as cellulose acetate can also be used. By producing the fiber and converting it into a nonwoven fabric, a material having substantially the same airflow resistance can be obtained.
【0025】そこで、高密度不織布層について説明す
る。高密度不織布層は、繊維形成性線状重合体よりな
る、好ましくは繊維径25〜200μmの高軟化点繊維
(繊維A)の高々80重量%と、繊維Aの軟化点より少
なくとも20℃低い軟化点を有する繊維径20〜200
μmの低軟化点繊維(繊維B、または以下バインダー繊
維ともいう)の少なくとも20重量%とよりなる。ここ
で高軟化点繊維径は25μm以上であることが殊に好ま
しい。これより細い繊維は接合点の操作が困難となり、
機械的強度を操作することが難しいからである。また、
繊維径は200μm以下でなければならない。これより
太い繊維は必要な通気抵抗を得るのに不適となる。ま
た、高軟化点繊維Aが80重量%を超えると吸音材の厚
みを制御することが難しく、十分な密度を確保できなく
なり目的を達成できない。Therefore, the high density nonwoven fabric layer will be described. The high-density nonwoven fabric layer comprises a fiber-forming linear polymer, preferably at most 80% by weight of a high softening point fiber (fiber A) having a fiber diameter of 25 to 200 μm, and a softening at least 20 ° C. lower than the softening point of the fiber A. Fiber diameter with points 20 to 200
It comprises at least 20% by weight of low softening point fibers (fiber B, hereinafter also referred to as binder fibers) of μm. Here, the high softening point fiber diameter is particularly preferably at least 25 μm. The smaller the fiber, the more difficult it is to operate the joint,
This is because it is difficult to control the mechanical strength. Also,
The fiber diameter must be less than 200 μm. Thicker fibers are unsuitable for obtaining the required airflow resistance. On the other hand, if the high softening point fiber A exceeds 80% by weight, it is difficult to control the thickness of the sound absorbing material, so that a sufficient density cannot be secured and the object cannot be achieved.
【0026】高軟化点繊維Aは実質的なホモポリマーで
あることが好ましく、典型的にはポリエチレンテレフタ
レートを主成分とする高融点ポリエステルよりなる。繊
維の横断面形状は円形もしくは非円形(異形)の何れで
もよい。異形断面繊維は通気抵抗の増大に更に寄与す
る。The high softening point fiber A is preferably a substantially homopolymer, and typically comprises a high melting point polyester having polyethylene terephthalate as a main component. The cross-sectional shape of the fiber may be circular or non-circular (irregular). The modified cross-section fibers further contribute to an increase in airflow resistance.
【0027】低軟化点繊維Bは繊維径20〜200μ
m、繊維長30〜100mmの繊維で、高軟化点繊維A
より軟化点が少なくとも20℃は低い繊維であり、高密
度不織布層の中に20〜100重量%の割合で配合す
る。低軟化点繊維Bはバインダー繊維として加熱処理に
より軟化し繊維Aに対し接着性を発現するものであり、
繊維Aと親和性のあるポリマー、例えば、繊維Aがホモ
ポリエステル系重合体繊維の場合には、バインダー繊維
もポリエステル系として他の二塩基酸成分および/また
はグリコール成分を共重合またはブレンドすることによ
り変性し、軟化点を低下させたコポリマー或いはブレン
ドポリマーよりなる低軟化点繊維が好適に用いられる。
更に好ましくは、このようなコポリマー或いはブレンド
ポリマー成分の少なくとも一部が繊維表面に露出するよ
う高軟化点のホモポリマー成分とコンジュゲートさせた
芯鞘型あるいはサイド・バイ・サイド型コンジュゲート
繊維である。かかるコンジュゲート繊維は、低軟化点成
分が接着機能を司る間に、高軟化点成分は軟化或いは溶
融せず支持機能を果たす。The low softening point fiber B has a fiber diameter of 20 to 200 μm.
m, a fiber having a fiber length of 30 to 100 mm and a high softening point fiber A
It is a fiber having a lower softening point of at least 20 ° C, and is blended in the high-density nonwoven fabric layer at a ratio of 20 to 100% by weight. The low softening point fiber B softens as a binder fiber by heat treatment and exhibits adhesiveness to the fiber A,
When the polymer having an affinity for the fiber A, for example, the fiber A is a homopolyester-based polymer fiber, the binder fiber is also made of polyester by copolymerizing or blending another dibasic acid component and / or a glycol component. Low softening point fibers composed of a modified or reduced softening point copolymer or blend polymer are preferably used.
More preferably, it is a core-sheath type or side-by-side type conjugate fiber conjugated with a homopolymer component having a high softening point such that at least a part of such a copolymer or blend polymer component is exposed on the fiber surface. . In such conjugate fibers, the high softening point component does not soften or melt, and performs a supporting function while the low softening point component controls the adhesive function.
【0028】低軟化点繊維Bの配合量が高密度不織布層
の重量基準で20重量%未満となると、同様に接合点の
減少により高密度不織布層に充分な成形性を付与するこ
とができない。低軟化点繊維Bの配合は、高密度不織布
層の中に成形性を付与できる繊維を配合することが多少
必要であることを意味する。当該遮音積層体は遮音の要
求される部位への密着性が性能向上への大きな要因とな
っており、不織布は多様な面形状に追従するように成形
できることが必要である。前述の短繊維を使用すること
により追従性は向上するが、その形状を維持するために
はバインダー繊維の配合が必要となる。加熱成形時には
繊維Aを型の形状に拘束した状態でバインダー繊維が軟
化して繊維どうしが接着するので、細かな面形状の維持
が可能となる。When the blending amount of the low softening point fiber B is less than 20% by weight based on the weight of the high density nonwoven fabric layer, similarly, sufficient moldability cannot be imparted to the high density nonwoven fabric layer due to a decrease in the number of bonding points. The blending of the low softening point fiber B means that it is somewhat necessary to blend a fiber capable of imparting moldability into the high-density nonwoven fabric layer. The sound insulation laminate has a large factor in improving performance due to its adhesion to a portion where sound insulation is required, and it is necessary that the nonwoven fabric can be formed so as to follow various surface shapes. The use of the above-mentioned short fibers improves followability, but in order to maintain the shape, blending of binder fibers is required. At the time of heat molding, the binder fibers are softened while the fibers A are constrained in the shape of the mold, and the fibers adhere to each other, so that a fine surface shape can be maintained.
【0029】このときもバインダー繊維Bは20μm以
上であることが好ましい。繊維径20μm未満のものは
一般的でなくコスト高となり、経済性、成形性の両面か
ら好ましくない。また、これより細いと加熱成形時にバ
インダー繊維自体にへたり(永久的圧潰変形)が生じ、
また繊維Aと混ぜたときに均一な不織布を得るのが困難
となる。また、バインダー繊維は200μm以下である
ことが好ましい。これ以上の太い繊維を用いると相対的
に繊維の本数が著しく減少するため、構成繊維間の接合
点が減少し、形状安定性及び成形性が低下し、形状維持
が難しくなるためである。At this time, it is preferable that the binder fiber B has a size of 20 μm or more. Fibers having a fiber diameter of less than 20 μm are uncommon and costly, and are not preferable in terms of both economy and moldability. Also, if it is thinner than this, the binder fiber itself will be set (permanent crushing deformation) during heat molding,
Further, it becomes difficult to obtain a uniform nonwoven fabric when mixed with the fiber A. Further, the binder fiber preferably has a size of 200 μm or less. If a thicker fiber is used, the number of fibers is relatively reduced significantly, so that the number of bonding points between constituent fibers is reduced, shape stability and moldability are reduced, and it is difficult to maintain the shape.
【0030】高軟化点繊維Aと低軟化点繊維Bの軟化点
の差が20℃未満となると、加熱成形時に高軟化点繊維
Aの強度、剛性の低下を抑制し高密度不織布層の形状を
維持した状態で、低軟化点繊維Bのみを軟化させ接着性
を発現させる温度管理が極めて困難となり、高密度不織
布層全体の軟化を生じる危険性が増大する。即ち、不織
布の形状を維持させながら、加熱してプレス成形し、製
品を作るために最低必要な繊維自身の軟化点の相違であ
り、これよりも軟化点の差が小さくなると、加熱成形時
に不織布全体の軟化が生じてしまう。When the difference between the softening points of the high softening point fiber A and the low softening point fiber B is less than 20 ° C., the strength and rigidity of the high softening point fiber A are prevented from lowering during heat molding, and the shape of the high density nonwoven fabric layer is reduced. In the maintained state, it is extremely difficult to control the temperature for softening only the low softening point fiber B to develop the adhesiveness, and the risk of softening the entire high-density nonwoven fabric layer increases. That is, while maintaining the shape of the nonwoven fabric, heating and press-forming, the difference in the softening point of the fiber itself, which is the minimum necessary for producing a product, is smaller than this, and when the difference in the softening point is smaller than this, Overall softening occurs.
【0031】次いで、高密度不織布層が外部隔壁と共に
2重壁遮音構造体を形成して遮音性能を確保するのに要
する高密度不織布層の面密度は少なくとも0.1kg/
m2である。然し乍ら、面密度が1.0kg/m2 を超
えると材料コスト上昇、重量増加等の観点から好ましく
ない。面密度が上記範囲にある高密度不織布層の好適な
厚みは1〜10mmの範囲にある。1mm未満の厚みで
上記の面密度を有する高密度不織布層は成形困難であ
り、たとえ成形可能であっても成形体の通気抵抗が大き
過ぎ、却って遮音性能が低下するので好ましくない。一
方10mmを超えると上記の面密度範囲内では遮音性能
を発揮するための充分な通気抵抗を得難い。Next, the areal density of the high-density nonwoven fabric layer required for forming the double-walled sound insulation structure together with the outer partition walls to secure the sound insulation performance is at least 0.1 kg /.
m 2 . However, if the areal density exceeds 1.0 kg / m 2 , it is not preferable from the viewpoint of an increase in material cost and weight. The preferred thickness of the high-density nonwoven fabric layer having an area density in the above range is in the range of 1 to 10 mm. It is difficult to form a high-density nonwoven fabric layer having the above-mentioned surface density with a thickness of less than 1 mm, and even if it can be molded, it is not preferable because the molded article has too high airflow resistance and, on the contrary, deteriorates sound insulation performance. On the other hand, if it exceeds 10 mm, it is difficult to obtain a sufficient ventilation resistance for exhibiting sound insulation performance in the above-mentioned area density range.
【0032】本発明の遮音用積層体は、例えば自動車の
フロアパネル等の凹凸面に添設して使用する場合に、凹
凸面形状に追従し密着した状態で成形可能であることが
応用面で重要であるばかりでなく、また遮音性能向上の
ための大きな要因をもなす。繊維Aを骨格とした遮音構
造体は、上記のようにその面密度と厚みを限定し且つ短
繊維を用いたために型の形状によく追従するが、その状
態で繊維Aとバインダー繊維との軟化点間の適宜な温度
で加熱成形すると、バインダー繊維は軟化して接着性を
発揮し、繊維間交点を接合して不織布の形態を安定化す
る。The application of the sound-insulating laminate of the present invention is that it can be molded in a state in which it adheres to and conforms to the shape of the uneven surface when used in addition to the uneven surface of, for example, a floor panel of an automobile. Not only is it important, but also a major factor in improving sound insulation performance. The sound insulation structure having the fiber A as a skeleton follows the shape of the mold well because the surface density and thickness are limited and the short fibers are used as described above. When heat molded at an appropriate temperature between the points, the binder fibers are softened and exhibit adhesiveness, and the intersections between the fibers are joined to stabilize the form of the nonwoven fabric.
【0033】上記繊維種と繊維構成とにより形成され加
熱成形された高密度不織布層は、その空気圧0.01k
g/cm2 における通気量が1200〜3700cc/
cm 2 ・min.の範囲となる。The fiber formed by the above fiber type and fiber composition
The thermoformed high-density nonwoven fabric layer has an air pressure of 0.01 k
g / cmTwoAir flow rate of 1200-3700cc /
cm Two-Min. Range.
【0034】次いで、低密度不織布層について説明す
る。本発明の遮音用積層体の遮音性能を更に向上させる
には、上記高密度不織布層の通気性制御と相俟って、低
密度不織布層の通気性の制御、振動伝達率の低減、吸音
率の向上が必要である。Next, the low-density nonwoven fabric layer will be described. In order to further improve the sound insulation performance of the sound insulation laminate of the present invention, the air permeability control of the low density nonwoven fabric layer, the control of the air permeability of the low density nonwoven fabric layer, the reduction of the vibration transmissibility, the sound absorption Need to be improved.
【0035】低密度不織布層は繊維径20〜200μ
m、好ましくは繊維径40〜200μm、繊維長30〜
100mmの高軟化点繊維Cが70〜90重量%と、前
記の繊維Cより少なくとも20℃は軟化点の低い低軟化
点繊維であって繊維径20〜200μm、繊維長30〜
100mmの繊維(繊維B’または以下バインダー繊維
ともいう)が10〜30重量%で構成される特徴があ
る。The low-density nonwoven fabric layer has a fiber diameter of 20 to 200 μm.
m, preferably a fiber diameter of 40 to 200 μm, and a fiber length of 30 to
100-mm high softening point fiber C is 70-90% by weight, low softening point fiber having a softening point lower by at least 20 ° C. than said fiber C, having a fiber diameter of 20-200 μm and a fiber length of 30-90%.
It is characterized in that 100 mm fibers (fibers B 'or hereinafter also referred to as binder fibers) are constituted by 10 to 30% by weight.
【0036】高軟化点繊維Cは、前記繊維Aと同一でも
異なってもよく、また低軟化点繊維B’は前記繊維Bと
同一でも異なってもよいが、高軟化点繊維Cと低軟化点
繊維B’とは親和性を有するものを用いる。また、低密
度不織布層は主として通気性の制御、振動伝達率の低減
という目的がある。The high softening point fiber C may be the same as or different from the fiber A, and the low softening point fiber B 'may be the same or different from the fiber B. As the fiber B ', a fiber having an affinity is used. In addition, the low-density nonwoven fabric layer mainly has a purpose of controlling air permeability and reducing a vibration transmissibility.
【0037】目標である低周波域での遮音性能を向上さ
せるには、用いる繊維の太さ等によりその機械強度物性
を操作する必要がある。しかしその繊維径によっては低
密度不織布層の形状維持性が低下し、経時でのへたりが
発生して要求性能を満足するのに必要な厚みを確保でき
なくなる。そのため高密度不織布層に配合する繊維Aに
比べて同じ、または比較的太い繊維の配合が必要とな
る。但し、200μm超では目標の遮音性能を得るのに
は不適である。In order to improve the target sound insulation performance in the low frequency range, it is necessary to control the mechanical strength properties of the fibers to be used, depending on the thickness of the fibers used. However, the shape retention of the low-density nonwoven fabric layer is reduced depending on the fiber diameter, and sag occurs with the lapse of time, making it impossible to secure the thickness required to satisfy the required performance. Therefore, it is necessary to blend the same or relatively thick fiber as compared with the fiber A to be blended in the high-density nonwoven fabric layer. However, if it exceeds 200 μm, it is not suitable for obtaining the target sound insulation performance.
【0038】高軟化点繊維Cの配合は、遮音性能向上の
ためにバネ定数を低減するには70重量%以上でなけれ
ばならない。これ以上配合を低減するとバインダー繊維
の比率が高くなり、目標性能を達成するためのバネ定数
低減が困難となる。また通気性の制御、成形性の確保の
点から90重量%以下でなければならない。90重量%
を超えるとバインダー繊維の配合が少なくなり、通気性
の制御、成形性の確保ができなくなる。The blend of the high softening point fiber C must be 70% by weight or more to reduce the spring constant in order to improve the sound insulation performance. If the blending is further reduced, the ratio of the binder fiber increases, and it becomes difficult to reduce the spring constant to achieve the target performance. Further, it must be 90% by weight or less from the viewpoint of control of air permeability and securing of moldability. 90% by weight
When the ratio exceeds the above range, the amount of the binder fiber is reduced, and it becomes impossible to control the air permeability and secure the moldability.
【0039】低密度不織布層を構成する繊維は、繊維径
が20〜200μmの範囲内で繊維径が小さいほど、つ
まり繊維不織布中の繊維表面積が大きいほど通気抵抗は
増大し、通気性は低下し、また同時に繊維径が小さいほ
ど吸音性能は向上するが、繊維径が20μm未満の細デ
ニールの繊維は高価なためコスト増を招き、且つカーデ
ィング特性が劣り不織布への形成性も劣るため好ましく
ない。また、200μmを超えると通気抵抗と吸音性能
とが同時に著しく低下するため遮音性能の向上を期し難
い。The fibers constituting the low-density nonwoven fabric layer have an increased airflow resistance and a reduced air permeability as the fiber diameter is smaller within the range of 20 to 200 μm, that is, as the fiber surface area in the fiber nonwoven fabric is larger. At the same time, the smaller the fiber diameter is, the more the sound absorbing performance is improved. However, fine denier fibers having a fiber diameter of less than 20 μm are expensive, which leads to an increase in cost, and is inferior in carding properties and poor in formability to a nonwoven fabric. . On the other hand, when the thickness exceeds 200 μm, the ventilation resistance and the sound absorption performance are significantly reduced at the same time, so that it is difficult to improve the sound insulation performance.
【0040】高軟化点繊維Cは繊維Aと同様、実質的な
ホモポリマーであることが好ましく、典型的にはポリエ
チレンテレフタレートを主成分とする高融点ポリエステ
ルよりなる。繊維の横断面形状は円形もしくは非円形
(異形)の何れでもよい。異形断面繊維は通気抵抗の増
大に更に寄与する。また、Like the fiber A, the high softening point fiber C is preferably a substantially homopolymer, and is typically made of a high melting point polyester containing polyethylene terephthalate as a main component. The cross-sectional shape of the fiber may be circular or non-circular (irregular). The modified cross-section fibers further contribute to an increase in airflow resistance. Also,
【0041】低軟化点繊維B’はバインダー繊維として
加熱処理により軟化し高軟化点繊維Cに対し接着性を発
現するものであり、高軟化点繊維Cと親和性のあるポリ
マー、例えば、高軟化点繊維Cがホモポリエステル系重
合体繊維の場合には、バインダー繊維もポリエステル系
として他の二塩基酸成分および/またはグリコール成分
を共重合またはブレンドすることにより変性し、軟化点
を低下させたコポリマー或いはブレンドポリマーよりな
る低軟化点繊維が好適に用いられる。更に好ましくは、
このようなコポリマー或いはブレンドポリマー成分の少
なくとも一部が繊維表面に露出するよう高軟化点のホモ
ポリマー成分とコンジュゲートさせた芯鞘型あるいはサ
イド・バイ・サイド型コンジュゲート繊維である。かか
るコンジュゲート繊維は、低軟化点成分が接着機能を司
る間に、高軟化点成分は軟化或いは溶融せず支持機能を
果たす。The low softening point fiber B 'is a binder fiber which is softened by heat treatment and exhibits adhesiveness to the high softening point fiber C, and is a polymer having an affinity for the high softening point fiber C, for example, a high softening point fiber. When the point fiber C is a homopolyester polymer fiber, the binder fiber is also modified into a polyester system by copolymerizing or blending another dibasic acid component and / or a glycol component to lower the softening point. Alternatively, a low softening point fiber made of a blend polymer is preferably used. More preferably,
A core-sheath type or side-by-side type conjugate fiber conjugated with a homopolymer component having a high softening point such that at least a part of such a copolymer or blend polymer component is exposed on the fiber surface. In such conjugate fibers, the high softening point component does not soften or melt, and performs a supporting function while the low softening point component controls the adhesive function.
【0042】高軟化点繊維Cと低軟化点繊維B’の軟化
点の差が20℃未満となると、加熱成形時に繊維Cの強
度、剛性の低下を抑制し低密度不織布層の形状を維持し
た状態で、低軟化点繊維B’のみを軟化させ接着性を発
現させる温度管理が極めて困難となり、低密度不織布層
全体の軟化を生じる危険性が増大する。When the difference between the softening points of the high softening point fiber C and the low softening point fiber B ′ is less than 20 ° C., the strength and rigidity of the fiber C are prevented from lowering during heat molding, and the shape of the low density nonwoven fabric layer is maintained. In this state, it is extremely difficult to control the temperature at which only the low softening point fiber B 'is softened to exhibit adhesiveness, and the risk of softening the entire low density nonwoven fabric layer is increased.
