JPH1143709A - Operating method of hard furnace using sintered ore with good high temperature properties - Google Patents
Operating method of hard furnace using sintered ore with good high temperature propertiesInfo
- Publication number
- JPH1143709A JPH1143709A JP21125397A JP21125397A JPH1143709A JP H1143709 A JPH1143709 A JP H1143709A JP 21125397 A JP21125397 A JP 21125397A JP 21125397 A JP21125397 A JP 21125397A JP H1143709 A JPH1143709 A JP H1143709A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- sintered ore
- sinter
- temperature properties
- blast furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
(57)【要約】
【課題】 本発明は、高炉等の堅型炉の炉頂から装入さ
れる焼結鉱の高温性状が良好となるように、その気孔径
分布を調整する。
【解決手段】 焼結鉱の気孔径分布を水銀圧入式ポロシ
メーターで測定し、300μm以下の開気孔の平均径が
0.05〜0.15μmの範囲となるように、焼結操業
あるいは焼結鉱成分を調整する。
【効果】 本発明の焼結鉱を使用した高炉は通気性が改
善され、高炉の操業を安定的に維持することが可能とな
り、微粉炭吹込み量上昇、生産性向上、燃料比低下を達
成することができる。
(57) Abstract: The present invention adjusts the pore size distribution of a sintered ore charged from the furnace top of a rigid furnace such as a blast furnace so that the high-temperature properties of the sintered ore become good. SOLUTION: The pore diameter distribution of the sinter is measured by a mercury intrusion porosimeter, and the sintering operation or the sinter is performed so that the average diameter of the open pores of 300 μm or less is in the range of 0.05 to 0.15 μm. Adjust the ingredients. [Effect] The blast furnace using the sinter of the present invention has improved air permeability, can stably maintain the operation of the blast furnace, achieve an increase in pulverized coal injection, an improvement in productivity, and a decrease in fuel ratio. can do.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉等の堅型炉の
炉頂から装入される焼結鉱の高温性状を良好に保ち、微
粉炭多量吹込み等を行う堅型炉の操業を安定的に維持す
ることを目的とした堅型炉の操業方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operation of a solid-state furnace in which high-temperature properties of a sintered ore charged from the furnace top of a blast furnace or the like are maintained and a large amount of pulverized coal is injected. The present invention relates to a method of operating a solid furnace for the purpose of maintaining a stable state.
【0002】[0002]
【従来の技術】高炉等の堅型炉の操業にあって、炉頂か
ら装入される焼結鉱の高温性状を良好に保つことは、操
業を安定的に維持するために必要である。特に微粉炭多
量吹込み等の高負荷操業を安定的に維持するためには必
須である。このため、鉄と鋼誌上(昭和55年,P18
50)、鉄鋼協会講演大会誌上(昭和58年,S75
5)に開示されているように、焼結鉱をるつぼに装入
し、該るつぼを電気炉内に配設し、電気炉の下方より還
元ガスを導入して、焼結鉱の加熱還元を行い、常温より
1500℃付近までの温度における還元率、軟化収縮
率、層内圧損等の高温性状を測定する測定法が行われて
いる。2. Description of the Related Art In the operation of a solid furnace such as a blast furnace, it is necessary to maintain the high-temperature properties of the sintered ore charged from the furnace top in order to stably maintain the operation. In particular, it is indispensable to stably maintain high-load operation such as pulverized coal injection. For this reason, in iron and steel magazine (1980, P18
50), in the Iron and Steel Institute Lecture Meeting Magazine (1983, S75
As disclosed in 5), the sinter is charged into a crucible, the crucible is placed in an electric furnace, and a reducing gas is introduced from below the electric furnace to reduce the heat reduction of the sinter. A measuring method for measuring high-temperature properties such as a reduction ratio, a softening shrinkage ratio, and a pressure loss in a layer at a temperature from ordinary temperature to around 1500 ° C. is performed.