【0043】低軟化点繊維B’は、繊維径20μm未満
のものは一般的でなくコスト高となり、加熱成形時にバ
インダー繊維自体にへたり(永久的圧潰変形)が生じ、
また高軟化点繊維Cと混ざりにくく均一な繊維不織布を
得難いので、前記同様に経済性、成形性の両面から好ま
しくない。一方、バインダー繊維の繊維径が200μm
を超えると、繊維径の増加に伴って相対的に繊維の本数
が減少するため、構成繊維間の接合点が減少し、形状安
定性及び成形性が低下するので好ましくない。また、低
軟化点繊維B’の配合量が高密度不織布層の重量基準で
20重量%未満となると、同様に接合点の減少により高
密度不織布層に充分な成形性を付与することができな
い。As the low softening point fiber B ', a fiber having a fiber diameter of less than 20 .mu.m is not common and the cost is high, and the binder fiber itself is set (permanent crush deformation) during heat molding,
In addition, it is difficult to mix with the high softening point fiber C, and it is difficult to obtain a uniform fiber non-woven fabric. On the other hand, the fiber diameter of the binder fiber is 200 μm
If it exceeds, the number of fibers relatively decreases with an increase in the fiber diameter, so that the number of joining points between the constituent fibers decreases, and the shape stability and moldability decrease, which is not preferable. On the other hand, if the blending amount of the low softening point fiber B ′ is less than 20% by weight based on the weight of the high-density nonwoven fabric layer, similarly, it is not possible to impart sufficient moldability to the high-density nonwoven fabric layer due to a decrease in bonding points.
【0044】低密度不織布層がその遮音性能を確保する
ために必要な面密度は0.4〜2.0kg/m2 の範囲
にある。0.4kg/m2 未満の面密度では遮音性能の
向上が不充分であり、一方2.0kg/m2 を超えると
材料コスト上昇、重量増加等の観点から好ましくない。
また、バネ定数は不織布層の面密度とともに増加して振
動伝達率を悪化させることからも2.0kg/m2 を超
えることは避けるべきである。The areal density required for the low-density nonwoven fabric layer to ensure its sound insulation performance is in the range of 0.4 to 2.0 kg / m 2 . If the areal density is less than 0.4 kg / m 2, the improvement of the sound insulation performance is insufficient, while if it exceeds 2.0 kg / m 2 , it is not preferable from the viewpoints of increase in material cost and weight.
Also, since the spring constant increases with the areal density of the nonwoven fabric layer and deteriorates the vibration transmissibility, it should be avoided to exceed 2.0 kg / m 2 .
【0045】面密度が上記範囲にある低密度不織布層は
15〜50mmの厚みを有することを要する。15mm
未満の厚みでは高密度不織布層との密度差が小さくなり
2重壁構造体が実質的に形成されないので吸音性能が低
下し、一方50mmを超えると実際に使用する上でスペ
ースの確保の点等から不適当である。The low-density nonwoven fabric layer having a surface density in the above range needs to have a thickness of 15 to 50 mm. 15mm
If the thickness is less than 50 mm, the difference in density from the high-density nonwoven fabric layer becomes small and the double-walled structure is not substantially formed, so that the sound absorbing performance is reduced. On the other hand, if the thickness exceeds 50 mm, the space for practical use is secured. Is inappropriate.
【0046】また、上記繊維種と構成により形成された
低密度不織布層は、空気圧0.01kg/cm2 におい
てその通気量が1500〜4000cc/cm2 ・mi
n.となり、優れた遮音性能を備えるに至る。通気量が
1500cc/cm2 ・min.未満となると通気抵抗
が増大し過ぎて、共振点付近の遮音性能低下が著しくな
り、従来の問題点を克服し難いので好ましくなく、また
4000cc/cm2・min.を超えると逆に通気抵
抗が不充分で外部隔壁とで有効な2重壁遮音構造体を形
成し難くなり好ましくない。The low-density nonwoven fabric layer formed by the above-mentioned fiber type and constitution has an air permeability of 1500 to 4000 cc / cm 2 · mi at an air pressure of 0.01 kg / cm 2 .
n. , Leading to excellent sound insulation performance. The ventilation rate is 1500 cc / cm 2 · min. Too airflow resistance is increased when less than, the sound insulation performance degradation in the vicinity of the resonance point becomes remarkable, it is not preferable because it is difficult to overcome the conventional problems, and 4000cc / cm 2 · min. On the other hand, if it exceeds, the ventilation resistance is insufficient, and it becomes difficult to form an effective double-walled sound insulation structure with the external partition, which is not preferable.
【0047】次いで、自動車用フロアインシュレータへ
の適用について説明する。自動車用フロア部品において
低周波数領域、特に1kHz以下での遮音性能を確保す
ることが、要求仕様面から重要であるが、本発明の遮音
積層体は自動車用フロアインシュレータに要求されるか
かる仕様を十分満足することができる。更に共振点を任
意に設定できることで、重要となる低周波数領域での遮
音性能をより一層向上させることも可能となる。Next, application to a floor insulator for an automobile will be described. It is important in terms of required specifications to ensure sound insulation performance in a low frequency region, particularly 1 kHz or less, of floor components for automobiles. However, the sound insulation laminate of the present invention sufficiently meets such specifications required for floor insulators for automobiles. Can be satisfied. Further, since the resonance point can be set arbitrarily, it becomes possible to further improve the sound insulation performance in the important low frequency region.
【0048】また、自動車用フロアインシュレータに用
いられるカーペット表皮はポリエステルが使われること
が多く、本発明の遮音積層体と組み合わせることでフロ
アインシュレータ全体をポリエステルで製造することが
可能となり、工程上で発生するバリ等のリサイクル性も
向上させることができる。In addition, polyester is often used for the carpet skin used for floor insulators for automobiles. By combining with the sound insulation laminate of the present invention, the whole floor insulator can be manufactured from polyester, and it is generated in the process. The recyclability of burrs and the like can be improved.
【0049】本発明の遮音積層体は、通気性を全く有し
ない高密度不織布層を少なくとも1層有する全く同一形
状、同一重量の従来品に比べ、通気性と、低周波領域に
おける優れた遮音性能とを有する。The sound-insulating laminate of the present invention has excellent air permeability and excellent sound insulation performance in a low-frequency region as compared with a conventional product having at least one high-density nonwoven layer having no air permeability and having the same shape and weight. And
【0050】本発明の遮音積層体の製造法は、通気性の
小さい高密度不織布層の好ましくはポリエステルよりな
る短繊維ウェブと、通気性の大きい低密度不織布層の好
ましくはポリエステルよりなる短繊維ウェブとを別体に
作製して、両者を積層しニードルパンチング及び/又は
加熱成形により一体化する。The method for producing a sound insulating laminate according to the present invention comprises a short fiber web made of a high-density nonwoven fabric layer having low air permeability, preferably made of polyester, and a short fiber web made of a low-density nonwoven material layer having high air permeability, preferably made of polyester. Are separately formed, and both are laminated and integrated by needle punching and / or heat molding.
【0051】更に具体的には、繊維径20〜200μ
m、繊維長30〜100mmの高軟化点短繊維の高々8
0重量%、及びその繊維の軟化点より少なくとも20℃
低い軟化点を有する繊維径20〜200μm、繊維長3
0〜100mmのバインダー繊維少なくとも20重量%
をブレンドした繊維原料を常法によりカーディング・ラ
ッピング工程を経て所定目付の高密度不織布層用ウェブ
形成する。同様に、繊維径40〜200μm、繊維長3
0〜100mmの高軟化点繊維70〜90重量%と、そ
の繊維より少なくとも20℃は軟化点の低い繊維で繊維
径20〜200μm、繊維長30〜100mmの低軟化
点繊維が10〜30重量%をブレンドした繊維原料を常
法によりカーディング・ラッピング工程を経て所定目付
の低密度不織布層用ウェブを形成する。次いで、これら
の短繊維ウェブを連続した複数のクロスレイヤーにより
ウェブ積層体となし、その後全体をニードルパンチング
により一体化し、必要に応じてヒートセットを行い、
0.5〜3.0kg/cm2 の面密度と16〜60mm
の厚みとを有する積層体に成形する。More specifically, the fiber diameter is 20 to 200 μm.
m, at most 8 of softening point short fibers having a fiber length of 30 to 100 mm
0% by weight and at least 20 ° C. below the softening point of the fiber
Fiber diameter 20-200 μm with low softening point, fiber length 3
0 to 100 mm binder fiber at least 20% by weight
The fiber raw material blended with is subjected to a carding and wrapping step by a conventional method to form a web for a high density nonwoven fabric layer having a predetermined basis weight. Similarly, the fiber diameter is 40 to 200 μm, and the fiber length is 3
70 to 90% by weight of a high softening point fiber having a softening point of 0 to 100 mm, and a fiber having a softening point lower by at least 20 ° C. than that of the fiber having a low softening point having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm is 10 to 30% by weight. Is subjected to a carding and wrapping process by a conventional method to form a web for a low density nonwoven fabric layer having a predetermined basis weight. Next, these short fiber webs were made into a web laminate by a plurality of continuous cross layers, and thereafter the whole was integrated by needle punching, and heat set as necessary,
0.5 ~ 3.0kg / cm 2 area density and 16 ~ 60mm
Into a laminate having the following thickness.
【0052】また、本発明の遮音用積層体は、例えば自
動車のフロアパネル等の凹凸面に添設して使用する場合
に、凹凸面形状に追従し密着した状態で成形可能である
ことが応用面で重要であるばかりでなく、また遮音性能
向上のための大きな要因をもなす。繊維Aを骨格とした
遮音構造体は、上記のようにその面密度と厚みを限定し
且つ短繊維を用いたために型の形状によく追従するが、
その状態で繊維Aとバインダー繊維との軟化点間の適宜
な温度で加熱成形すると、バインダー繊維は軟化して接
着性を発揮し、繊維間交点を接合して繊維集合体の形態
を安定化する。Further, when the sound insulation laminate of the present invention is used by being attached to an uneven surface of, for example, a floor panel of an automobile, the sound insulating laminate can follow the uneven surface shape and can be formed in a state of being in close contact therewith. This is not only important in terms of sound quality, but also a major factor in improving sound insulation performance. The sound-insulating structure having the fiber A as a skeleton follows the shape of the mold well because the surface density and thickness are limited and short fibers are used as described above.
In this state, when heat-molded at an appropriate temperature between the softening points of the fibers A and the binder fibers, the binder fibers soften and exhibit adhesiveness, and join the intersections between the fibers to stabilize the form of the fiber aggregate. .
【0053】[0053]
【実施例】以下、実施例について本発明を更に詳細に説
明する。The present invention will be described below in more detail with reference to Examples.
【0054】以下の実施例及び比較例における各特性値
の測定方法は次の通りである。 1.通気抵抗 各サンプルについて、JIS L1004、L101
8、及びL1096に規定される通気性試験の測定方法
に準拠して通気量を測定した。 2.遮音性能 各サンプルについて、JIS A1416の「残響室−
残響室を利用した音響透過損失測定」に準じて測定し
た。このとき、各サンプルについて面密度を統一し、積
層構造体全体の質量により決定される音響透過損失(T
L)の質量則の遮音レベルを0dB基準として遮音性能
差を算出した。更にこの差を300〜500Hz、50
0Hz〜1kHzの周波数で平均し、グラフにまとめ
た。The measuring method of each characteristic value in the following examples and comparative examples is as follows. 1. Ventilation resistance For each sample, JIS L1004, L101
8, and the air permeability was measured according to the measurement method of the air permeability test specified in L1096. 2. Sound insulation performance For each sample, refer to JIS A1416 “Reverberation room-
Sound transmission loss measurement using a reverberation room ". At this time, the areal density is unified for each sample, and the sound transmission loss (T
The sound insulation performance difference was calculated using the sound insulation level of the mass rule of L) as a 0 dB reference. Further, this difference is set to 300-500 Hz, 50
The values were averaged at a frequency of 0 Hz to 1 kHz and summarized in a graph.
【0055】(実施例1)高密度不織布層が面密度40
0g/cm2 、厚み5mmで、繊維径約60μm、繊維
長約50mmのポリエステル繊維Aを25重量%と、繊
維径60μm、繊維長約50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを75重量%とで構成さ
れ、空気圧0.01kg/cm2 での通気量が1900
cc/cm 2 ・min.であり、低密度不織布層が面密
度1000g/cm2 、厚み35mmで、繊維径約12
0μm、繊維長約50mmのポリエステル繊維Cを90
重量%と、繊維径約60μm、繊維長約50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量が3400cc/cm2 ・min.である繊維不
織布を使用して遮音積層体(1)を作製した。これを外
部隔壁に添設することで1次共振点を200Hzに設定
した。(Example 1) The high-density nonwoven fabric layer has an area density of 40.
0 g / cmTwo5mm thick, fiber diameter about 60μm, fiber
25% by weight of polyester fiber A having a length of about 50 mm
With a fiber diameter of 60 μm and a fiber length of about 50 mm, the softening point is higher than that of fiber
75% by weight of polyester fiber B 90 ° C lower
And air pressure 0.01kg / cmTwoAirflow at 1900
cc / cm Two-Min. The low-density nonwoven fabric layer is dense
1000g / cmTwo, 35mm thick, about 12 fiber diameter
90 μm polyester fiber C having a fiber length of about 50 mm
Weight%, fiber diameter about 60μm, fiber length about 50mm
Polyester fiber B 'having a softening point lower by 90 [deg.] C. than C by 10
% By weight, air pressure 0.01 kg / cmTwoAt
3400cc / cm ventilation volumeTwo-Min. Fiber is
A sound insulation laminate (1) was produced using a woven fabric. Outside this
Primary resonance point is set to 200Hz by attaching to the partition wall
did.
【0056】(実施例2)高密度不織布層の面密度を1
00g/cm2 、空気圧0.01kg/cm2 での通気
量が2500cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(2)を作製した。Example 2 The high-density nonwoven fabric layer had an area density of 1
00g / cm 2 , and air flow rate at an air pressure of 0.01 kg / cm 2 is 2500 cc / cm 2 · min. A sound insulation laminate (2) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0057】(実施例3)高密度不織布層の面密度を1
000g/cm2 、空気圧0.01kg/cm2での通
気量を1200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(3)を作製した。Example 3 The high-density nonwoven fabric layer had an area density of 1
2,000 g / cm 2 and an air pressure of 0.01 kg / cm 2 at a flow rate of 1200 cc / cm 2 · min. A sound insulation laminate (3) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0058】(実施例4)高密度不織布層の厚みを1m
m、空気圧0.01kg/cm2 での通気量を1300
cc/cm2 ・min.とした以外は実施例1と全く同
じにして遮音積層体(4)を作製した。Example 4 The high-density nonwoven fabric layer had a thickness of 1 m.
m, air flow rate at an air pressure of 0.01 kg / cm 2 is 1300
cc / cm 2 · min. A sound insulation laminate (4) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0059】(実施例5)高密度不織布層の厚みを10
mm、空気圧0.01kg/cm2 での通気量を200
0cc/cm2 ・min.とした以外は実施例1と全く
同じにして遮音積層体(5)を作製した。(Example 5) The thickness of the high-density nonwoven fabric layer was 10
mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 200
0 cc / cm 2 · min. A sound insulating laminate (5) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0060】(実施例6)高密度不織布層が繊維径25
μm、繊維長50mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成され、空気圧0.01kg/cm2 での通気量が1
800cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音積層体(6)を作製した。(Example 6) The high-density nonwoven fabric layer has a fiber diameter of 25.
25% by weight of a polyester fiber A having a fiber length of 50 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and an air pressure of 0.01 kg / cm. The ventilation volume in 2 is 1
800 cc / cm 2 · min. A sound insulation laminate (6) was produced in exactly the same manner as in Example 1 except for the following.
【0061】(実施例7)高密度不織布層が繊維径20
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
2800cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(7)を作製した。Example 7 A high-density nonwoven fabric layer having a fiber diameter of 20
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2800 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (7) was produced in exactly the same manner as described above.
【0062】(実施例8)高密度不織布層が繊維径60
μm、繊維長30mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成され、空気圧0.01kg/cm2 での通気量が1
700cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音構造体(8)を作製した。(Example 8) The high-density nonwoven fabric layer has a fiber diameter of 60.
25% by weight of a polyester fiber A having a fiber length of 30 μm and a fiber length of 30 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and an air pressure of 0.01 kg / cm. The ventilation volume in 2 is 1
700 cc / cm 2 · min. A sound insulating structure (8) was produced in exactly the same manner as in Example 1 except for the following.
【0063】(実施例9)高密度不織布層が繊維径60
μm、繊維長100mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
2100cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(9)を作製した。(Example 9) The high-density nonwoven fabric layer has a fiber diameter of 60.
25% by weight of a polyester fiber A having a fiber length of 100 μm and a fiber length of 100 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2100 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (9) was produced in exactly the same manner as in the above.
【0064】(実施例10)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aが0重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bが100重量%で
構成され、空気圧0.01kg/cm2 での通気量が1
500cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音積層体(10)を作成した。Example 10 The high-density nonwoven fabric layer has a fiber diameter of 6
0% by weight of polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 100% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber A. The air pressure is 0.01 kg / cm 2. 1 ventilation volume
500 cc / cm 2 · min. A sound insulation laminate (10) was prepared in exactly the same manner as in Example 1 except for the following.
【0065】(実施例11)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを80重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを20重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
2200cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(11)を作製した。(Example 11) The high-density nonwoven fabric layer has a fiber diameter of 6
80% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 20% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2200 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (11) was produced in exactly the same manner as described above.
【0066】(実施例12)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径20μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
1400cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(12)を作製した。(Example 12) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 20 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 1400 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (12) was produced in exactly the same manner as described above.
【0067】(実施例13)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径200μm、繊維長50mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm2での通気量
が3100cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(13)を作製した。(Example 13) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of polyester fiber A having a fiber diameter of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 200 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C.
And an air flow rate of 3100 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (13) was produced in exactly the same manner as in Example 1 except for the following.
【0068】(実施例14)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長30mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
1600cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(14)を作製した。(Example 14) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 30 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 1600 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (14) was produced in exactly the same manner as described above.
【0069】(実施例15)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長100mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm2での通気量
が2400cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(15)を作製した。(Example 15) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 100 mm and a softening point 90 ° C. lower than that of the fiber A.
And an air flow rate of 2400 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (15) was produced in exactly the same manner as in Example 1 except for the following.
【0070】(実施例16)低密度不織布層の面密度を
400g/cm2 、空気圧0.01kg/cm2 での通
気量を3800cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(16)を作製し
た。Example 16 The low-density nonwoven fabric layer had an areal density of 400 g / cm 2 and an air flow rate of 3800 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (16) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0071】(実施例17)低密度不織布層の面密度を
2000g/cm2 、空気圧0.01kg/cm2での
通気量を2400cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(17)を作製し
た。Example 17 The low-density nonwoven fabric layer had an areal density of 2000 g / cm 2 and an air flow rate of 2400 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (17) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0072】(実施例18)低密度不織布層の厚みを1
5mm、空気圧0.01kg/cm2 での通気量を26
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(18)を作製した。(Example 18) The low-density nonwoven fabric layer had a thickness of 1
5 mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 26
00 cc / cm 2 · min. A sound insulation laminate (18) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0073】(実施例19)低密度不織布層の厚みを5
0mm、空気圧0.01kg/cm2 での通気量を35
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(19)を作製した。(Example 19) The thickness of the low-density nonwoven fabric layer was 5
0 mm, air flow rate at air pressure 0.01 kg / cm 2 is 35
00 cc / cm 2 · min. A sound insulation laminate (19) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0074】(実施例20)低密度不織布層が、繊維径
40μm、繊維長50mmのポリエステル繊維Cを90
重量%と、繊維径60μm、繊維長50mmで繊維Cよ
り軟化点が90℃低いポリエステル繊維B’を10重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量を2800cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(20)を作製した。(Example 20) The low-density nonwoven fabric layer
Polyester fiber C having a fiber length of 40 μm and a fiber length of 50 mm is 90
Weight%, fiber diameter 60μm, fiber length 50mm, fiber C
10% by weight of polyester fiber B 'having a softening point lower by 90 [deg.] C.
%, Air pressure 0.01 kg / cm TwoVentilation in
2800cc / cmTwo-Min. Implemented except for
A sound insulation laminate (20) was produced in exactly the same manner as in Example 1.
【0075】(実施例21)低密度不織布層が、繊維径
200μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 におい
て通気量を4000cc/cm2 ・min.とした以外
は実施例1と全く同じにして遮音積層体(21)を作製
した。(Example 21) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 200 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 4000 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (21) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0076】(実施例22)低密度不織布層が、繊維径
120μm、繊維長30mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3000cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(22)を作製し
た。(Example 22) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 30 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has an air permeability at an air pressure of 0.01 kg / cm 2 of 3000 cc / cm 2 · min. A sound insulation laminate (22) was produced in exactly the same manner as in Example 1, except that
【0077】(実施例23)低密度不織布層が、繊維径
120μm、繊維長100mmのポリエステル繊維Cを
90重量%と、繊維径60μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3700cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(23)を作製し
た。Example 23 A low-density nonwoven fabric layer was made of 90% by weight of a polyester fiber C having a fiber diameter of 120 μm and a fiber length of 100 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. B 'is 10
% Air flow at an air pressure of 0.01 kg / cm 2 at a flow rate of 3700 cc / cm 2 · min. A sound-insulating laminate (23) was produced in exactly the same manner as in Example 1 except for the above.
【0078】(実施例24)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを7
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を30重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を2900cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(24)を作製し
た。(Example 24) A low-density nonwoven fabric layer was made of polyester fiber C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
30% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. and an air permeability at an air pressure of 0.01 kg / cm 2 of 2900 cc / cm 2 · min. A sound insulation laminate (24) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0079】(実施例25)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径20μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(25)を作製し
た。(Example 25) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 20 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 3200 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (25) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0080】(実施例26)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径200μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3900cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(26)を作製し
た。(Example 26) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 200 μm, a fiber length of 50 mm and a softening point lower than that of the fiber C by 90 ° C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 3900 cc / cm 2 · min. A sound insulation laminate (26) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0081】(実施例27)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長30mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3300cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(27)を作製し
た。(Example 27) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 60 μm, fiber length 30 mm and fiber C
10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. and an air flow rate of 3300 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (27) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0082】(実施例28)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cが9
0重量%と、繊維径60μm、繊維長100mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’が10
重量%で構成され、空気圧0.01kg/cm2 での通
気量が3600cc/cm2 である以外は実施例1と全
く同様にして遮音積層体(28)を作製した。(Example 28) The low-density nonwoven fabric layer was composed of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, polyester fiber B ′ having a fiber diameter of 60 μm, a fiber length of 100 mm, and a softening point 90 ° C. lower than that of fiber C is 10%.
The sound insulating laminate (28) was produced in exactly the same manner as in Example 1 except that it was constituted by weight and the air flow rate at an air pressure of 0.01 kg / cm 2 was 3600 cc / cm 2 .
【0083】(実施例29)高密度不織布層を形成する
ポリエステル繊維Aとポリエステル繊維Bの軟化点の差
が20℃で、空気圧0.01kg/cm2 での通気量を
2050cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(29)を作製した。(Example 29) Forming a high-density nonwoven fabric layer
Difference in softening point between polyester fiber A and polyester fiber B
At 20 ° C and air pressure 0.01kg / cmTwoAirflow
2050cc / cm Two-Min. Example 1 except that
A sound-insulating laminate (29) was produced in exactly the same manner as described above.
【0084】(実施例30)低密度不織布層を形成する
ポリエステル繊維Cとポリエステル繊維B’との軟化点
差が20℃で、空気圧0.01kg/cm2 ・min.
での通気量を3550cc/cm2 ・min.とした以
外は実施例1と全く同じにして遮音積層体(30)を作
製した。Example 30 The difference in softening point between the polyester fiber C and the polyester fiber B ′ forming the low-density nonwoven fabric layer was 20 ° C., and the air pressure was 0.01 kg / cm 2 · min.
Air flow rate at 3550 cc / cm 2 · min. A sound insulation laminate (30) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0085】(比較例1)高密度不織布層の面密度を5
0g/cm2 、空気圧0.01kg/cm2 での通気量
を2800cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音積層体(31)を作製した。(Comparative Example 1) The areal density of the high-density nonwoven fabric layer was 5
0 g / cm 2 and an air pressure of 0.01 kg / cm 2 at a ventilation rate of 2800 cc / cm 2 · min. A sound insulation laminate (31) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0086】(比較例2)高密度不織布層の面密度を2
000g/cm2 、空気圧0.01kg/cm2での通
気量を900cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(32)を作製した。Comparative Example 2 The high-density nonwoven fabric layer had an area density of 2
The air flow rate at 900 g / cm 2 and air pressure of 0.01 kg / cm 2 was 900 cc / cm 2 · min. A sound insulation laminate (32) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0087】(比較例3)高密度不織布層の厚みを1m
m以下に成形する以外は実施例1と全く同じにして遮音
積層体(33)を作製しようとしたが、成形時の繊維の
圧縮ができず、作製できなかった。(Comparative Example 3) The thickness of the high-density nonwoven fabric layer was 1 m
An attempt was made to produce the sound insulation laminate (33) in exactly the same manner as in Example 1 except that the molding was carried out to m or less, but the fibers could not be compressed at the time of molding and could not be produced.
【0088】(比較例4)高密度不織布層の厚みを20
mm、空気圧0.01kg/cm2 での通気量を240
0cc/cm2 ・min.とした以外は実施例1と全く
同じにして遮音積層体(34)を作製した。Comparative Example 4 A high-density nonwoven fabric layer having a thickness of 20
mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 240
0 cc / cm 2 · min. A sound insulation laminate (34) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0089】(比較例5)高密度不織布層が、繊維径5
μm、繊維長50mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成される以外は実施例1と全く同じにして遮音積層体
(35)を作製しようとしたが、繊維Aが細すぎて不織
布とならず、作製できなかった。(Comparative Example 5) A high-density nonwoven fabric layer having a fiber diameter of 5
Example 1 except that the polyester fiber A having a fiber length of 50 μm and a fiber length of 50 mm was 25% by weight, and the polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A was 75% by weight. An attempt was made to produce the sound insulation laminate (35) in exactly the same manner, but the fiber A was too thin to form a nonwoven fabric and could not be produced.
【0090】(比較例6)高密度不織布層が繊維径30
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
3000cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(36)を作製した。(Comparative Example 6) The high-density nonwoven fabric layer has a fiber diameter of 30.
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than the fiber A, and an air pressure of 0.01 kg / cm. 2 is 3000 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (36) was produced in exactly the same manner as described above.
【0091】(比較例7)高密度不織布層が、繊維径6
0μm、繊維長15mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを50重量%と
で構成される以外は実施例1と全く同じにして遮音積層
体(37)を作製しようとしたが、繊維Aが短く不織布
とならず、作製できなかった。(Comparative Example 7) The high-density nonwoven fabric layer has a fiber diameter of 6
Example 1 except that polyester fiber A having a fiber length of 0 μm and a fiber length of 15 mm was 25% by weight and polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A was 50% by weight. An attempt was made to produce a sound-insulating laminate (37) in exactly the same manner, but the fiber A was too short to be a non-woven fabric and could not be produced.
【0092】(比較例8)高密度不織布層が、繊維径6
0μm、繊維長200mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長50mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm 2 での通気量
が2500cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(38)を作製した。(Comparative Example 8) A high-density nonwoven fabric layer having a fiber diameter of 6
0 μm, polyester fiber A having a fiber length of 200 mm
Weight%, fiber diameter 60μm, fiber length 50mm, fiber A
75% by weight of polyester fiber B whose softening point is 90 ° C lower
And air pressure 0.01 kg / cm TwoVentilation volume
Is 2500cc / cmTwo-Min. Examples other than
A sound insulation laminate (38) was produced in exactly the same manner as in Example 1.
【0093】(比較例9)高密度不織布層が、繊維径6
0μm、繊維長50mmのポリエステル繊維Aのみで構
成される以外は実施例1と全く同じにして遮音積層体
(39)を作製しようとしたが、厚みを十分に薄く成形
できず、作製できなかった。(Comparative Example 9) A high-density nonwoven fabric layer having a fiber diameter of 6
An attempt was made to produce a sound-insulating laminate (39) in exactly the same manner as in Example 1 except that it was composed only of the polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, but the thickness could not be made sufficiently small and could not be produced. .
【0094】(比較例10)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径5μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成される以外は実施例1と全く同じにして遮音積層
体(40)を作製しようとしたが、繊維Bが細すぎて不
織布とならず、作製できなかった。(Comparative Example 10) A high-density nonwoven fabric layer was composed of 25 polyester fibers A having a fiber diameter of 60 µm and a fiber length of 50 mm.
A sound insulation laminate (40) was produced in exactly the same manner as in Example 1 except that the fiber insulation layer (40) was constituted by 75% by weight of a polyester fiber B having a fiber diameter of 5 μm, a fiber length of 50 mm, and a softening point lower by 90 ° C. than the fiber A by 90 ° C. An attempt was made to fabricate it, but the fiber B was too thin to form a nonwoven fabric and could not be fabricated.
【0095】(比較例11)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径300μm、繊維長50mmで繊維A
より軟化点が90℃低いポリエステル繊維Bを25重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量が3200cc/cm2 ・min.である以外は実施
例1と全く同じにして遮音積層体(41)を作製した。(Comparative Example 11) The high-density nonwoven fabric layer has a fiber diameter
Polyester fiber A having a length of 60 μm and a fiber length of 50 mm
Weight%, fiber diameter 300μm, fiber length 50mm and fiber A
25% by weight of polyester fiber B having a softening point lower by 90 ° C.
%, Air pressure 0.01 kg / cm TwoVentilation in
3200cc / cmTwo-Min. Except for
A sound insulation laminate (41) was produced in exactly the same manner as in Example 1.
【0096】(比較例12)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長15mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成される以外は実施例1と全く同じにして遮音積
層体(42)を作製しようとしたが、繊維Bが短かすぎ
て不織布とならず、作製できなかった。(Comparative Example 12) A high-density nonwoven fabric layer was composed of 25 polyester fibers A having a fiber diameter of 60 µm and a fiber length of 50 mm.
75% by weight of a polyester fiber B having a fiber diameter of 60 μm, a fiber length of 15 mm, and a softening point lower than that of the fiber A by 90 ° C.
An attempt was made to produce the sound insulation laminate (42) in exactly the same manner as in Example 1, except that the fiber B was too short to be a non-woven fabric and could not be produced.
【0097】(比較例13)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長200mmで繊維A
より軟化点が90℃低いポリエステル繊維Bを75重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量が2700cc/cm2 ・min.である以外は実施
例1と全く同じにして遮音積層体(43)を作製した。(Comparative Example 13) The high-density nonwoven fabric layer has a fiber diameter
Polyester fiber A having a length of 60 μm and a fiber length of 50 mm
Weight%, fiber diameter 60 μm, fiber length 200 mm, fiber A
75 weight of polyester fiber B having a softening point lower by 90 ° C.
%, Air pressure 0.01 kg / cm TwoVentilation in
The amount is 2700cc / cmTwo-Min. Except for
A sound insulation laminate (43) was produced in exactly the same manner as in Example 1.
【0098】(比較例14)低密度不織布層の面密度を
200g/cm2 、空気圧0.01kg/cm2 での通
気量を4100cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(44)を作製し
た。(Comparative Example 14) The low-density nonwoven fabric layer had an areal density of 200 g / cm 2 and an air flow rate of 0.01 kg / cm 2 at a flow rate of 4100 cc / cm 2 · min. A sound-insulating laminate (44) was produced in exactly the same manner as in Example 1 except for the above.
【0099】(比較例15)低密度不織布層の面密度を
3000g/cm2 、空気圧0.01kg/cm2での
通気量を2000cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(45)を作製し
た。Comparative Example 15 The low-density nonwoven fabric layer had an areal density of 3000 g / cm 2 and an air flow rate of 2000 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound-insulating laminate (45) was produced in exactly the same manner as in Example 1 except for the above.
【0100】(比較例16)低密度不織布層の厚みを1
0mm、空気圧0.01kg/cm2 での通気量を28
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(46)を作製した。(Comparative Example 16) The thickness of the low-density nonwoven fabric layer was 1
0 mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 28
00 cc / cm 2 · min. A sound insulation laminate (46) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0101】(比較例17)低密度不織布層の厚みを1
00mmとした以外は実施例1と全く同じにして遮音積
層体(47)を作製しようとしたが、実使用上から現実
的なサイズとならなかった。(Comparative Example 17) The thickness of the low-density nonwoven fabric layer was 1
An attempt was made to produce the sound-insulating laminate (47) in exactly the same manner as in Example 1 except that the thickness was set to 00 mm, but the size did not become a realistic size in practical use.
【0102】(比較例18)低密度不織布層が、繊維径
5μm、繊維長50mmのポリエステル繊維Cを90重
量%と、繊維径60μm、繊維長50mmで繊維Cより
軟化点が90℃低いポリエステル繊維B’を10重量%
とで構成される以外は実施例1と全く同じにして遮音積
層体(48)を作製しようとしたが、繊維Cが細すぎて
不織布とならず、作製できなかった。(Comparative Example 18) A low-density nonwoven fabric layer was composed of 90% by weight of a polyester fiber C having a fiber diameter of 5 μm and a fiber length of 50 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. 10% by weight of B '
An attempt was made to produce the sound insulation laminate (48) in exactly the same manner as in Example 1 except that the fiber C was too thin to form a non-woven fabric and could not be produced.
【0103】(比較例19)低密度不織布層が、繊維径
300μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を4800cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(49)を作製し
た。(Comparative Example 19) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 300 μm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
The polyester fiber B ′ having a softening point lower by 90 ° C. is constituted by 10% by weight, and the air permeability at an air pressure of 0.01 kg / cm 2 is 4800 cc / cm 2 · min. A sound-insulating laminate (49) was produced in exactly the same manner as in Example 1 except for the above.
【0104】(比較例20)低密度不織布層が、繊維径
120μm、繊維長15mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成される以外は実施例1と全く同じにして遮
音構造体(50)を作製しようとしたが、繊維Cが短く
て不織布とならず、作製できなかった。(Comparative Example 20) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 15 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
An attempt was made to produce the sound insulating structure (50) in exactly the same manner as in Example 1 except that 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. was used. And could not be produced.
【0105】(比較例21)低密度不織布層が、繊維径
120μm、繊維長200mmのポリエステル繊維Cを
90重量%と、繊維径60μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3700cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(51)を作製し
た。(Comparative Example 21) A low-density nonwoven fabric layer was composed of 90% by weight of a polyester fiber C having a fiber diameter of 120 μm and a fiber length of 200 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. B 'is 10
% Air flow at an air pressure of 0.01 kg / cm 2 at a flow rate of 3700 cc / cm 2 · min. A sound insulation laminate (51) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0106】(比較例22)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを5
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を50重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(52)を作製し
た。(Comparative Example 22) A low-density nonwoven fabric layer was made of 5 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 50% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 3200 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (52) was produced in exactly the same manner as in Example 1, except that
【0107】(比較例23)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cの1
00重量%のみで構成される以外は実施例1と全く同じ
にして遮音積層体(53)を作製しようとしたが、成形
体とならず、作製できなかった。(Comparative Example 23) A low-density nonwoven fabric layer was made of polyester fiber C having a fiber diameter of 120 µm and a fiber length of 50 mm.
An attempt was made to produce the sound-insulating laminate (53) in exactly the same manner as in Example 1 except that the sound-insulating laminate (53) was constituted only by 00% by weight.
【0108】(比較例24)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径5μm、繊維長50mmで繊維Cよ
り軟化点が90℃低いポリエステル繊維B’を10重量
%とで構成される以外は実施例1と全く同じにして遮音
積層体(54)を作製しようとしたが、繊維Bが細すぎ
て不織布とならず、作製できなかった。(Comparative Example 24) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
The sound insulation laminate (54) was made in exactly the same manner as in Example 1 except that the polyester fiber B ′ was composed of 0% by weight and 10% by weight of a polyester fiber B ′ having a fiber diameter of 5 μm, a fiber length of 50 mm, and a softening point 90 ° C. lower than that of the fiber C. ) Was attempted, but the fiber B was too thin to form a non-woven fabric and could not be produced.
【0109】(比較例25)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径300μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を4500cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(54)を作製し
た。(Comparative Example 25) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 μm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 300 μm, a fiber length of 50 mm, and a softening point 90 ° C. lower than that of fiber C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 4500 cc / cm 2 · min. A sound insulation laminate (54) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0110】(比較例26)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長15mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成される以外は実施例1と全く同じにして遮
音積層体(56)を作製しようとしたが、繊維B’が短
くて不織布とならず、作製できなかった。(Comparative Example 26) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 60 μm, fiber length 15 mm and fiber C
A sound insulation laminate (56) was prepared in exactly the same manner as in Example 1 except that the polyester fiber B 'having a softening point lower by 90 ° C. was constituted by 10% by weight. It could not be produced.
【0111】(比較例27)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長200mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を4300cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(57)を作製し
た。(Comparative Example 27) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 60 μm, a fiber length of 200 mm and a softening point lower by 90 ° C. than that of the fiber C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 4300 cc / cm 2 · min. A sound insulation laminate (57) was produced in exactly the same manner as in Example 1 except for the above.
【0112】(比較例28)高密度不織布層を形成する
ポリエステル繊維Aとポリエステル繊維Bの軟化点の差
が10℃で、空気圧0.01kg/cm2 での通気量を
2300cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(58)を作製した。(Comparative Example 28) Forming a high-density nonwoven fabric layer
Difference in softening point between polyester fiber A and polyester fiber B
Is 10 ° C, air pressure 0.01kg / cmTwoAirflow
2300cc / cm Two-Min. Example 1 except that
A sound insulation laminate (58) was produced in exactly the same manner as in the above.
【0113】(比較例29)低密度不織布層を形成する
ポリエステル繊維Cとポリエステル繊維Bの軟化点の差
が10℃で、空気圧0.01kg/cm2 での通気量を
3800cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(59)を作製した。(Comparative Example 29) Forming a low-density nonwoven fabric layer
Difference in softening point between polyester fiber C and polyester fiber B
Is 10 ° C, air pressure 0.01kg / cmTwoAirflow
3800cc / cm Two-Min. Example 1 except that
A sound insulation laminate (59) was produced in exactly the same manner as in (1).
【0114】上記の各実施例及び比較例によって得たサ
ンプルについて、それらの構成及び特性値の試験結果を
表1、表2、表3及び表4に示す。Tables 1, 2, 3 and 4 show test results of the structures and characteristic values of the samples obtained by the above Examples and Comparative Examples.
【0115】[0115]
【表1】 [Table 1]
【0116】[0116]
【表2】 [Table 2]
【0117】[0117]
【表3】 [Table 3]
【0118】[0118]
【表4】 [Table 4]
【0119】上記の表に示す結果において、音響透過損
失差が300〜500Hz、500Hz〜1kHzの周
波数域のどちらかで1dB未満のものはその効果がない
ものと判断した。In the results shown in the above table, it was determined that a sound transmission loss difference of less than 1 dB in any of the frequency ranges of 300 to 500 Hz and 500 Hz to 1 kHz had no effect.
【0120】これらの表より、実施例で作製した本発明
の各遮音積層体は、積層積層体全体の質量により決定さ
れる音響透過損失(TL)の質量則の遮音レベルに比べ
て、低周波数域での遮音性能が向上することが確認され
た。また、本発明に該当しない比較例は、遮音性能につ
いて満足な値を得ることができなかった。From these tables, it can be seen that each of the sound insulation laminates of the present invention produced in the examples has a lower frequency than the sound insulation level of the mass rule of sound transmission loss (TL) determined by the mass of the whole laminate. It was confirmed that the sound insulation performance in the region was improved. Moreover, the comparative example which does not correspond to the present invention could not obtain a satisfactory value for the sound insulation performance.
【0121】[0121]
【発明の効果】以上説明したように、本発明の遮音積層
体は、高密度不織布層の通気量を制御でき、従来の通気
性のない高密度不織布層をその構成に有する遮音積層体
より低周波数域での遮音性能が格段に向上する効果を有
する。As described above, the sound-insulating laminate of the present invention can control the air permeability of the high-density nonwoven fabric layer and is lower than the conventional sound-insulating laminate having a high-density nonwoven fabric layer having no air permeability. This has the effect of significantly improving the sound insulation performance in the frequency range.
【図1】車輛に搭載されたフロアインシュレータの模式
図。FIG. 1 is a schematic diagram of a floor insulator mounted on a vehicle.
1 フロアパネル 2 遮音積層体 3 低密度不織布層 4 高密度不織布層 5 フロアカーペット DESCRIPTION OF SYMBOLS 1 Floor panel 2 Sound insulation laminated body 3 Low density nonwoven fabric layer 4 High density nonwoven fabric layer 5 Floor carpet
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成9年8月28日[Submission date] August 28, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 遮音用積層体及びそれを含む2重壁
遮音構造体Patent application title: Sound insulation laminate and double-wall sound insulation structure including the same
【特許請求の範囲】[Claims]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】この発明は、外部からの振動
および/または騒音の入射を防ぐ為に設置される二重壁
タイプの遮音構造体に関するもので、特に自動車のフロ
ア鋼板等からの振動・騒音の入射を防止・遮断するため
に設置されるフロアインシュレータカーペット等に適す
る。また、本発明の遮音用積層体は、低周波領域におけ
る遮音性能を向上させるために、特に通気性を制御した
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-walled sound insulation structure installed to prevent external vibration and / or noise from entering, and more particularly to vibration and / or vibration from floor steel plates of automobiles. Suitable for floor insulator carpets etc. installed to prevent / block noise. Further, the sound insulating laminate of the present invention is one in which air permeability is particularly controlled in order to improve sound insulating performance in a low frequency region.
【0002】[0002]
【従来の技術】一般に自動車用フロアインシュレータ
は、図1に示すように車室を外部と区画するフロアパネ
ル1の車室内側に遮音用積層体2が位置し、車外から車
室内への騒音の伝達を防止する役目を有する。従来の遮
音用積層体2は、図示のようにフェルト、ポリウレタン
フォーム、不織布等の多孔質基材からなる低密度層3
と、充填材を混入したEVA材シート、ポリエチレンシ
ート等の通気性の全くない材料で形成された高密度層4
の積層体で構成されている。そして上記低密度層3によ
り車外からの騒音を吸収するとともに、フロアパネル1
と高密度層4との間に低密度層3を介在させた2重壁遮
音構造体となすことにより、上記遮音効果と併せて良好
な防音性能を発揮するように構成されている。5はカー
ペット表皮である。2. Description of the Related Art Generally, as shown in FIG. 1, a floor insulator for an automobile has a sound insulation laminate 2 located on the interior side of a floor panel 1 which divides the interior of the vehicle from the outside. Has the role of preventing transmission. As shown in the figure, a conventional sound insulating laminate 2 includes a low-density layer 3 made of a porous base material such as felt, polyurethane foam, or nonwoven fabric.
And a high-density layer 4 formed of a material having no air permeability such as an EVA material sheet or a polyethylene sheet mixed with a filler.
Is composed of a laminate. The low-density layer 3 absorbs noise from outside the vehicle, and the floor panel 1
By forming a double-walled sound insulation structure in which the low-density layer 3 is interposed between the high-density layer 4 and the high-density layer 4, the sound insulation performance is excellent and the sound insulation performance is excellent. 5 is a carpet skin.
【0003】[0003]
【発明が解決しようとする課題】このような従来のフロ
アインシュレータの2重壁遮音構造体においては、高密
度層4は通気性を有しないために、高周波域での遮音性
能に優れているが、自動車用フロア部品の遮音性能上重
要となる低周波域では共振点付近での性能低下が見ら
れ、積層体全体の質量により決定される音響透過損失
(TL)の質量則の遮音レベルに対する優位性が小さ
い。In such a conventional double-walled sound insulating structure of a floor insulator, the high-density layer 4 does not have air permeability, so that it has excellent sound insulating performance in a high frequency range. In the low-frequency range, which is important for the sound insulation performance of automotive floor components, the performance is reduced near the resonance point, and the sound transmission loss (TL) determined by the mass of the entire laminate is superior to the sound insulation level of the mass rule. The nature is small.
【0004】本発明はこのような事情に鑑みてなされた
もので、成形体からなる通気性を有する遮音用積層体に
おいて、通気性を制御することで共振点付近での性能を
向上させることにより、低周波域での遮音性能を高めた
遮音用積層体を提供することを目的とするものである。[0004] The present invention has been made in view of such circumstances, and in a sound-insulating laminate made of a molded article, the performance near the resonance point is improved by controlling the air permeability. It is another object of the present invention to provide a sound insulating laminate having improved sound insulating performance in a low frequency range.
【0005】[0005]
【課題を解決するための手段】上記目的は、それぞれ繊
維径20〜200μmで繊維長30〜100mmの熱可
塑性合成繊維で構成された高密度不織布層(1)と低密
度不織布層(2)とを含んでなる積層体であって、高密
度不織布層(1)は高軟化点繊維(繊維A)高々80重
量%と、該繊維Aの軟化点より少なくとも20℃低い軟
化点を有する低軟化点繊維(繊維B)少なくとも20重
量%とで構成され、0.1〜1.0kg/cm2 の面密
度(目付)と1〜10mmの厚みとを有し、且つ空気圧
0.01kg/cm2 における通気量が1200〜37
00cc/cm2 ・min.であり、低密度不織布層
(2)は高軟化点繊維(繊維C)70〜90重量%と、
該繊維Cの軟化点より少なくとも20℃低い軟化点を有
する低軟化点繊維(繊維B’)10〜30重量%とで構
成され、0.4〜2.0kg/cm2 の面密度と15〜
50mmの厚みとを有し、且つ空気圧0.01kg/c
m2 における通気量が1500〜4000cc/cm2
・min.であり、上記2層の空気圧0.01kg/c
m2 における通気量の差が300〜2800cc/cm
2 ・min.であることを特徴とする遮音用積層体によ
り達成される。The object of the present invention is to provide a high-density nonwoven fabric layer (1) and a low-density nonwoven fabric layer (2) each composed of thermoplastic synthetic fibers having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm. Wherein the high-density nonwoven fabric layer (1) has a high softening point fiber (fiber A) of at most 80% by weight and a low softening point having a softening point at least 20 ° C. lower than the softening point of the fiber A. Fiber (fiber B) at least 20% by weight, has an area density (basis weight) of 0.1 to 1.0 kg / cm 2 , a thickness of 1 to 10 mm, and an air pressure of 0.01 kg / cm 2 . Aeration rate of 1200-37
00 cc / cm 2 · min. The low-density nonwoven fabric layer (2) has a high softening point fiber (fiber C) of 70 to 90% by weight,
Low softening point fiber (fiber B ′) having a softening point at least 20 ° C. lower than the softening point of the fiber C (10 to 30% by weight), an area density of 0.4 to 2.0 kg / cm 2 ,
Having a thickness of 50 mm and an air pressure of 0.01 kg / c
The air flow rate in m 2 is 1500 to 4000 cc / cm 2
-Min. And the air pressure of the two layers is 0.01 kg / c.
The difference in air flow rate in m 2 is 300 to 2800 cc / cm
2 min. This is achieved by the sound insulating laminate.
【0006】[0006]
【発明の実施の形態】本発明の遮音用積層体を外部隔
壁、例えば自動車のフロアパネルの車室内側に添設して
遮音性能を向上させるには、第1に、高密度不織布層は
その通気量を必要量に制御し低減することが効果的であ
る。不織布層の通気量はその面密度と厚みとによって決
定される層の密度、構成繊維の繊維径、繊維断面形状等
の様々な要因に依存するが、中でも面密度を増加するこ
と及び不織布を構成する繊維の平均径を小さくすること
は通気性の低下に極めて有効である。しかし単なる密度
の増加に頼ることは全体の重量増加につながり、車輛に
搭載するには不向きとなるのみならず材料費も高くなる
不利がある。BEST MODE FOR CARRYING OUT THE INVENTION To improve the sound insulation performance by attaching the sound insulation laminate of the present invention to an external partition, for example, the interior side of an automobile floor panel, first, the high-density nonwoven fabric layer is It is effective to control and reduce the amount of ventilation to a required amount. The air permeability of the non-woven fabric layer depends on various factors such as the density of the layer determined by its surface density and thickness, the fiber diameter of the constituent fibers, and the fiber cross-sectional shape. Reducing the average diameter of the fibers to be formed is extremely effective in reducing air permeability. However, relying on mere increase in density leads to an increase in overall weight, which is disadvantageous in that it is not suitable for mounting on a vehicle, but also increases material costs.
【0007】第2に、外部隔壁と高密度不織布層とが低
密度不織布層を介して2重壁遮音構造体を形成させるこ
とが必要となる。2重壁遮音構造体を形成すると遮音性
能向上の効果が増大することは既に知られている。しか
しながら、このような2重壁遮音構造体においても、上
述の重量増加等の不利を避けつつ更に遮音性能を向上さ
せるためには、繊維配合、面密度、厚み等の操作で通気
性、剛性等の物性を適宜に制御することが望ましい。従
って、本発明の遮音用積層体は、外部隔壁との間で優れ
た遮音性能を示す2重壁遮音構造体を形成し得るよう
に、高密度不織布層の通気量を上記構成繊維の構造、配
合、面密度および厚みの選定を主体として好適な範囲に
制御することが理想的である。Second, it is necessary that the outer partition walls and the high-density nonwoven fabric layer form a double-walled sound insulation structure via the low-density nonwoven fabric layer. It is already known that forming a double-walled sound insulation structure increases the effect of improving sound insulation performance. However, even in such a double-walled sound insulation structure, in order to further improve the sound insulation performance while avoiding the disadvantages such as the increase in weight described above, it is necessary to perform operations such as fiber blending, surface density, and thickness to improve the air permeability, rigidity, and the like. It is desirable to appropriately control the physical properties of the material. Therefore, the laminated body for sound insulation of the present invention, the air permeability of the high-density nonwoven fabric layer of the above-described constituent fibers, so that a double-walled sound insulation structure showing excellent sound insulation performance with the external partition can be formed. It is ideal to control the blending, the areal density and the thickness in a suitable range mainly by selecting the thickness.
【0008】第3に、通気性の指標となる通気抵抗は、
繊維径、面密度、厚みに依存して変化する。Third, the airflow resistance, which is an index of air permeability, is:
It changes depending on the fiber diameter, area density and thickness.
【0009】第4に、振動伝達率を低減させるほど遮音
性能は向上する。ここで、振動伝達率はその物体の動的
バネ定数に大きく依存し、従って遮音性能向上には動的
バネ定数の低減が必要となる。バネ定数は繊維径に依存
して変化する。[0009] Fourth, the sound insulation performance improves as the vibration transmission rate decreases. Here, the vibration transmissibility greatly depends on the dynamic spring constant of the object. Therefore, it is necessary to reduce the dynamic spring constant to improve the sound insulation performance. The spring constant changes depending on the fiber diameter.
【0010】第5に、低密度不織布層の吸音率は高いほ
ど遮音性能は向上する。吸音率は不織布層の面密度と厚
みとによって決定される層の密度、構成繊維の繊維径、
繊維断面形状等の様々な要因に依存するが、中でも面密
度を増加すること及び不織布を構成する繊維の平均径を
小さくすることは吸音率の向上に極めて有効である。し
かし単なる密度の増加に頼ることは全体の重量増加につ
ながり、車輛に搭載するには不向きとなるのみならず材
料費も高くなる不利がある。Fifth, the higher the sound absorption coefficient of the low-density nonwoven fabric layer, the better the sound insulation performance. Sound absorption is the density of the layer determined by the surface density and thickness of the nonwoven fabric layer, the fiber diameter of the constituent fibers,
Although it depends on various factors such as the cross-sectional shape of the fiber, increasing the surface density and reducing the average diameter of the fibers constituting the nonwoven fabric are extremely effective for improving the sound absorption coefficient. However, relying on mere increase in density leads to an increase in overall weight, which is disadvantageous in that it is not suitable for mounting on a vehicle, but also increases material costs.
【0011】また、本発明は遮音積層構造体を外部隔壁
と高密度不織布層との間に低密度不織布層が挟まれるよ
うに設置することにより、高密度不織布層と外部隔壁と
により2重壁遮音構造体を形成し、この共振点をより低
周波側に任意に移行させることで、周波数に対する遮音
性能曲線全体を低周波側にシフトして性能向上を図るこ
とができる。即ち、高密度不織布層の繊維配合、密度、
通気量、剛性、弾性率、引張り強度及びスプリング硬
さ、並びに、低密度不織布層の繊維配合、厚さ、密度、
動的バネ定数及び通気量を操作することにより、1次共
振周波数を50〜300Hzの任意の周波数に設定する
ことが可能なことを特徴とする。[0011] The present invention also provides a sound insulation laminated structure in which a low-density nonwoven fabric layer is sandwiched between an external partition and a high-density nonwoven fabric layer. By forming the sound insulation structure and arbitrarily shifting this resonance point to a lower frequency side, the entire sound insulation performance curve with respect to the frequency can be shifted to the lower frequency side to improve the performance. That is, the fiber composition, density,
Air permeability, rigidity, elastic modulus, tensile strength and spring hardness, as well as fiber composition, thickness, density,
The primary resonance frequency can be set to an arbitrary frequency of 50 to 300 Hz by manipulating the dynamic spring constant and the air flow rate.
【0012】遮音性能を向上させるには、当該遮音積層
体を用いて外部隔壁とにより2重壁遮音積層体を形成さ
せる必要がある。但し、2重壁遮音構造体が形成された
ときの特性として、遮音性能曲線上のある周波数で共振
現象が発生する。このときこの共振点をより低周波側に
移行させると、周波数に対する遮音性能曲線全体が低周
波側に移行して性能向上が図れる。本発明は、共振点を
任意に設定することが可能であり、それによって遮音性
能向上の目標を達成することができる。In order to improve the sound insulation performance, it is necessary to form a double-walled sound insulation laminate by using the sound insulation laminate and an external partition. However, as a characteristic when the double-walled sound insulation structure is formed, a resonance phenomenon occurs at a certain frequency on the sound insulation performance curve. At this time, if the resonance point is shifted to a lower frequency side, the entire sound insulation performance curve with respect to the frequency is shifted to the lower frequency side, so that the performance can be improved. According to the present invention, the resonance point can be set arbitrarily, thereby achieving the goal of improving the sound insulation performance.
【0013】中間層として低密度不織布層を介在させた
2重壁遮音構造体の1次共振周波数(f)は一般的に下
記(1)式で近似される。The primary resonance frequency (f) of a double-walled sound insulation structure having a low-density nonwoven fabric layer as an intermediate layer is generally approximated by the following equation (1).
【0014】 f=1/2π・[{(m1 +m2 )/m1 ・m2 }・E/d]1/2 …(1) ここで、m1 、m2 は外部隔壁および高密度不織布層の
それぞれ面密度、Eは低密度不織布層のヤング率、dは
低密度不織布層の厚さであり、ヤング率は弾性率等より
算出する。F = 1 / 2π · [{(m 1 + m 2 ) / m 1 · m 2 } · E / d] 1/2 (1) where m 1 and m 2 are the outer partition and the high density The areal density of each nonwoven fabric layer, E is the Young's modulus of the low density nonwoven fabric layer, d is the thickness of the low density nonwoven fabric layer, and the Young's modulus is calculated from the elastic modulus and the like.
【0015】しかし本発明によって構成される2重壁遮
音構造体は完全な2重壁を形成していないので、(1)
式だけでは1次共振周波数を決定できない。そこで共振
点を任意に設定する具体的手段として、特に低周波に設
定するには上記の範囲内で高密度不織布層の繊維配合、
密度を操作し、通気量を制御し、剛性、弾性率、引張り
強度、スプリング硬さを操作し、また低密度不織布層の
繊維配合、密度を操作し、厚みを増加させ、通気量を制
御し、動的バネ定数を低減するといった方法が有効であ
る。これらすべてを同時に行うことで更に精密な共振点
設定が可能となるが、特に限定はされない。However, since the double-walled sound insulation structure constituted by the present invention does not form a complete double-walled structure, (1)
The primary resonance frequency cannot be determined only by the equation. Therefore, as a specific means for arbitrarily setting the resonance point, especially for setting to a low frequency, the fiber blending of the high-density nonwoven fabric layer within the above range,
Manipulating density, controlling air flow, manipulating stiffness, modulus, tensile strength, spring hardness, manipulating fiber composition and density of low-density nonwoven layer, increasing thickness, controlling air flow A method of reducing the dynamic spring constant is effective. Performing all of these at the same time enables more precise resonance point setting, but is not particularly limited.
【0016】本発明の遮音積層体は、1次共振周波数を
50〜300Hzの周波数に設定することが好ましい。
300Hz超の周波数に共振点を設定すると1kHz以
下の低周波数域で遮音性能が低下してしまい目的が達成
できない。50Hz未満に共振点を設定するには上記操
作において特に密度増加の影響が大きくなり、重量増加
につながるため好ましくない。In the sound insulation laminate of the present invention, the primary resonance frequency is preferably set to a frequency of 50 to 300 Hz.
If the resonance point is set to a frequency higher than 300 Hz, the sound insulation performance is reduced in a low frequency range of 1 kHz or less, and the object cannot be achieved. Setting the resonance point at less than 50 Hz is not preferable because the effect of the density increase particularly in the above operation increases the weight.
【0017】次いで、質量則との遮音性能比較について
説明する。本発明の遮音構造体を用いた2重壁遮音構造
体において、遮音積層体全体の質量により決定される音
響透過損失(TL)の質量則の遮音レベルに対して、該
2重壁遮音構造体は300Hz〜1kHzの周波数領域
において、その周波数平均で音響透過損失が1〜3dB
向上する。Next, comparison of sound insulation performance with the mass law will be described. In the double-walled sound-insulating structure using the sound-insulating structure of the present invention, the double-walled sound-insulating structure for the sound insulation level of the mass rule of sound transmission loss (TL) determined by the mass of the entire sound-insulating laminate. In the frequency range of 300 Hz to 1 kHz, the sound transmission loss is 1 to 3 dB on the average frequency.
improves.
【0018】遮音構造体を構成する遮音積層体全体の質
量は遮音性能を決定する要因の一つである。質量則と
は、この遮音積層体の質量によって周波数ごとの遮音性
能が決定されるものである。しかし遮音積層体が外部隔
壁と共に2重壁遮音構造体を形成すると前記のように共
振域では質量則を下回るが、それ以外の領域では質量則
を上回る遮音性能を得ることができる。そこで2重壁遮
音構造体を形成し、前記のように共振点を操作すること
で任意の周波数領域で遮音性能を向上させることが可能
となる。本発明の遮音積層体は以上の手段を用いること
で300Hz〜1kHzの周波数領域において、音響透
過損失(TL)の質量則の遮音レベルを1〜3dB上回
ることが可能となる。The mass of the entire sound insulation laminate constituting the sound insulation structure is one of the factors that determine the sound insulation performance. The mass rule is that the sound insulation performance for each frequency is determined by the mass of the sound insulation laminate. However, when the sound insulation laminate forms a double-walled sound insulation structure together with the external partition, as described above, the sound insulation performance falls below the mass law in the resonance region, but exceeds the mass law in other regions. Therefore, by forming a double-walled sound insulation structure and operating the resonance point as described above, it is possible to improve the sound insulation performance in an arbitrary frequency region. By using the above means, the sound insulation laminate of the present invention can exceed the sound insulation level of the mass rule of sound transmission loss (TL) by 1 to 3 dB in the frequency range of 300 Hz to 1 kHz.
【0019】以上の観点から、先ず、積層体全体の面密
度は0.5〜3.0kg/m2 の範囲であることが好ま
しい。遮音性能を確保する上で積層体の面密度は高いほ
ど良いが、3.0kg/m2 を超えると実使用の上で重
すぎて好ましくない。また面密度が0.5kg/m2 未
満では吸音性能等の遮音性能向上の目的達成が困難とな
るので好ましくない。From the above viewpoints, first, the areal density of the entire laminate is preferably in the range of 0.5 to 3.0 kg / m 2 . In order to ensure sound insulation performance, the surface density of the laminate is preferably as high as possible, but if it exceeds 3.0 kg / m 2 , it is not preferable because it is too heavy for practical use. If the areal density is less than 0.5 kg / m 2, it is difficult to achieve the purpose of improving sound insulation performance such as sound absorption performance, which is not preferable.
【0020】積層体全体の厚みは16〜60mmの範囲
であることが好ましい。上記範囲の面密度で16mm未
満の厚みでは通気量が過小となり、特に低周波領域で共
振点付近における充分な遮音性能を得難い。また、吸音
性能の向上には厚みは大きいほど良いが、60mmを超
えると実際に使用する上でスペース確保等の観点から好
ましくない。The thickness of the entire laminate is preferably in the range of 16 to 60 mm. If the area density is less than 16 mm in the above range, the air permeability becomes too small, and it is difficult to obtain sufficient sound insulation performance near the resonance point, especially in a low frequency region. The thickness is preferably as large as possible to improve the sound absorbing performance. However, if the thickness exceeds 60 mm, it is not preferable from the viewpoint of securing a space for practical use.
【0021】積層体に充分な遮音性能を付与するには、
高密度不織布層が外部隔壁と2重壁遮音構造体を形成す
る上で必要な通気抵抗を確保し、且つ低密度不織布層を
その吸音率向上及びバネ定数の低減に必要な通気抵抗に
制御することを要する。そのためには、高密度不織布層
と低密度不織布層の通気量差を、空気圧0.01kg/
cm2 において300〜2800cc/cm2 ・mi
n.の範囲内としなければならない。通気量差が300
cc/cm2 ・min.未満では、単層構造体と実質的
に同じとなり、2重壁遮音構造体を形成しなくなる。通
気量差が2800cc/cm2 ・min.を超えると低
密度不織布層の遮音性能目標が達せられない。In order to impart sufficient sound insulation performance to the laminate,
The high-density nonwoven fabric layer secures the ventilation resistance required for forming the outer partition and the double-walled sound insulating structure, and controls the low-density nonwoven fabric layer to the ventilation resistance necessary for improving its sound absorption coefficient and reducing the spring constant. I need to do that. For this purpose, the difference in air permeability between the high-density non-woven fabric layer and the low-density non-woven fabric layer is determined by using an air pressure of 0.01 kg /
In cm 2 300~2800cc / cm 2 · mi
n. Must be within the range. Aeration difference is 300
cc / cm 2 · min. If it is less than the above, the structure becomes substantially the same as the single-layer structure, and the double-wall sound insulation structure is not formed. The difference in the amount of ventilation is 2800 cc / cm 2 · min. If the ratio exceeds, the target of the sound insulation performance of the low-density nonwoven fabric layer cannot be achieved.
【0022】通気量は、構成繊維の繊維径、積層体の面
密度、厚みに依存して変化する。繊維径が小さいほど、
つまり不織布中の繊維表面積が大きいほど通気抵抗は増
大し通気量は低下する。しかし細デニールの繊維は高価
であり且つカーディング特性が劣り不織布の形成が困難
である上、一定面密度下で相対的に繊維の本数が増加し
て機械的強度が増加するため低周波域での遮音性能の目
標が達成できない。特に、繊維径20μm未満の細デニ
ール繊維は、技術的に製造困難なため安定供給が難しく
コスト増加を伴い、また、他の繊維と混ざりにくく均一
な不織布を得難いので経済性、成形性の両面から好まし
くない。一方、繊維径が200μmを超えると充分な通
気抵抗が得られず遮音性能の向上を期し難い。The amount of ventilation varies depending on the fiber diameter of the constituent fibers, the surface density and the thickness of the laminate. The smaller the fiber diameter,
That is, as the fiber surface area in the nonwoven fabric increases, the airflow resistance increases and the airflow decreases. However, fine denier fibers are expensive and have poor carding characteristics, making it difficult to form a nonwoven fabric. In addition, the number of fibers relatively increases under a constant surface density, and the mechanical strength increases, so that the fibers have a low mechanical strength in the low frequency range. Cannot achieve the target of sound insulation performance. In particular, fine denier fibers having a fiber diameter of less than 20 μm are difficult to manufacture technically, so that stable supply is difficult and cost increases, and it is difficult to mix with other fibers to obtain a uniform nonwoven fabric. Not preferred. On the other hand, if the fiber diameter exceeds 200 μm, sufficient airflow resistance cannot be obtained, and it is difficult to improve sound insulation performance.
【0023】不織布の通気量を制御する上で繊維表面積
への影響や、カーディング特性等の不織布製造時の作業
性、不織布の機械的強度向上等の観点から、構成繊維の
繊維長は30〜100mmであることを要する。繊維長
が30mm未満では不織布製造時の作業性に劣り、10
0mmを超えると不織布中に均一に分散させることが困
難となり、良好且つ均一な品質の不織布層を形成し難く
なる。The fiber length of the constituent fibers is from 30 to 30 from the viewpoints of controlling the air permeability of the nonwoven fabric, affecting the surface area of the fiber, improving the workability during production of the nonwoven fabric, such as carding characteristics, and improving the mechanical strength of the nonwoven fabric. It needs to be 100 mm. If the fiber length is less than 30 mm, the workability during the production of the nonwoven fabric is inferior.
If it exceeds 0 mm, it will be difficult to uniformly disperse it in the nonwoven fabric, and it will be difficult to form a nonwoven fabric layer of good and uniform quality.
【0024】熱可塑性合成繊維としては、ポリエステル
が流通性、機械的強度、剛性等の点から適しており、コ
ストパフォーマンスも高い。しかしながら、ナイロン等
のポリアミド系、ポリアクリロニトリル等のポリビニル
系、及びポリエチレン、ポリプロピレン等のポリオレフ
ィン系等の繊維形成性合成重合体或いはセルロースアセ
テート等の半合成重合体も使用可能であり、上記繊維径
の繊維を製造して不織布化することにより、ほぼ同等の
通気抵抗を有するものが得られる。As the thermoplastic synthetic fiber, polyester is suitable in terms of flowability, mechanical strength, rigidity and the like, and has high cost performance. However, polyamide-based polyamides such as nylon, polyvinyl-based polymers such as polyacrylonitrile, and polyethylene, a fiber-forming synthetic polymer such as polyolefins such as polypropylene or semi-synthetic polymers such as cellulose acetate can also be used. By producing the fiber and converting it into a nonwoven fabric, a material having substantially the same airflow resistance can be obtained.
【0025】そこで、高密度不織布層について説明す
る。高密度不織布層は、繊維形成性線状重合体よりな
る、好ましくは繊維径25〜200μmの高軟化点繊維
(繊維A)の高々80重量%と、繊維Aの軟化点より少
なくとも20℃低い軟化点を有する繊維径20〜200
μmの低軟化点繊維(繊維B、または以下バインダー繊
維ともいう)の少なくとも20重量%とよりなる。ここ
で高軟化点繊維径は25μm以上であることが殊に好ま
しい。これより細い繊維は接合点の操作が困難となり、
機械的強度を操作することが難しいからである。また、
繊維径は200μm以下でなければならない。これより
太い繊維は必要な通気抵抗を得るのに不適となる。ま
た、高軟化点繊維Aが80重量%を超えると吸音材の厚
みを制御することが難しく、十分な密度を確保できなく
なり目的を達成できない。Therefore, the high density nonwoven fabric layer will be described. The high-density nonwoven fabric layer comprises a fiber-forming linear polymer, preferably at most 80% by weight of a high softening point fiber (fiber A) having a fiber diameter of 25 to 200 μm, and a softening at least 20 ° C. lower than the softening point of the fiber A. Fiber diameter with points 20 to 200
It comprises at least 20% by weight of low softening point fibers (fiber B, hereinafter also referred to as binder fibers) of μm. Here, the high softening point fiber diameter is particularly preferably at least 25 μm. The smaller the fiber, the more difficult it is to operate the joint,
This is because it is difficult to control the mechanical strength. Also,
The fiber diameter must be less than 200 μm. Thicker fibers are unsuitable for obtaining the required airflow resistance. On the other hand, if the high softening point fiber A exceeds 80% by weight, it is difficult to control the thickness of the sound absorbing material, so that a sufficient density cannot be secured and the object cannot be achieved.
【0026】高軟化点繊維Aは実質的なホモポリマーで
あることが好ましく、典型的にはポリエチレンテレフタ
レートを主成分とする高融点ポリエステルよりなる。繊
維の横断面形状は円形もしくは非円形(異形)の何れで
もよい。異形断面繊維は通気抵抗の増大に更に寄与す
る。The high softening point fiber A is preferably a substantially homopolymer, and typically comprises a high melting point polyester having polyethylene terephthalate as a main component. The cross-sectional shape of the fiber may be circular or non-circular (irregular). The modified cross-section fibers further contribute to an increase in airflow resistance.
【0027】低軟化点繊維Bは繊維径20〜200μ
m、繊維長30〜100mmの繊維で、高軟化点繊維A
より軟化点が少なくとも20℃は低い繊維であり、高密
度不織布層の中に20〜100重量%の割合で配合す
る。低軟化点繊維Bはバインダー繊維として加熱処理に
より軟化し繊維Aに対し接着性を発現するものであり、
繊維Aと親和性のあるポリマー、例えば、繊維Aがホモ
ポリエステル系重合体繊維の場合には、バインダー繊維
もポリエステル系として他の二塩基酸成分および/また
はグリコール成分を共重合またはブレンドすることによ
り変性し、軟化点を低下させたコポリマー或いはブレン
ドポリマーよりなる低軟化点繊維が好適に用いられる。
更に好ましくは、このようなコポリマー或いはブレンド
ポリマー成分の少なくとも一部が繊維表面に露出するよ
う高軟化点のホモポリマー成分とコンジュゲートさせた
芯鞘型あるいはサイド・バイ・サイド型コンジュゲート
繊維である。かかるコンジュゲート繊維は、低軟化点成
分が接着機能を司る間に、高軟化点成分は軟化或いは溶
融せず支持機能を果たす。The low softening point fiber B has a fiber diameter of 20 to 200 μm.
m, a fiber having a fiber length of 30 to 100 mm and a high softening point fiber A
It is a fiber having a lower softening point of at least 20 ° C, and is blended in the high-density nonwoven fabric layer at a ratio of 20 to 100% by weight. The low softening point fiber B softens as a binder fiber by heat treatment and exhibits adhesiveness to the fiber A,
When the polymer having an affinity for the fiber A, for example, the fiber A is a homopolyester-based polymer fiber, the binder fiber is also made of polyester by copolymerizing or blending another dibasic acid component and / or a glycol component. Low softening point fibers composed of a modified or reduced softening point copolymer or blend polymer are preferably used.
More preferably, it is a core-sheath type or side-by-side type conjugate fiber conjugated with a homopolymer component having a high softening point such that at least a part of such a copolymer or blend polymer component is exposed on the fiber surface. . In such conjugate fibers, the high softening point component does not soften or melt, and performs a supporting function while the low softening point component controls the adhesive function.
【0028】低軟化点繊維Bの配合量が高密度不織布層
の重量基準で20重量%未満となると、同様に接合点の
減少により高密度不織布層に充分な成形性を付与するこ
とができない。低軟化点繊維Bの配合は、高密度不織布
層の中に成形性を付与できる繊維を配合することが多少
必要であることを意味する。当該遮音積層体は遮音の要
求される部位への密着性が性能向上への大きな要因とな
っており、不織布は多様な面形状に追従するように成形
できることが必要である。前述の短繊維を使用すること
により追従性は向上するが、その形状を維持するために
はバインダー繊維の配合が必要となる。加熱成形時には
繊維Aを型の形状に拘束した状態でバインダー繊維が軟
化して繊維どうしが接着するので、細かな面形状の維持
が可能となる。When the blending amount of the low softening point fiber B is less than 20% by weight based on the weight of the high density nonwoven fabric layer, similarly, sufficient moldability cannot be imparted to the high density nonwoven fabric layer due to a decrease in the number of bonding points. The blending of the low softening point fiber B means that it is somewhat necessary to blend a fiber capable of imparting moldability into the high-density nonwoven fabric layer. The sound insulation laminate has a large factor in improving performance due to its adhesion to a portion where sound insulation is required, and it is necessary that the nonwoven fabric can be formed so as to follow various surface shapes. The use of the above-mentioned short fibers improves followability, but in order to maintain the shape, blending of binder fibers is required. At the time of heat molding, the binder fibers are softened while the fibers A are constrained in the shape of the mold, and the fibers adhere to each other, so that a fine surface shape can be maintained.
【0029】このときもバインダー繊維Bは20μm以
上であることが好ましい。繊維径20μm未満のものは
一般的でなくコスト高となり、経済性、成形性の両面か
ら好ましくない。また、これより細いと加熱成形時にバ
インダー繊維自体にへたり(永久的圧潰変形)が生じ、
また繊維Aと混ぜたときに均一な不織布を得るのが困難
となる。また、バインダー繊維は200μm以下である
ことが好ましい。これ以上の太い繊維を用いると相対的
に繊維の本数が著しく減少するため、構成繊維間の接合
点が減少し、形状安定性及び成形性が低下し、形状維持
が難しくなるためである。At this time, it is preferable that the binder fiber B has a size of 20 μm or more. Fibers having a fiber diameter of less than 20 μm are uncommon and costly, and are not preferable in terms of both economy and moldability. Also, if it is thinner than this, the binder fiber itself will be set (permanent crushing deformation) during heat molding,
Further, it becomes difficult to obtain a uniform nonwoven fabric when mixed with the fiber A. Further, the binder fiber preferably has a size of 200 μm or less. If a thicker fiber is used, the number of fibers is relatively reduced significantly, so that the number of bonding points between constituent fibers is reduced, shape stability and moldability are reduced, and it is difficult to maintain the shape.
【0030】高軟化点繊維Aと低軟化点繊維Bの軟化点
の差が20℃未満となると、加熱成形時に高軟化点繊維
Aの強度、剛性の低下を抑制し高密度不織布層の形状を
維持した状態で、低軟化点繊維Bのみを軟化させ接着性
を発現させる温度管理が極めて困難となり、高密度不織
布層全体の軟化を生じる危険性が増大する。即ち、不織
布の形状を維持させながら、加熱してプレス成形し、製
品を作るために最低必要な繊維自身の軟化点の相違であ
り、これよりも軟化点の差が小さくなると、加熱成形時
に不織布全体の軟化が生じてしまう。When the difference between the softening points of the high softening point fiber A and the low softening point fiber B is less than 20 ° C., the strength and rigidity of the high softening point fiber A are prevented from lowering during heat molding, and the shape of the high density nonwoven fabric layer is reduced. In the maintained state, it is extremely difficult to control the temperature for softening only the low softening point fiber B to develop the adhesiveness, and the risk of softening the entire high-density nonwoven fabric layer increases. That is, while maintaining the shape of the nonwoven fabric, heating and press-forming, the difference in the softening point of the fiber itself, which is the minimum necessary for producing a product, is smaller than this, and when the difference in the softening point is smaller than this, Overall softening occurs.
【0031】次いで、高密度不織布層が外部隔壁と共に
2重壁遮音構造体を形成して遮音性能を確保するのに要
する高密度不織布層の面密度は少なくとも0.1kg/
m2である。然し乍ら、面密度が1.0kg/m2 を超
えると材料コスト上昇、重量増加等の観点から好ましく
ない。面密度が上記範囲にある高密度不織布層の好適な
厚みは1〜10mmの範囲にある。1mm未満の厚みで
上記の面密度を有する高密度不織布層は成形困難であ
り、たとえ成形可能であっても成形体の通気抵抗が大き
過ぎ、却って遮音性能が低下するので好ましくない。一
方10mmを超えると上記の面密度範囲内では遮音性能
を発揮するための充分な通気抵抗を得難い。Next, the areal density of the high-density nonwoven fabric layer required for forming the double-walled sound insulation structure together with the outer partition walls to secure the sound insulation performance is at least 0.1 kg /.
m 2 . However, if the areal density exceeds 1.0 kg / m 2 , it is not preferable from the viewpoint of an increase in material cost and weight. The preferred thickness of the high-density nonwoven fabric layer having an area density in the above range is in the range of 1 to 10 mm. It is difficult to form a high-density nonwoven fabric layer having the above-mentioned surface density with a thickness of less than 1 mm, and even if it can be molded, it is not preferable because the molded article has too high airflow resistance and, on the contrary, deteriorates sound insulation performance. On the other hand, if it exceeds 10 mm, it is difficult to obtain a sufficient ventilation resistance for exhibiting sound insulation performance in the above-mentioned area density range.
【0032】本発明の遮音用積層体は、例えば自動車の
フロアパネル等の凹凸面に添設して使用する場合に、凹
凸面形状に追従し密着した状態で成形可能であることが
応用面で重要であるばかりでなく、また遮音性能向上の
ための大きな要因をもなす。繊維Aを骨格とした遮音構
造体は、上記のようにその面密度と厚みを限定し且つ短
繊維を用いたために型の形状によく追従するが、その状
態で繊維Aとバインダー繊維との軟化点間の適宜な温度
で加熱成形すると、バインダー繊維は軟化して接着性を
発揮し、繊維間交点を接合して不織布の形態を安定化す
る。The application of the sound-insulating laminate of the present invention is that it can be molded in a state in which it adheres to and conforms to the shape of the uneven surface when used in addition to the uneven surface of, for example, a floor panel of an automobile. Not only is it important, but also a major factor in improving sound insulation performance. The sound insulation structure having the fiber A as a skeleton follows the shape of the mold well because the surface density and thickness are limited and the short fibers are used as described above. When heat molded at an appropriate temperature between the points, the binder fibers are softened and exhibit adhesiveness, and the intersections between the fibers are joined to stabilize the form of the nonwoven fabric.
【0033】上記繊維種と繊維構成とにより形成され加
熱成形された高密度不織布層は、その空気圧0.01k
g/cm2 における通気量が1200〜3700cc/
cm 2 ・min.の範囲となる。The fiber formed by the above fiber type and fiber composition
The thermoformed high-density nonwoven fabric layer has an air pressure of 0.01 k
g / cmTwoAir flow rate of 1200-3700cc /
cm Two-Min. Range.
【0034】次いで、低密度不織布層について説明す
る。本発明の遮音用積層体の遮音性能を更に向上させる
には、上記高密度不織布層の通気性制御と相俟って、低
密度不織布層の通気性の制御、振動伝達率の低減、吸音
率の向上が必要である。Next, the low-density nonwoven fabric layer will be described. In order to further improve the sound insulation performance of the sound insulation laminate of the present invention, the air permeability control of the low density nonwoven fabric layer, the control of the air permeability of the low density nonwoven fabric layer, the reduction of the vibration transmissibility, the sound absorption Need to be improved.
【0035】低密度不織布層は繊維径20〜200μ
m、好ましくは繊維径40〜200μm、繊維長30〜
100mmの高軟化点繊維Cが70〜90重量%と、前
記の繊維Cより少なくとも20℃は軟化点の低い低軟化
点繊維であって繊維径20〜200μm、繊維長30〜
100mmの繊維(繊維B’または以下バインダー繊維
ともいう)が10〜30重量%で構成される特徴があ
る。The low-density nonwoven fabric layer has a fiber diameter of 20 to 200 μm.
m, preferably a fiber diameter of 40 to 200 μm, and a fiber length of 30 to
100-mm high softening point fiber C is 70-90% by weight, low softening point fiber having a softening point lower by at least 20 ° C. than said fiber C, having a fiber diameter of 20-200 μm and a fiber length of 30-90%.
It is characterized in that 100 mm fibers (fibers B 'or hereinafter also referred to as binder fibers) are constituted by 10 to 30% by weight.
【0036】高軟化点繊維Cは、前記繊維Aと同一でも
異なってもよく、また低軟化点繊維B’は前記繊維Bと
同一でも異なってもよいが、高軟化点繊維Cと低軟化点
繊維B’とは親和性を有するものを用いる。また、低密
度不織布層は主として通気性の制御、振動伝達率の低減
という目的がある。The high softening point fiber C may be the same as or different from the fiber A, and the low softening point fiber B 'may be the same or different from the fiber B. As the fiber B ', a fiber having an affinity is used. In addition, the low-density nonwoven fabric layer mainly has a purpose of controlling air permeability and reducing a vibration transmissibility.
【0037】目標である低周波域での遮音性能を向上さ
せるには、用いる繊維の太さ等によりその機械強度物性
を操作する必要がある。しかしその繊維径によっては低
密度不織布層の形状維持性が低下し、経時でのへたりが
発生して要求性能を満足するのに必要な厚みを確保でき
なくなる。そのため高密度不織布層に配合する繊維Aに
比べて同じ、または比較的太い繊維の配合が必要とな
る。但し、200μm超では目標の遮音性能を得るのに
は不適である。In order to improve the target sound insulation performance in the low frequency range, it is necessary to control the mechanical strength properties of the fibers to be used, depending on the thickness of the fibers used. However, the shape retention of the low-density nonwoven fabric layer is reduced depending on the fiber diameter, and sag occurs with the lapse of time, making it impossible to secure the thickness required to satisfy the required performance. Therefore, it is necessary to blend the same or relatively thick fiber as compared with the fiber A to be blended in the high-density nonwoven fabric layer. However, if it exceeds 200 μm, it is not suitable for obtaining the target sound insulation performance.
【0038】高軟化点繊維Cの配合は、遮音性能向上の
ためにバネ定数を低減するには70重量%以上でなけれ
ばならない。これ以上配合を低減するとバインダー繊維
の比率が高くなり、目標性能を達成するためのバネ定数
低減が困難となる。また通気性の制御、成形性の確保の
点から90重量%以下でなければならない。90重量%
を超えるとバインダー繊維の配合が少なくなり、通気性
の制御、成形性の確保ができなくなる。The blend of the high softening point fiber C must be 70% by weight or more to reduce the spring constant in order to improve the sound insulation performance. If the blending is further reduced, the ratio of the binder fiber increases, and it becomes difficult to reduce the spring constant to achieve the target performance. Further, it must be 90% by weight or less from the viewpoint of control of air permeability and securing of moldability. 90% by weight
When the ratio exceeds the above range, the amount of the binder fiber is reduced, and it becomes impossible to control the air permeability and secure the moldability.
【0039】低密度不織布層を構成する繊維は、繊維径
が20〜200μmの範囲内で繊維径が小さいほど、つ
まり繊維不織布中の繊維表面積が大きいほど通気抵抗は
増大し、通気性は低下し、また同時に繊維径が小さいほ
ど吸音性能は向上するが、繊維径が20μm未満の細デ
ニールの繊維は高価なためコスト増を招き、且つカーデ
ィング特性が劣り不織布への形成性も劣るため好ましく
ない。また、200μmを超えると通気抵抗と吸音性能
とが同時に著しく低下するため遮音性能の向上を期し難
い。The fibers constituting the low-density nonwoven fabric layer have an increased airflow resistance and a reduced air permeability as the fiber diameter is smaller within the range of 20 to 200 μm, that is, as the fiber surface area in the fiber nonwoven fabric is larger. At the same time, the smaller the fiber diameter is, the more the sound absorbing performance is improved. However, fine denier fibers having a fiber diameter of less than 20 μm are expensive, which leads to an increase in cost, and is inferior in carding properties and poor in formability to a nonwoven fabric. . On the other hand, when the thickness exceeds 200 μm, the ventilation resistance and the sound absorption performance are significantly reduced at the same time, so that it is difficult to improve the sound insulation performance.
【0040】高軟化点繊維Cは繊維Aと同様、実質的な
ホモポリマーであることが好ましく、典型的にはポリエ
チレンテレフタレートを主成分とする高融点ポリエステ
ルよりなる。繊維の横断面形状は円形もしくは非円形
(異形)の何れでもよい。異形断面繊維は通気抵抗の増
大に更に寄与する。また、Like the fiber A, the high softening point fiber C is preferably a substantially homopolymer, and is typically made of a high melting point polyester containing polyethylene terephthalate as a main component. The cross-sectional shape of the fiber may be circular or non-circular (irregular). The modified cross-section fibers further contribute to an increase in airflow resistance. Also,
【0041】低軟化点繊維B’はバインダー繊維として
加熱処理により軟化し高軟化点繊維Cに対し接着性を発
現するものであり、高軟化点繊維Cと親和性のあるポリ
マー、例えば、高軟化点繊維Cがホモポリエステル系重
合体繊維の場合には、バインダー繊維もポリエステル系
として他の二塩基酸成分および/またはグリコール成分
を共重合またはブレンドすることにより変性し、軟化点
を低下させたコポリマー或いはブレンドポリマーよりな
る低軟化点繊維が好適に用いられる。更に好ましくは、
このようなコポリマー或いはブレンドポリマー成分の少
なくとも一部が繊維表面に露出するよう高軟化点のホモ
ポリマー成分とコンジュゲートさせた芯鞘型あるいはサ
イド・バイ・サイド型コンジュゲート繊維である。かか
るコンジュゲート繊維は、低軟化点成分が接着機能を司
る間に、高軟化点成分は軟化或いは溶融せず支持機能を
果たす。The low softening point fiber B 'is a binder fiber which is softened by heat treatment and exhibits adhesiveness to the high softening point fiber C, and is a polymer having an affinity for the high softening point fiber C, for example, a high softening point fiber. When the point fiber C is a homopolyester polymer fiber, the binder fiber is also modified into a polyester system by copolymerizing or blending another dibasic acid component and / or a glycol component to lower the softening point. Alternatively, a low softening point fiber made of a blend polymer is preferably used. More preferably,
A core-sheath type or side-by-side type conjugate fiber conjugated with a homopolymer component having a high softening point such that at least a part of such a copolymer or blend polymer component is exposed on the fiber surface. In such conjugate fibers, the high softening point component does not soften or melt, and performs a supporting function while the low softening point component controls the adhesive function.
【0042】高軟化点繊維Cと低軟化点繊維B’の軟化
点の差が20℃未満となると、加熱成形時に繊維Cの強
度、剛性の低下を抑制し低密度不織布層の形状を維持し
た状態で、低軟化点繊維B’のみを軟化させ接着性を発
現させる温度管理が極めて困難となり、低密度不織布層
全体の軟化を生じる危険性が増大する。When the difference between the softening points of the high softening point fiber C and the low softening point fiber B ′ is less than 20 ° C., the strength and rigidity of the fiber C are prevented from lowering during heat molding, and the shape of the low density nonwoven fabric layer is maintained. In this state, it is extremely difficult to control the temperature at which only the low softening point fiber B 'is softened to exhibit adhesiveness, and the risk of softening the entire low density nonwoven fabric layer is increased.
【0043】低軟化点繊維B’は、繊維径20μm未満
のものは一般的でなくコスト高となり、加熱成形時にバ
インダー繊維自体にへたり(永久的圧潰変形)が生じ、
また高軟化点繊維Cと混ざりにくく均一な繊維不織布を
得難いので、前記同様に経済性、成形性の両面から好ま
しくない。一方、バインダー繊維の繊維径が200μm
を超えると、繊維径の増加に伴って相対的に繊維の本数
が減少するため、構成繊維間の接合点が減少し、形状安
定性及び成形性が低下するので好ましくない。また、低
軟化点繊維B’の配合量が高密度不織布層の重量基準で
20重量%未満となると、同様に接合点の減少により高
密度不織布層に充分な成形性を付与することができな
い。As the low softening point fiber B ', a fiber having a fiber diameter of less than 20 .mu.m is not common and the cost is high, and the binder fiber itself is set (permanent crush deformation) during heat molding,
In addition, it is difficult to mix with the high softening point fiber C, and it is difficult to obtain a uniform fiber non-woven fabric. On the other hand, the fiber diameter of the binder fiber is 200 μm
If it exceeds, the number of fibers relatively decreases with an increase in the fiber diameter, so that the number of joining points between the constituent fibers decreases, and the shape stability and moldability decrease, which is not preferable. On the other hand, if the blending amount of the low softening point fiber B ′ is less than 20% by weight based on the weight of the high-density nonwoven fabric layer, similarly, it is not possible to impart sufficient moldability to the high-density nonwoven fabric layer due to a decrease in bonding points.
【0044】低密度不織布層がその遮音性能を確保する
ために必要な面密度は0.4〜2.0kg/m2 の範囲
にある。0.4kg/m2 未満の面密度では遮音性能の
向上が不充分であり、一方2.0kg/m2 を超えると
材料コスト上昇、重量増加等の観点から好ましくない。
また、バネ定数は不織布層の面密度とともに増加して振
動伝達率を悪化させることからも2.0kg/m2 を超
えることは避けるべきである。The areal density required for the low-density nonwoven fabric layer to ensure its sound insulation performance is in the range of 0.4 to 2.0 kg / m 2 . If the areal density is less than 0.4 kg / m 2, the improvement of the sound insulation performance is insufficient, while if it exceeds 2.0 kg / m 2 , it is not preferable from the viewpoints of increase in material cost and weight.
Also, since the spring constant increases with the areal density of the nonwoven fabric layer and deteriorates the vibration transmissibility, it should be avoided to exceed 2.0 kg / m 2 .
【0045】面密度が上記範囲にある低密度不織布層は
15〜50mmの厚みを有することを要する。15mm
未満の厚みでは高密度不織布層との密度差が小さくなり
2重壁構造体が実質的に形成されないので吸音性能が低
下し、一方50mmを超えると実際に使用する上でスペ
ースの確保の点等から不適当である。The low-density nonwoven fabric layer having a surface density in the above range needs to have a thickness of 15 to 50 mm. 15mm
If the thickness is less than 50 mm, the difference in density from the high-density nonwoven fabric layer becomes small and the double-walled structure is not substantially formed, so that the sound absorbing performance is reduced. On the other hand, if the thickness exceeds 50 mm, the space for practical use is secured. Is inappropriate.
【0046】また、上記繊維種と構成により形成された
低密度不織布層は、空気圧0.01kg/cm2 におい
てその通気量が1500〜4000cc/cm2 ・mi
n.となり、優れた遮音性能を備えるに至る。通気量が
1500cc/cm2 ・min.未満となると通気抵抗
が増大し過ぎて、共振点付近の遮音性能低下が著しくな
り、従来の問題点を克服し難いので好ましくなく、また
4000cc/cm2・min.を超えると逆に通気抵
抗が不充分で外部隔壁とで有効な2重壁遮音構造体を形
成し難くなり好ましくない。The low-density nonwoven fabric layer formed by the above-mentioned fiber type and constitution has an air permeability of 1500 to 4000 cc / cm 2 · mi at an air pressure of 0.01 kg / cm 2 .
n. , Leading to excellent sound insulation performance. The ventilation rate is 1500 cc / cm 2 · min. Too airflow resistance is increased when less than, the sound insulation performance degradation in the vicinity of the resonance point becomes remarkable, it is not preferable because it is difficult to overcome the conventional problems, and 4000cc / cm 2 · min. On the other hand, if it exceeds, the ventilation resistance is insufficient, and it becomes difficult to form an effective double-walled sound insulation structure with the external partition, which is not preferable.
【0047】次いで、自動車用フロアインシュレータへ
の適用について説明する。自動車用フロア部品において
低周波数領域、特に1kHz以下での遮音性能を確保す
ることが、要求仕様面から重要であるが、本発明の遮音
積層体は自動車用フロアインシュレータに要求されるか
かる仕様を十分満足することができる。更に共振点を任
意に設定できることで、重要となる低周波数領域での遮
音性能をより一層向上させることも可能となる。Next, application to a floor insulator for an automobile will be described. It is important in terms of required specifications to ensure sound insulation performance in a low frequency region, particularly 1 kHz or less, of floor components for automobiles. However, the sound insulation laminate of the present invention sufficiently meets such specifications required for floor insulators for automobiles. Can be satisfied. Further, since the resonance point can be set arbitrarily, it becomes possible to further improve the sound insulation performance in the important low frequency region.
【0048】また、自動車用フロアインシュレータに用
いられるカーペット表皮はポリエステルが使われること
が多く、本発明の遮音積層体と組み合わせることでフロ
アインシュレータ全体をポリエステルで製造することが
可能となり、工程上で発生するバリ等のリサイクル性も
向上させることができる。In addition, polyester is often used for the carpet skin used for floor insulators for automobiles. By combining with the sound insulation laminate of the present invention, the whole floor insulator can be manufactured from polyester, and it is generated in the process. The recyclability of burrs and the like can be improved.
【0049】本発明の遮音積層体は、通気性を全く有し
ない高密度不織布層を少なくとも1層有する全く同一形
状、同一重量の従来品に比べ、通気性と、低周波領域に
おける優れた遮音性能とを有する。The sound-insulating laminate of the present invention has excellent air permeability and excellent sound insulation performance in a low-frequency region as compared with a conventional product having at least one high-density nonwoven layer having no air permeability and having the same shape and weight. And
【0050】本発明の遮音積層体の製造法は、通気性の
小さい高密度不織布層の好ましくはポリエステルよりな
る短繊維ウェブと、通気性の大きい低密度不織布層の好
ましくはポリエステルよりなる短繊維ウェブとを別体に
作製して、両者を積層しニードルパンチング及び/又は
加熱成形により一体化する。The method for producing a sound insulating laminate according to the present invention comprises a short fiber web made of a high-density nonwoven fabric layer having low air permeability, preferably made of polyester, and a short fiber web made of a low-density nonwoven material layer having high air permeability, preferably made of polyester. Are separately formed, and both are laminated and integrated by needle punching and / or heat molding.
【0051】更に具体的には、繊維径20〜200μ
m、繊維長30〜100mmの高軟化点短繊維の高々8
0重量%、及びその繊維の軟化点より少なくとも20℃
低い軟化点を有する繊維径20〜200μm、繊維長3
0〜100mmのバインダー繊維少なくとも20重量%
をブレンドした繊維原料を常法によりカーディング・ラ
ッピング工程を経て所定目付の高密度不織布層用ウェブ
形成する。同様に、繊維径40〜200μm、繊維長3
0〜100mmの高軟化点繊維70〜90重量%と、そ
の繊維より少なくとも20℃は軟化点の低い繊維で繊維
径20〜200μm、繊維長30〜100mmの低軟化
点繊維が10〜30重量%をブレンドした繊維原料を常
法によりカーディング・ラッピング工程を経て所定目付
の低密度不織布層用ウェブを形成する。次いで、これら
の短繊維ウェブを連続した複数のクロスレイヤーにより
ウェブ積層体となし、その後全体をニードルパンチング
により一体化し、必要に応じてヒートセットを行い、
0.5〜3.0kg/cm2 の面密度と16〜60mm
の厚みとを有する積層体に成形する。More specifically, the fiber diameter is 20 to 200 μm.
m, at most 8 of softening point short fibers having a fiber length of 30 to 100 mm
0% by weight and at least 20 ° C. below the softening point of the fiber
Fiber diameter 20-200 μm with low softening point, fiber length 3
0 to 100 mm binder fiber at least 20% by weight
The fiber raw material blended with is subjected to a carding and wrapping step by a conventional method to form a web for a high density nonwoven fabric layer having a predetermined basis weight. Similarly, the fiber diameter is 40 to 200 μm, and the fiber length is 3
70 to 90% by weight of a high softening point fiber having a softening point of 0 to 100 mm, and a fiber having a softening point lower by at least 20 ° C. than that of the fiber having a low softening point having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm is 10 to 30% by weight. Is subjected to a carding and wrapping process by a conventional method to form a web for a low density nonwoven fabric layer having a predetermined basis weight. Next, these short fiber webs were made into a web laminate by a plurality of continuous cross layers, and thereafter the whole was integrated by needle punching, and heat set as necessary,
0.5 ~ 3.0kg / cm 2 area density and 16 ~ 60mm
Into a laminate having the following thickness.
【0052】また、本発明の遮音用積層体は、例えば自
動車のフロアパネル等の凹凸面に添設して使用する場合
に、凹凸面形状に追従し密着した状態で成形可能である
ことが応用面で重要であるばかりでなく、また遮音性能
向上のための大きな要因をもなす。繊維Aを骨格とした
遮音構造体は、上記のようにその面密度と厚みを限定し
且つ短繊維を用いたために型の形状によく追従するが、
その状態で繊維Aとバインダー繊維との軟化点間の適宜
な温度で加熱成形すると、バインダー繊維は軟化して接
着性を発揮し、繊維間交点を接合して繊維集合体の形態
を安定化する。Further, when the sound insulation laminate of the present invention is used by being attached to an uneven surface of, for example, a floor panel of an automobile, the sound insulating laminate can follow the uneven surface shape and can be formed in a state of being in close contact therewith. This is not only important in terms of sound quality, but also a major factor in improving sound insulation performance. The sound-insulating structure having the fiber A as a skeleton follows the shape of the mold well because the surface density and thickness are limited and short fibers are used as described above.
In this state, when heat-molded at an appropriate temperature between the softening points of the fibers A and the binder fibers, the binder fibers soften and exhibit adhesiveness, and join the intersections between the fibers to stabilize the form of the fiber aggregate. .
【0053】[0053]
【実施例】以下、実施例について本発明を更に詳細に説
明する。The present invention will be described below in more detail with reference to Examples.
【0054】以下の実施例及び比較例における各特性値
の測定方法は次の通りである。 1.通気抵抗 各サンプルについて、JIS L1004、L101
8、及びL1096に規定される通気性試験の測定方法
に準拠して通気量を測定した。 2.遮音性能 各サンプルについて、JIS A1416の「残響室−
残響室を利用した音響透過損失測定」に準じて測定し
た。このとき、各サンプルについて面密度を統一し、積
層構造体全体の質量により決定される音響透過損失(T
L)の質量則の遮音レベルを0dB基準として遮音性能
差を算出した。更にこの差を300〜500Hz、50
0Hz〜1kHzの周波数で平均し、グラフにまとめ
た。The measuring method of each characteristic value in the following examples and comparative examples is as follows. 1. Ventilation resistance For each sample, JIS L1004, L101
8, and the air permeability was measured according to the measurement method of the air permeability test specified in L1096. 2. Sound insulation performance For each sample, refer to JIS A1416 “Reverberation room-
Sound transmission loss measurement using a reverberation room ". At this time, the areal density is unified for each sample, and the sound transmission loss (T
The sound insulation performance difference was calculated using the sound insulation level of the mass rule of L) as a 0 dB reference. Further, this difference is set to 300-500 Hz, 50
The values were averaged at a frequency of 0 Hz to 1 kHz and summarized in a graph.
【0055】(実施例1)高密度不織布層が面密度40
0g/cm2 、厚み5mmで、繊維径約60μm、繊維
長約50mmのポリエステル繊維Aを25重量%と、繊
維径60μm、繊維長約50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを75重量%とで構成さ
れ、空気圧0.01kg/cm2 での通気量が1900
cc/cm 2 ・min.であり、低密度不織布層が面密
度1000g/cm2 、厚み35mmで、繊維径約12
0μm、繊維長約50mmのポリエステル繊維Cを90
重量%と、繊維径約60μm、繊維長約50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量が3400cc/cm2 ・min.である繊維不
織布を使用して遮音積層体(1)を作製した。これを外
部隔壁に添設することで1次共振点を200Hzに設定
した。(Example 1) The high-density nonwoven fabric layer has an area density of 40.
0 g / cmTwo5mm thick, fiber diameter about 60μm, fiber
25% by weight of polyester fiber A having a length of about 50 mm
With a fiber diameter of 60 μm and a fiber length of about 50 mm, the softening point is higher than that of fiber
75% by weight of polyester fiber B 90 ° C lower
And air pressure 0.01kg / cmTwoAirflow at 1900
cc / cm Two-Min. The low-density nonwoven fabric layer is dense
1000g / cmTwo, 35mm thick, about 12 fiber diameter
90 μm polyester fiber C having a fiber length of about 50 mm
Weight%, fiber diameter about 60μm, fiber length about 50mm
Polyester fiber B 'having a softening point lower by 90 [deg.] C. than C by 10
% By weight, air pressure 0.01 kg / cmTwoAt
3400cc / cm ventilation volumeTwo-Min. Fiber is
A sound insulation laminate (1) was produced using a woven fabric. Outside this
Primary resonance point is set to 200Hz by attaching to the partition wall
did.
【0056】(実施例2)高密度不織布層の面密度を1
00g/cm2 、空気圧0.01kg/cm2 での通気
量が2500cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(2)を作製した。Example 2 The high-density nonwoven fabric layer had an area density of 1
00g / cm 2 , and air flow rate at an air pressure of 0.01 kg / cm 2 is 2500 cc / cm 2 · min. A sound insulation laminate (2) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0057】(実施例3)高密度不織布層の面密度を1
000g/cm2 、空気圧0.01kg/cm2での通
気量を1200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(3)を作製した。Example 3 The high-density nonwoven fabric layer had an area density of 1
2,000 g / cm 2 and an air pressure of 0.01 kg / cm 2 at a flow rate of 1200 cc / cm 2 · min. A sound insulation laminate (3) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0058】(実施例4)高密度不織布層の厚みを1m
m、空気圧0.01kg/cm2 での通気量を1300
cc/cm2 ・min.とした以外は実施例1と全く同
じにして遮音積層体(4)を作製した。Example 4 The high-density nonwoven fabric layer had a thickness of 1 m.
m, air flow rate at an air pressure of 0.01 kg / cm 2 is 1300
cc / cm 2 · min. A sound insulation laminate (4) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0059】(実施例5)高密度不織布層の厚みを10
mm、空気圧0.01kg/cm2 での通気量を200
0cc/cm2 ・min.とした以外は実施例1と全く
同じにして遮音積層体(5)を作製した。(Example 5) The thickness of the high-density nonwoven fabric layer was 10
mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 200
0 cc / cm 2 · min. A sound insulating laminate (5) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0060】(実施例6)高密度不織布層が繊維径25
μm、繊維長50mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成され、空気圧0.01kg/cm2 での通気量が1
800cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音積層体(6)を作製した。(Example 6) The high-density nonwoven fabric layer has a fiber diameter of 25.
25% by weight of a polyester fiber A having a fiber length of 50 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and an air pressure of 0.01 kg / cm. The ventilation volume in 2 is 1
800 cc / cm 2 · min. A sound insulation laminate (6) was produced in exactly the same manner as in Example 1 except for the following.
【0061】(実施例7)高密度不織布層が繊維径20
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
2800cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(7)を作製した。Example 7 A high-density nonwoven fabric layer having a fiber diameter of 20
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2800 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (7) was produced in exactly the same manner as described above.
【0062】(実施例8)高密度不織布層が繊維径60
μm、繊維長30mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成され、空気圧0.01kg/cm2 での通気量が1
700cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音構造体(8)を作製した。(Example 8) The high-density nonwoven fabric layer has a fiber diameter of 60.
25% by weight of a polyester fiber A having a fiber length of 30 μm and a fiber length of 30 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and an air pressure of 0.01 kg / cm. The ventilation volume in 2 is 1
700 cc / cm 2 · min. A sound insulating structure (8) was produced in exactly the same manner as in Example 1 except for the following.
【0063】(実施例9)高密度不織布層が繊維径60
μm、繊維長100mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
2100cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(9)を作製した。(Example 9) The high-density nonwoven fabric layer has a fiber diameter of 60.
25% by weight of a polyester fiber A having a fiber length of 100 μm and a fiber length of 100 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2100 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (9) was produced in exactly the same manner as in the above.
【0064】(実施例10)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aが0重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bが100重量%で
構成され、空気圧0.01kg/cm2 での通気量が1
500cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音積層体(10)を作成した。Example 10 The high-density nonwoven fabric layer has a fiber diameter of 6
0% by weight of polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 100% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber A. The air pressure is 0.01 kg / cm 2. 1 ventilation volume
500 cc / cm 2 · min. A sound insulation laminate (10) was prepared in exactly the same manner as in Example 1 except for the following.
【0065】(実施例11)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを80重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを20重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
2200cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(11)を作製した。(Example 11) The high-density nonwoven fabric layer has a fiber diameter of 6
80% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 20% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 2200 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (11) was produced in exactly the same manner as described above.
【0066】(実施例12)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径20μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
1400cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(12)を作製した。(Example 12) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 20 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 1400 cc / cm 2 · min. Example 1 except that
A sound insulation laminate (12) was produced in exactly the same manner as described above.
【0067】(実施例13)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径200μm、繊維長50mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm2での通気量
が3100cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(13)を作製した。(Example 13) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of polyester fiber A having a fiber diameter of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 200 μm and a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C.
And an air flow rate of 3100 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (13) was produced in exactly the same manner as in Example 1 except for the following.
【0068】(実施例14)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長30mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2 での通気量が
1600cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(14)を作製した。(Example 14) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 30 mm and a softening point 90 ° C. lower than that of the fiber A, and an air pressure of 0.01 kg / cm. 2 is 1600 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (14) was produced in exactly the same manner as described above.
【0069】(実施例15)高密度不織布層が繊維径6
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長100mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm2での通気量
が2400cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(15)を作製した。(Example 15) The high-density nonwoven fabric layer has a fiber diameter of 6
25% by weight of polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 100 mm and a softening point 90 ° C. lower than that of the fiber A.
And an air flow rate of 2400 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (15) was produced in exactly the same manner as in Example 1 except for the following.
【0070】(実施例16)低密度不織布層の面密度を
400g/cm2 、空気圧0.01kg/cm2 での通
気量を3800cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(16)を作製し
た。Example 16 The low-density nonwoven fabric layer had an areal density of 400 g / cm 2 and an air flow rate of 3800 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (16) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0071】(実施例17)低密度不織布層の面密度を
2000g/cm2 、空気圧0.01kg/cm2での
通気量を2400cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(17)を作製し
た。Example 17 The low-density nonwoven fabric layer had an areal density of 2000 g / cm 2 and an air flow rate of 2400 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (17) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0072】(実施例18)低密度不織布層の厚みを1
5mm、空気圧0.01kg/cm2 での通気量を26
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(18)を作製した。(Example 18) The low-density nonwoven fabric layer had a thickness of 1
5 mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 26
00 cc / cm 2 · min. A sound insulation laminate (18) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0073】(実施例19)低密度不織布層の厚みを5
0mm、空気圧0.01kg/cm2 での通気量を35
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(19)を作製した。(Example 19) The thickness of the low-density nonwoven fabric layer was 5
0 mm, air flow rate at air pressure 0.01 kg / cm 2 is 35
00 cc / cm 2 · min. A sound insulation laminate (19) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0074】(実施例20)低密度不織布層が、繊維径
40μm、繊維長50mmのポリエステル繊維Cを90
重量%と、繊維径60μm、繊維長50mmで繊維Cよ
り軟化点が90℃低いポリエステル繊維B’を10重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量を2800cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(20)を作製した。(Example 20) The low-density nonwoven fabric layer
Polyester fiber C having a fiber length of 40 μm and a fiber length of 50 mm is 90
Weight%, fiber diameter 60μm, fiber length 50mm, fiber C
10% by weight of polyester fiber B 'having a softening point lower by 90 [deg.] C.
%, Air pressure 0.01 kg / cm TwoVentilation in
2800cc / cmTwo-Min. Implemented except for
A sound insulation laminate (20) was produced in exactly the same manner as in Example 1.
【0075】(実施例21)低密度不織布層が、繊維径
200μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 におい
て通気量を4000cc/cm2 ・min.とした以外
は実施例1と全く同じにして遮音積層体(21)を作製
した。(Example 21) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 200 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 4000 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (21) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0076】(実施例22)低密度不織布層が、繊維径
120μm、繊維長30mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3000cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(22)を作製し
た。(Example 22) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 30 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has an air permeability at an air pressure of 0.01 kg / cm 2 of 3000 cc / cm 2 · min. A sound insulation laminate (22) was produced in exactly the same manner as in Example 1, except that
【0077】(実施例23)低密度不織布層が、繊維径
120μm、繊維長100mmのポリエステル繊維Cを
90重量%と、繊維径60μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3700cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(23)を作製し
た。Example 23 A low-density nonwoven fabric layer was made of 90% by weight of a polyester fiber C having a fiber diameter of 120 μm and a fiber length of 100 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. B 'is 10
% Air flow at an air pressure of 0.01 kg / cm 2 at a flow rate of 3700 cc / cm 2 · min. A sound-insulating laminate (23) was produced in exactly the same manner as in Example 1 except for the above.
【0078】(実施例24)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを7
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を30重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を2900cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(24)を作製し
た。(Example 24) A low-density nonwoven fabric layer was made of polyester fiber C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
30% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. and an air permeability at an air pressure of 0.01 kg / cm 2 of 2900 cc / cm 2 · min. A sound insulation laminate (24) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0079】(実施例25)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径20μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(25)を作製し
た。(Example 25) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 20 μm, fiber length 50 mm and fiber C
It is composed of 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 3200 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (25) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0080】(実施例26)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径200μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3900cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(26)を作製し
た。(Example 26) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 200 μm, a fiber length of 50 mm and a softening point lower than that of the fiber C by 90 ° C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 3900 cc / cm 2 · min. A sound insulation laminate (26) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0081】(実施例27)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長30mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3300cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(27)を作製し
た。(Example 27) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 60 μm, fiber length 30 mm and fiber C
10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. and an air flow rate of 3300 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (27) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0082】(実施例28)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cが9
0重量%と、繊維径60μm、繊維長100mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’が10
重量%で構成され、空気圧0.01kg/cm2 での通
気量が3600cc/cm2 である以外は実施例1と全
く同様にして遮音積層体(28)を作製した。(Example 28) The low-density nonwoven fabric layer was composed of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, polyester fiber B ′ having a fiber diameter of 60 μm, a fiber length of 100 mm, and a softening point 90 ° C. lower than that of fiber C is 10%.
The sound insulating laminate (28) was produced in exactly the same manner as in Example 1 except that it was constituted by weight and the air flow rate at an air pressure of 0.01 kg / cm 2 was 3600 cc / cm 2 .
【0083】(実施例29)高密度不織布層を形成する
ポリエステル繊維Aとポリエステル繊維Bの軟化点の差
が20℃で、空気圧0.01kg/cm2 での通気量を
2050cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(29)を作製した。(Example 29) Forming a high-density nonwoven fabric layer
Difference in softening point between polyester fiber A and polyester fiber B
At 20 ° C and air pressure 0.01kg / cmTwoAirflow
2050cc / cm Two-Min. Example 1 except that
A sound-insulating laminate (29) was produced in exactly the same manner as described above.
【0084】(実施例30)低密度不織布層を形成する
ポリエステル繊維Cとポリエステル繊維B’との軟化点
差が20℃で、空気圧0.01kg/cm2 ・min.
での通気量を3550cc/cm2 ・min.とした以
外は実施例1と全く同じにして遮音積層体(30)を作
製した。Example 30 The difference in softening point between the polyester fiber C and the polyester fiber B ′ forming the low-density nonwoven fabric layer was 20 ° C., and the air pressure was 0.01 kg / cm 2 · min.
Air flow rate at 3550 cc / cm 2 · min. A sound insulation laminate (30) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0085】(比較例1)高密度不織布層の面密度を5
0g/cm2 、空気圧0.01kg/cm2 での通気量
を2800cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音積層体(31)を作製した。(Comparative Example 1) The areal density of the high-density nonwoven fabric layer was 5
0 g / cm 2 and an air pressure of 0.01 kg / cm 2 at a ventilation rate of 2800 cc / cm 2 · min. A sound insulation laminate (31) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0086】(比較例2)高密度不織布層の面密度を2
000g/cm2 、空気圧0.01kg/cm2での通
気量を900cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音積層体(32)を作製した。Comparative Example 2 The high-density nonwoven fabric layer had an area density of 2
The air flow rate at 900 g / cm 2 and air pressure of 0.01 kg / cm 2 was 900 cc / cm 2 · min. A sound insulation laminate (32) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0087】(比較例3)高密度不織布層の厚みを1m
m以下に成形する以外は実施例1と全く同じにして遮音
積層体(33)を作製しようとしたが、成形時の繊維の
圧縮ができず、作製できなかった。(Comparative Example 3) The thickness of the high-density nonwoven fabric layer was 1 m
An attempt was made to produce the sound insulation laminate (33) in exactly the same manner as in Example 1 except that the molding was carried out to m or less, but the fibers could not be compressed at the time of molding and could not be produced.
【0088】(比較例4)高密度不織布層の厚みを20
mm、空気圧0.01kg/cm2 での通気量を240
0cc/cm2 ・min.とした以外は実施例1と全く
同じにして遮音積層体(34)を作製した。Comparative Example 4 A high-density nonwoven fabric layer having a thickness of 20
mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 240
0 cc / cm 2 · min. A sound insulation laminate (34) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0089】(比較例5)高密度不織布層が、繊維径5
μm、繊維長50mmのポリエステル繊維Aを25重量
%と、繊維径60μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを75重量%とで
構成される以外は実施例1と全く同じにして遮音積層体
(35)を作製しようとしたが、繊維Aが細すぎて不織
布とならず、作製できなかった。(Comparative Example 5) A high-density nonwoven fabric layer having a fiber diameter of 5
Example 1 except that the polyester fiber A having a fiber length of 50 μm and a fiber length of 50 mm was 25% by weight, and the polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A was 75% by weight. An attempt was made to produce the sound insulation laminate (35) in exactly the same manner, but the fiber A was too thin to form a nonwoven fabric and could not be produced.
【0090】(比較例6)高密度不織布層が繊維径30
0μm、繊維長50mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成され、空気圧0.01kg/cm2での通気量が
3000cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音積層体(36)を作製した。(Comparative Example 6) The high-density nonwoven fabric layer has a fiber diameter of 30.
25% by weight of a polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, and 75% by weight of a polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than the fiber A, and an air pressure of 0.01 kg / cm. 2 is 3000 cc / cm 2 · min. Example 1 except that
A sound-insulating laminate (36) was produced in exactly the same manner as described above.
【0091】(比較例7)高密度不織布層が、繊維径6
0μm、繊維長15mmのポリエステル繊維Aを25重
量%と、繊維径60μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを50重量%と
で構成される以外は実施例1と全く同じにして遮音積層
体(37)を作製しようとしたが、繊維Aが短く不織布
とならず、作製できなかった。(Comparative Example 7) The high-density nonwoven fabric layer has a fiber diameter of 6
Example 1 except that polyester fiber A having a fiber length of 0 μm and a fiber length of 15 mm was 25% by weight and polyester fiber B having a fiber diameter of 60 μm and a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A was 50% by weight. An attempt was made to produce a sound-insulating laminate (37) in exactly the same manner, but the fiber A was too short to be a non-woven fabric and could not be produced.
【0092】(比較例8)高密度不織布層が、繊維径6
0μm、繊維長200mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長50mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成され、空気圧0.01kg/cm 2 での通気量
が2500cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音積層体(38)を作製した。(Comparative Example 8) A high-density nonwoven fabric layer having a fiber diameter of 6
0 μm, polyester fiber A having a fiber length of 200 mm
Weight%, fiber diameter 60μm, fiber length 50mm, fiber A
75% by weight of polyester fiber B whose softening point is 90 ° C lower
And air pressure 0.01 kg / cm TwoVentilation volume
Is 2500cc / cmTwo-Min. Examples other than
A sound insulation laminate (38) was produced in exactly the same manner as in Example 1.
【0093】(比較例9)高密度不織布層が、繊維径6
0μm、繊維長50mmのポリエステル繊維Aのみで構
成される以外は実施例1と全く同じにして遮音積層体
(39)を作製しようとしたが、厚みを十分に薄く成形
できず、作製できなかった。(Comparative Example 9) A high-density nonwoven fabric layer having a fiber diameter of 6
An attempt was made to produce a sound-insulating laminate (39) in exactly the same manner as in Example 1 except that it was composed only of the polyester fiber A having a fiber length of 0 μm and a fiber length of 50 mm, but the thickness could not be made sufficiently small and could not be produced. .
【0094】(比較例10)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径5μm、繊維長50mmで繊維Aより
軟化点が90℃低いポリエステル繊維Bを75重量%と
で構成される以外は実施例1と全く同じにして遮音積層
体(40)を作製しようとしたが、繊維Bが細すぎて不
織布とならず、作製できなかった。(Comparative Example 10) A high-density nonwoven fabric layer was composed of 25 polyester fibers A having a fiber diameter of 60 µm and a fiber length of 50 mm.
A sound insulation laminate (40) was produced in exactly the same manner as in Example 1 except that the fiber insulation layer (40) was constituted by 75% by weight of a polyester fiber B having a fiber diameter of 5 μm, a fiber length of 50 mm, and a softening point lower by 90 ° C. than the fiber A by 90 ° C. An attempt was made to fabricate it, but the fiber B was too thin to form a nonwoven fabric and could not be fabricated.
【0095】(比較例11)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径300μm、繊維長50mmで繊維A
より軟化点が90℃低いポリエステル繊維Bを25重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量が3200cc/cm2 ・min.である以外は実施
例1と全く同じにして遮音積層体(41)を作製した。(Comparative Example 11) The high-density nonwoven fabric layer has a fiber diameter
Polyester fiber A having a length of 60 μm and a fiber length of 50 mm
Weight%, fiber diameter 300μm, fiber length 50mm and fiber A
25% by weight of polyester fiber B having a softening point lower by 90 ° C.
%, Air pressure 0.01 kg / cm TwoVentilation in
3200cc / cmTwo-Min. Except for
A sound insulation laminate (41) was produced in exactly the same manner as in Example 1.
【0096】(比較例12)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長15mmで繊維Aよ
り軟化点が90℃低いポリエステル繊維Bを75重量%
とで構成される以外は実施例1と全く同じにして遮音積
層体(42)を作製しようとしたが、繊維Bが短かすぎ
て不織布とならず、作製できなかった。(Comparative Example 12) A high-density nonwoven fabric layer was composed of 25 polyester fibers A having a fiber diameter of 60 µm and a fiber length of 50 mm.
75% by weight of a polyester fiber B having a fiber diameter of 60 μm, a fiber length of 15 mm, and a softening point lower than that of the fiber A by 90 ° C.
An attempt was made to produce the sound insulation laminate (42) in exactly the same manner as in Example 1, except that the fiber B was too short to be a non-woven fabric and could not be produced.
【0097】(比較例13)高密度不織布層が、繊維径
60μm、繊維長50mmのポリエステル繊維Aを25
重量%と、繊維径60μm、繊維長200mmで繊維A
より軟化点が90℃低いポリエステル繊維Bを75重量
%とで構成され、空気圧0.01kg/cm 2 での通気
量が2700cc/cm2 ・min.である以外は実施
例1と全く同じにして遮音積層体(43)を作製した。(Comparative Example 13) The high-density nonwoven fabric layer has a fiber diameter
Polyester fiber A having a length of 60 μm and a fiber length of 50 mm
Weight%, fiber diameter 60 μm, fiber length 200 mm, fiber A
75 weight of polyester fiber B having a softening point lower by 90 ° C.
%, Air pressure 0.01 kg / cm TwoVentilation in
The amount is 2700cc / cmTwo-Min. Except for
A sound insulation laminate (43) was produced in exactly the same manner as in Example 1.
【0098】(比較例14)低密度不織布層の面密度を
200g/cm2 、空気圧0.01kg/cm2 での通
気量を4100cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(44)を作製し
た。(Comparative Example 14) The low-density nonwoven fabric layer had an areal density of 200 g / cm 2 and an air flow rate of 0.01 kg / cm 2 at a flow rate of 4100 cc / cm 2 · min. A sound-insulating laminate (44) was produced in exactly the same manner as in Example 1 except for the above.
【0099】(比較例15)低密度不織布層の面密度を
3000g/cm2 、空気圧0.01kg/cm2での
通気量を2000cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(45)を作製し
た。Comparative Example 15 The low-density nonwoven fabric layer had an areal density of 3000 g / cm 2 and an air flow rate of 2000 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound-insulating laminate (45) was produced in exactly the same manner as in Example 1 except for the above.
【0100】(比較例16)低密度不織布層の厚みを1
0mm、空気圧0.01kg/cm2 での通気量を28
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音積層体(46)を作製した。(Comparative Example 16) The thickness of the low-density nonwoven fabric layer was 1
0 mm, the air flow rate at an air pressure of 0.01 kg / cm 2 is 28
00 cc / cm 2 · min. A sound insulation laminate (46) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0101】(比較例17)低密度不織布層の厚みを1
00mmとした以外は実施例1と全く同じにして遮音積
層体(47)を作製しようとしたが、実使用上から現実
的なサイズとならなかった。(Comparative Example 17) The thickness of the low-density nonwoven fabric layer was 1
An attempt was made to produce the sound-insulating laminate (47) in exactly the same manner as in Example 1 except that the thickness was set to 00 mm, but the size did not become a realistic size in practical use.
【0102】(比較例18)低密度不織布層が、繊維径
5μm、繊維長50mmのポリエステル繊維Cを90重
量%と、繊維径60μm、繊維長50mmで繊維Cより
軟化点が90℃低いポリエステル繊維B’を10重量%
とで構成される以外は実施例1と全く同じにして遮音積
層体(48)を作製しようとしたが、繊維Cが細すぎて
不織布とならず、作製できなかった。(Comparative Example 18) A low-density nonwoven fabric layer was composed of 90% by weight of a polyester fiber C having a fiber diameter of 5 μm and a fiber length of 50 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. 10% by weight of B '
An attempt was made to produce the sound insulation laminate (48) in exactly the same manner as in Example 1 except that the fiber C was too thin to form a non-woven fabric and could not be produced.
【0103】(比較例19)低密度不織布層が、繊維径
300μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を4800cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(49)を作製し
た。(Comparative Example 19) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 300 μm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
The polyester fiber B ′ having a softening point lower by 90 ° C. is constituted by 10% by weight, and the air permeability at an air pressure of 0.01 kg / cm 2 is 4800 cc / cm 2 · min. A sound-insulating laminate (49) was produced in exactly the same manner as in Example 1 except for the above.
【0104】(比較例20)低密度不織布層が、繊維径
120μm、繊維長15mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成される以外は実施例1と全く同じにして遮
音構造体(50)を作製しようとしたが、繊維Cが短く
て不織布とならず、作製できなかった。(Comparative Example 20) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 15 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
An attempt was made to produce the sound insulating structure (50) in exactly the same manner as in Example 1 except that 10% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C. was used. And could not be produced.
【0105】(比較例21)低密度不織布層が、繊維径
120μm、繊維長200mmのポリエステル繊維Cを
90重量%と、繊維径60μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を3700cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(51)を作製し
た。(Comparative Example 21) A low-density nonwoven fabric layer was composed of 90% by weight of a polyester fiber C having a fiber diameter of 120 μm and a fiber length of 200 mm, and a polyester fiber having a fiber diameter of 60 μm and a fiber length of 50 mm and having a softening point 90 ° C. lower than that of the fiber C. B 'is 10
% Air flow at an air pressure of 0.01 kg / cm 2 at a flow rate of 3700 cc / cm 2 · min. A sound insulation laminate (51) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0106】(比較例22)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを5
0重量%と、繊維径60μm、繊維長50mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を50重
量%とで構成され、空気圧0.01kg/cm2 での通
気量を3200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音積層体(52)を作製し
た。(Comparative Example 22) A low-density nonwoven fabric layer was made of 5 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0 wt%, fiber diameter 60 μm, fiber length 50 mm and fiber C
It is composed of 50% by weight of a polyester fiber B ′ having a softening point lower by 90 ° C., and has a ventilation volume of 3200 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation laminate (52) was produced in exactly the same manner as in Example 1, except that
【0107】(比較例23)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cの1
00重量%のみで構成される以外は実施例1と全く同じ
にして遮音積層体(53)を作製しようとしたが、成形
体とならず、作製できなかった。(Comparative Example 23) A low-density nonwoven fabric layer was made of polyester fiber C having a fiber diameter of 120 µm and a fiber length of 50 mm.
An attempt was made to produce the sound-insulating laminate (53) in exactly the same manner as in Example 1 except that the sound-insulating laminate (53) was constituted only by 00% by weight.
【0108】(比較例24)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径5μm、繊維長50mmで繊維Cよ
り軟化点が90℃低いポリエステル繊維B’を10重量
%とで構成される以外は実施例1と全く同じにして遮音
積層体(54)を作製しようとしたが、繊維Bが細すぎ
て不織布とならず、作製できなかった。(Comparative Example 24) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
The sound insulation laminate (54) was made in exactly the same manner as in Example 1 except that the polyester fiber B ′ was composed of 0% by weight and 10% by weight of a polyester fiber B ′ having a fiber diameter of 5 μm, a fiber length of 50 mm, and a softening point 90 ° C. lower than that of the fiber C. ) Was attempted, but the fiber B was too thin to form a non-woven fabric and could not be produced.
【0109】(比較例25)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径300μm、繊維長50mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を4500cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(54)を作製し
た。(Comparative Example 25) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 μm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 300 μm, a fiber length of 50 mm, and a softening point 90 ° C. lower than that of fiber C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 4500 cc / cm 2 · min. A sound insulation laminate (54) was produced in exactly the same manner as in Example 1 except that the above conditions were satisfied.
【0110】(比較例26)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長15mmで繊維C
より軟化点が90℃低いポリエステル繊維B’を10重
量%とで構成される以外は実施例1と全く同じにして遮
音積層体(56)を作製しようとしたが、繊維B’が短
くて不織布とならず、作製できなかった。(Comparative Example 26) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight, fiber diameter 60 μm, fiber length 15 mm and fiber C
A sound insulation laminate (56) was prepared in exactly the same manner as in Example 1 except that the polyester fiber B 'having a softening point lower by 90 ° C. was constituted by 10% by weight. It could not be produced.
【0111】(比較例27)低密度不織布層が、繊維径
120μm、繊維長50mmのポリエステル繊維Cを9
0重量%と、繊維径60μm、繊維長200mmで繊維
Cより軟化点が90℃低いポリエステル繊維B’を10
重量%とで構成され、空気圧0.01kg/cm2 での
通気量を4300cc/cm2 ・min.とした以外は
実施例1と全く同じにして遮音積層体(57)を作製し
た。(Comparative Example 27) A low-density nonwoven fabric layer was made of 9 polyester fibers C having a fiber diameter of 120 µm and a fiber length of 50 mm.
0% by weight and 10% of polyester fiber B ′ having a fiber diameter of 60 μm, a fiber length of 200 mm and a softening point lower by 90 ° C. than that of the fiber C.
% Air flow at an air pressure of 0.01 kg / cm 2 at 4300 cc / cm 2 · min. A sound insulation laminate (57) was produced in exactly the same manner as in Example 1 except for the above.
【0112】(比較例28)高密度不織布層を形成する
ポリエステル繊維Aとポリエステル繊維Bの軟化点の差
が10℃で、空気圧0.01kg/cm2 での通気量を
2300cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(58)を作製した。(Comparative Example 28) Forming a high-density nonwoven fabric layer
Difference in softening point between polyester fiber A and polyester fiber B
Is 10 ° C, air pressure 0.01kg / cmTwoAirflow
2300cc / cm Two-Min. Example 1 except that
A sound insulation laminate (58) was produced in exactly the same manner as in the above.
【0113】(比較例29)低密度不織布層を形成する
ポリエステル繊維Cとポリエステル繊維Bの軟化点の差
が10℃で、空気圧0.01kg/cm2 での通気量を
3800cc/cm 2 ・min.とした以外は実施例1
と全く同じにして遮音積層体(59)を作製した。(Comparative Example 29) Forming a low-density nonwoven fabric layer
Difference in softening point between polyester fiber C and polyester fiber B
Is 10 ° C, air pressure 0.01kg / cmTwoAirflow
3800cc / cm Two-Min. Example 1 except that
A sound insulation laminate (59) was produced in exactly the same manner as in (1).
【0114】上記の各実施例及び比較例によって得たサ
ンプルについて、それらの構成及び特性値の試験結果を
表1、表2、表3及び表4に示す。Tables 1, 2, 3 and 4 show test results of the structures and characteristic values of the samples obtained by the above Examples and Comparative Examples.
【0115】[0115]
【表1】 [Table 1]
【0116】[0116]
【表2】 [Table 2]
【0117】[0117]
【表3】 [Table 3]
【0118】[0118]
【表4】 [Table 4]
【0119】上記の表に示す結果において、音響透過損
失差が300〜500Hz、500Hz〜1kHzの周
波数域のどちらかで1dB未満のものはその効果がない
ものと判断した。In the results shown in the above table, it was determined that a sound transmission loss difference of less than 1 dB in any of the frequency ranges of 300 to 500 Hz and 500 Hz to 1 kHz had no effect.
【0120】これらの表より、実施例で作製した本発明
の各遮音積層体は、積層積層体全体の質量により決定さ
れる音響透過損失(TL)の質量則の遮音レベルに比べ
て、低周波数域での遮音性能が向上することが確認され
た。また、本発明に該当しない比較例は、遮音性能につ
いて満足な値を得ることができなかった。From these tables, it can be seen that each of the sound insulation laminates of the present invention produced in the examples has a lower frequency than the sound insulation level of the mass rule of sound transmission loss (TL) determined by the mass of the whole laminate. It was confirmed that the sound insulation performance in the region was improved. Moreover, the comparative example which does not correspond to the present invention could not obtain a satisfactory value for the sound insulation performance.
【0121】[0121]
【発明の効果】以上説明したように、本発明の遮音積層
体は、高密度不織布層の通気量を制御でき、従来の通気
性のない高密度不織布層をその構成に有する遮音積層体
より低周波数域での遮音性能が格段に向上する効果を有
する。As described above, the sound-insulating laminate of the present invention can control the air permeability of the high-density nonwoven fabric layer and is lower than the conventional sound-insulating laminate having a high-density nonwoven fabric layer having no air permeability. This has the effect of significantly improving the sound insulation performance in the frequency range.
【図面の簡単な説明】[Brief description of the drawings]
【図1】車輛に搭載されたフロアインシュレータの模式
図。FIG. 1 is a schematic diagram of a floor insulator mounted on a vehicle.
【符号の説明】 1 フロアパネル 2 遮音積層体 3 低密度不織布層 4 高密度不織布層 5 フロアカーペット[Description of Signs] 1 Floor panel 2 Sound insulation laminate 3 Low density nonwoven layer 4 High density nonwoven layer 5 Floor carpet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 恭一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 根本 好一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kyoichi Watanabe Nissan Motor Co., Ltd. (2) Nissan Motor Co., Ltd. (72) Inventor Yoshikazu Nemoto Nissan Motor Co., Ltd.
Claims (10)
長30〜100mmの熱可塑性合成繊維で構成された高
密度不織布層(1)と低密度不織布層(2)とを含んで
なる積層体であって、高密度不織布層(1)は高軟化点
繊維(繊維A)高々80重量%と、該繊維Aの軟化点よ
り少なくとも20℃低い軟化点を有する低軟化点繊維
(繊維B)少なくとも20重量%とで構成され、0.1
〜1.0kg/cm2 の面密度と1〜10mmの厚みと
を有し、且つ空気圧0.01kg/cm2 における通気
量が1200〜3700cc/cm2 ・min.であ
り、低密度不織布層(2)は高軟化点繊維(繊維C)7
0〜90重量%と、該繊維Cの軟化点より少なくとも2
0℃低い軟化点を有する低軟化点繊維(繊維B’)10
〜30重量%とで構成され、0.4〜2.0kg/cm
2 の面密度と15〜50mmの厚みとを有し、且つ空気
圧0.01kg/cm2 における通気量が1500〜4
000cc/cm2 ・min.であり、上記2層の空気
圧0.01kg/cm2 における通気量の差が300〜
2800cc/cm2 ・min.であることを特徴とす
る遮音用積層体。1. A laminate comprising a high-density nonwoven fabric layer (1) and a low-density nonwoven fabric layer (2) each composed of thermoplastic synthetic fibers having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm. The high-density nonwoven fabric layer (1) comprises at most 80% by weight of the high softening point fiber (fiber A) and at least 20% by weight of the low softening point fiber (fiber B) having a softening point at least 20 ° C. lower than the softening point of the fiber A % And 0.1
And a thickness of ~1.0kg / cm 2 surface density and 1 to 10 mm, and aeration amount in the air 0.01 kg / cm 2 is 1200~3700cc / cm 2 · min. And the low-density nonwoven fabric layer (2) has a high softening point fiber (fiber C) 7
0 to 90% by weight, at least 2% from the softening point of the fiber C
Low softening point fiber (fiber B ') 10 having a low softening point of 0 ° C
0.4 to 2.0 kg / cm
2 having a surface density of 15 to 50 mm and an air flow rate of 1500 to 4 at an air pressure of 0.01 kg / cm 2 .
000 cc / cm 2 · min. And the difference in air flow rate at an air pressure of 0.01 kg / cm 2 of the two layers is 300 to
2800 cc / cm 2 · min. A sound-insulating laminate, characterized in that:
g/cm2 であり、厚みが16〜60mmであることを
特徴とする請求項1記載の遮音用積層体。2. The areal density of the whole laminate is 0.5 to 3.0 k.
g / cm 2, sound insulation laminate according to claim 1, wherein the thickness of 16~60Mm.
上記低密度不織布層(2)の繊維Cはポリエステルを主
成分とすることを特徴とする請求項1または2記載の遮
音用積層体。3. The sound insulation laminate according to claim 1, wherein the fibers A of the high density nonwoven fabric layer (1) and the fibers C of the low density nonwoven fabric layer (2) are mainly composed of polyester. body.
ルを主成分とする高軟化点成分とコポリエスエルよりな
る低軟化点成分とを、該低軟化点成分が繊維表面に露出
するように複合したコンジュゲート繊維であることを特
徴とする請求項3記載の遮音用積層体。4. The fiber B and the fiber B ′ are obtained by compounding a high softening point component composed mainly of polyester and a low softening point component composed of copolyester such that the low softening point component is exposed on the fiber surface. The sound insulation laminate according to claim 3, which is a conjugate fiber.
長30〜100mmの熱可塑性合成繊維で構成された高
密度不織布層(1)と低密度不織布層(2)とを含んで
なり、高密度不織布層(1)は高軟化点繊維(繊維A)
高々80重量%と、該繊維Aの軟化点より少なくとも2
0℃低い軟化点を有する低軟化点繊維(繊維B)少なく
とも20重量%とで構成され、0.1〜1.0kg/c
m2 の面密度と1〜10mmの厚みとを有し、且つ空気
圧0.01kg/cm2 における通気量が1200〜3
700cc/cm2 ・min.であり、低密度不織布層
(2)は高軟化点繊維(繊維C)70〜90重量%と、
該繊維Cの軟化点より少なくとも20℃低い軟化点を有
する低軟化点繊維(繊維B’)10〜30重量%とで構
成され、0.4〜2.0kg/cm2 の面密度と15〜
50mmの厚みとを有し、且つ空気圧0.01kg/c
m2 における通気量が1500〜4000cc/cm2
・min.であり、上記2層の空気圧0.01kg/c
m2 における通気量の差が300〜2800cc/cm
2 ・min.である遮音用積層体を、外部隔壁と上記高
密度不織布層(1)との間に上記低密度不織布層(2)
が介在するように外部隔壁に添設することにより高密度
不織布層(1)と該外部隔壁とにより形成され、1次共
振周波数が50〜300Hzの範囲の周波数に設定され
てなることを特徴とする2重壁遮音構造体。5. A high-density nonwoven fabric comprising a high-density nonwoven fabric layer (1) and a low-density nonwoven fabric layer (2) each composed of thermoplastic synthetic fibers having a fiber diameter of 20 to 200 μm and a fiber length of 30 to 100 mm. Layer (1) is a high softening point fiber (fiber A)
At most 80% by weight, at least 2% lower than the softening point of the fiber A
0.1 to 1.0 kg / c, comprising at least 20% by weight of a low softening point fiber (fiber B) having a low softening point of 0 ° C.
and a surface density and 1~10mm thickness of m 2, and aeration amount in the air 0.01 kg / cm 2 is 1200-3
700 cc / cm 2 · min. The low-density nonwoven fabric layer (2) has a high softening point fiber (fiber C) of 70 to 90% by weight,
Low softening point fiber (fiber B ′) having a softening point at least 20 ° C. lower than the softening point of the fiber C (10 to 30% by weight), an area density of 0.4 to 2.0 kg / cm 2 ,
Having a thickness of 50 mm and an air pressure of 0.01 kg / c
The air flow rate in m 2 is 1500 to 4000 cc / cm 2
-Min. And the air pressure of the two layers is 0.01 kg / c.
The difference in air flow rate in m 2 is 300 to 2800 cc / cm
2 min. The low-density nonwoven fabric layer (2) is provided between an outer partition and the high-density nonwoven fabric layer (1).
Is formed by the high-density nonwoven fabric layer (1) and the external partition by being attached to the external partition so as to intervene, and the primary resonance frequency is set to a frequency in the range of 50 to 300 Hz. Double wall sound insulation structure.
〜3.0kg/cm 2 であり、厚みが16〜60mmで
あることを特徴とする請求項5記載の2重壁遮音構造
体。6. The surface density of the entire sound insulating laminate is 0.5
~ 3.0kg / cm TwoAnd the thickness is 16-60mm
6. The double-wall sound insulation structure according to claim 5, wherein
body.
上記低密度不織布層(2)の繊維Cはポリエステルを主
成分とすることを特徴とする請求項5または6記載の2
重壁遮音構造体。7. The fiber according to claim 5, wherein the fibers A of the high-density nonwoven fabric layer (1) and the fibers C of the low-density nonwoven fabric layer (2) are mainly composed of polyester.
Heavy wall sound insulation structure.
ルを主成分とする高軟化点成分とコポリエステルよりな
る低軟化点成分とを、該低軟化点成分が繊維表面に露出
するように複合したコンジュゲート繊維であることを特
徴とする請求項5〜7の何れか1項記載の2重壁遮音構
造体。8. The fiber B and the fiber B ′ are compounded with a high softening point component composed mainly of polyester and a low softening point component composed of copolyester such that the low softening point component is exposed on the fiber surface. The double-walled sound insulation structure according to any one of claims 5 to 7, wherein the conjugate fiber is a conjugated fiber.
る音響透過損失(TL)の質量則の遮音レベルに対し、
300Hz〜1kHzの周波数領域において、その周波
数平均で1〜3dB向上した音響透過損失(TL)を示
すことを特徴とする請求項5〜8の何れか1項記載の2
重壁遮音構造体。9. The sound insulation level according to the mass rule of sound transmission loss (TL) determined by the mass of the entire sound insulation laminate,
9. A sound transmission loss (TL) improved by 1 to 3 dB on the average frequency in a frequency range of 300 Hz to 1 kHz.
Heavy wall sound insulation structure.
であり、上記2重壁遮音構造体が車室内側に形成され、
上記積層体上にカーペットを設置した状態で、自動車用
フロアインシュレータとして適用されることを特徴とす
る請求項5〜9の何れか1項記載の2重壁遮音構造体。10. The external wall is a floor panel of an automobile, and the double-walled sound insulation structure is formed on the vehicle interior side.
The double-walled sound insulation structure according to any one of claims 5 to 9, wherein the double-walled sound insulation structure is applied as a car floor insulator in a state where a carpet is installed on the laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9231117A JPH1161616A (en) | 1997-08-27 | 1997-08-27 | Sound insulating laminated material and double-wall sound insulating structural material containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9231117A JPH1161616A (en) | 1997-08-27 | 1997-08-27 | Sound insulating laminated material and double-wall sound insulating structural material containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1161616A true JPH1161616A (en) | 1999-03-05 |
Family
ID=16918564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9231117A Pending JPH1161616A (en) | 1997-08-27 | 1997-08-27 | Sound insulating laminated material and double-wall sound insulating structural material containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1161616A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7428803B2 (en) | 2005-05-17 | 2008-09-30 | Milliken & Company | Ceiling panel system with non-woven panels having barrier skins |
US7521386B2 (en) | 2004-02-07 | 2009-04-21 | Milliken & Company | Moldable heat shield |
US7605097B2 (en) | 2006-05-26 | 2009-10-20 | Milliken & Company | Fiber-containing composite and method for making the same |
JP2011159564A (en) * | 2010-02-03 | 2011-08-18 | Sumitomo Wiring Syst Ltd | Wire harness, and method of manufacturing the same |
WO2011125249A1 (en) * | 2010-04-09 | 2011-10-13 | 株式会社オートネットワーク技術研究所 | Wire harness and production method therefor |
WO2011145232A1 (en) * | 2010-05-19 | 2011-11-24 | 住友電装株式会社 | Wire harness protection structure |
US8850719B2 (en) | 2009-02-06 | 2014-10-07 | Nike, Inc. | Layered thermoplastic non-woven textile elements |
US8906275B2 (en) | 2012-05-29 | 2014-12-09 | Nike, Inc. | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
US9227363B2 (en) | 2009-02-06 | 2016-01-05 | Nike, Inc. | Thermoplastic non-woven textile elements |
US9682512B2 (en) | 2009-02-06 | 2017-06-20 | Nike, Inc. | Methods of joining textiles and other elements incorporating a thermoplastic polymer material |
US11779071B2 (en) | 2012-04-03 | 2023-10-10 | Nike, Inc. | Apparel and other products incorporating a thermoplastic polymer material |
-
1997
- 1997-08-27 JP JP9231117A patent/JPH1161616A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7521386B2 (en) | 2004-02-07 | 2009-04-21 | Milliken & Company | Moldable heat shield |
US7428803B2 (en) | 2005-05-17 | 2008-09-30 | Milliken & Company | Ceiling panel system with non-woven panels having barrier skins |
US7605097B2 (en) | 2006-05-26 | 2009-10-20 | Milliken & Company | Fiber-containing composite and method for making the same |
US10131091B2 (en) | 2009-02-06 | 2018-11-20 | Nike, Inc. | Methods of joining textiles and other elements incorporating a thermoplastic polymer material |
US10982363B2 (en) | 2009-02-06 | 2021-04-20 | Nike, Inc. | Thermoplastic non-woven textile elements |
US10982364B2 (en) | 2009-02-06 | 2021-04-20 | Nike, Inc. | Thermoplastic non-woven textile elements |
US10625472B2 (en) | 2009-02-06 | 2020-04-21 | Nike, Inc. | Methods of joining textiles and other elements incorporating a thermoplastic polymer material |
US10174447B2 (en) | 2009-02-06 | 2019-01-08 | Nike, Inc. | Thermoplastic non-woven textile elements |
US10138582B2 (en) | 2009-02-06 | 2018-11-27 | Nike, Inc. | Thermoplastic non-woven textile elements |
US9227363B2 (en) | 2009-02-06 | 2016-01-05 | Nike, Inc. | Thermoplastic non-woven textile elements |
US9732454B2 (en) | 2009-02-06 | 2017-08-15 | Nike, Inc. | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
US9682512B2 (en) | 2009-02-06 | 2017-06-20 | Nike, Inc. | Methods of joining textiles and other elements incorporating a thermoplastic polymer material |
US8850719B2 (en) | 2009-02-06 | 2014-10-07 | Nike, Inc. | Layered thermoplastic non-woven textile elements |
JP2011159564A (en) * | 2010-02-03 | 2011-08-18 | Sumitomo Wiring Syst Ltd | Wire harness, and method of manufacturing the same |
KR101403778B1 (en) * | 2010-04-09 | 2014-06-03 | 가부시키가이샤 오토네트웍스 테크놀로지스 | Wire harness and manufacturing method thereof |
US20130000974A1 (en) * | 2010-04-09 | 2013-01-03 | Autonetworks Technologies, Ltd | Wire harness and production method therefor |
CN102822910A (en) * | 2010-04-09 | 2012-12-12 | 株式会社自动网络技术研究所 | Wire harness and production method thereof |
JP2011222291A (en) * | 2010-04-09 | 2011-11-04 | Auto Network Gijutsu Kenkyusho:Kk | Wire harness and method of manufacturing the same |
WO2011125249A1 (en) * | 2010-04-09 | 2011-10-13 | 株式会社オートネットワーク技術研究所 | Wire harness and production method therefor |
CN102893471A (en) * | 2010-05-19 | 2013-01-23 | 住友电装株式会社 | Wire harness protection structure |
US20130000975A1 (en) * | 2010-05-19 | 2013-01-03 | Sumitomo Wiring Systems, Ltd. | Wire harness protection structure |
JP2011244614A (en) * | 2010-05-19 | 2011-12-01 | Sumitomo Wiring Syst Ltd | Protective structure of wire harness |
WO2011145232A1 (en) * | 2010-05-19 | 2011-11-24 | 住友電装株式会社 | Wire harness protection structure |
US11779071B2 (en) | 2012-04-03 | 2023-10-10 | Nike, Inc. | Apparel and other products incorporating a thermoplastic polymer material |
US8906275B2 (en) | 2012-05-29 | 2014-12-09 | Nike, Inc. | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3304264B2 (en) | Automotive body panel insulator | |
US6659223B2 (en) | Sound attenuating material for use within vehicles and methods of making same | |
US6631785B2 (en) | Sound attenuating composite articles incorporating scrim material and methods of making same | |
JP3519588B2 (en) | Carpet material and method of manufacturing the same | |
JPH10203268A (en) | Sound insulation structure | |
JPH1161616A (en) | Sound insulating laminated material and double-wall sound insulating structural material containing the same | |
JP3342817B2 (en) | Sound insulation structure | |
JP3247629B2 (en) | Automotive interior materials | |
JP4215146B2 (en) | Automotive insulator | |
JP3528556B2 (en) | Method of arranging car interior parts and car interior sound absorbing material | |
JPH10236204A (en) | Floor insulator for automobile and manufacture therefor | |
JP3284729B2 (en) | Automotive sound insulating material and method of manufacturing the same | |
JP3564973B2 (en) | Carpet material | |
JP3378489B2 (en) | Carpet base material | |
JPH1120570A (en) | Inner facing material for automobile | |
JP3538293B2 (en) | Sound insulation structure | |
JP3813279B2 (en) | Automotive floor laying interior material and manufacturing method thereof | |
JP2000202933A (en) | Sound insulating material | |
JP3264761B2 (en) | Polypropylene silencer pad | |
JPH10236205A (en) | Floor insulator for automobile, and its manufacture | |
JP3480179B2 (en) | Automotive interior materials | |
JPS6177544A (en) | Silencer material for automobile | |
JPH11255013A (en) | Interior trim material for automobile | |
KR20220170439A (en) | Fiber-reinforced composite with improved mechanical strength and dimensional stability | |
KR20250023182A (en) | Sound absorbing and insulating panel for electric vehicle and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040224 |