【0003】[0003]
【発明が解決しようとする課題】ところで、従来使用さ
れている高温性状測定法のデータにより高温性状良好な
焼結鉱を評価し、その評価に基づいて高温性状良好な焼
結鉱の製造を行う技術を実機で確立するに至っておら
ず、実機で製造された焼結鉱の高温性状を測定している
だけに止まっている。その理由は、これらの測定方法の
精度がそれほど良くなく、実高炉の炉内における焼結鉱
の高温性状を忠実に再現しているとはいえないことによ
る。従来の測定法は、1つの電気炉による測定法であ
り、電気炉の下方の還元ガス入口より還元ガスを導入し
て、電気炉に設置した温度計をあらかじめ設定した昇温
プログラムに従って昇温し、電気炉内に配設したるつぼ
内の焼結鉱を加熱還元する方法であるため、焼結鉱が軟
化溶融して溶融FeOの還元(吸熱反応)が起こり、焼
結鉱の温度が低下しても、昇温プログラムに従って電気
炉が昇温されているため、焼結鉱に強制的に熱が与えら
れ加熱還元が進行してしまう。By the way, a sintered ore having good high-temperature properties is evaluated based on data of a conventionally used high-temperature property measuring method, and a sintered ore having good high-temperature properties is produced based on the evaluation. The technology has not yet been established on the actual machine, only measuring the high-temperature properties of the sintered ore produced on the actual machine. The reason is that the accuracy of these measurement methods is not so good, and it cannot be said that the high-temperature properties of the sinter in the actual blast furnace are faithfully reproduced. The conventional measurement method is a measurement method using one electric furnace, in which a reducing gas is introduced from a reducing gas inlet below the electric furnace, and a thermometer installed in the electric furnace is heated according to a preset heating program. In this method, the sintered ore in the crucible disposed in the electric furnace is heated and reduced, so that the sintered ore is softened and melted, and the molten FeO is reduced (endothermic reaction), and the temperature of the sintered ore decreases. However, since the temperature of the electric furnace is raised according to the temperature raising program, heat is forcibly applied to the sintered ore, and the heat reduction proceeds.
【0004】実炉内においては、焼結鉱が軟化溶融して
溶融FeOの還元(吸熱反応)が起こり、焼結鉱の温度
が低下すると上記測定法とは異なり、鉄鉱石類に強制的
に熱が与えられることがないため、温度低下による溶融
FeOの還元遅れ、温度低下による溶融物の流動性悪
化、およびそれに伴う還元遅れが発生し、加熱還元が遅
延する。このように従来の測定法では、実炉内で起こっ
ている現象と異なるため、実炉内では焼結鉱の高温性状
に差が生じるはずなのに、前記測定法によると焼結鉱の
高温性状に差が生じず、測定結果を用いて、操業を安定
的に維持するための焼結鉱製造は不可能であった。[0004] In the actual furnace, when the sinter softens and melts and the molten FeO is reduced (endothermic reaction), and the temperature of the sinter decreases, unlike the above measurement method, the iron ore is forcibly forced. Since no heat is given, a reduction in the temperature of the molten FeO due to a decrease in the temperature, a deterioration in the fluidity of the molten material due to the temperature decrease, and a reduction in the reduction due to the reduction occur, and the heat reduction is delayed. As described above, the conventional measurement method is different from the phenomenon occurring in the actual furnace.Therefore, there should be a difference in the high-temperature properties of the sinter in the actual furnace. There was no difference, and it was impossible to produce sinter to maintain stable operation using the measurement results.
【0005】そこで本発明は、実炉内で起こっている焼
結鉱の加熱還元時における現象、特に昇温速度、還元
率、層の圧損等を測定できるようにするために、実炉内
で生じている焼結鉱の高温性状の差が、測定法において
も検出できるように測定方法を改善することにより、そ
の結果を用いて、高温性状良好な焼結鉱製造を行い、実
炉の操業を安定的に維持することを目的とする。Accordingly, the present invention is intended to measure phenomena at the time of heat reduction of sinter occurring in an actual furnace, in particular, the rate of temperature rise, reduction rate, pressure loss of a bed, etc. By improving the measurement method so that the difference in the high-temperature properties of the generated sinter can also be detected by the measurement method, the results are used to produce sinter with good high-temperature properties and to operate the actual furnace. The purpose is to stably maintain.
【0006】[0006]
【課題を解決するための手段】本発明の高温性状良好な
焼結鉱を用いた堅型炉の操業方法は、その目的を達成す
るために、300μm以下の開気孔の平均径が0.05
〜0.15μmである高温性状良好な焼結鉱を、堅型炉
の炉頂から装入することを特徴とする。ほまた、高炉羽
口部から微粉炭を150kg/t以上吹込む堅型炉の操
業方法において、300μm以下の開気孔の平均径が
0.05〜0.15μmである高温性状良好な焼結鉱
を、堅型炉の炉頂から装入することを特徴とする。SUMMARY OF THE INVENTION In order to achieve the object, the method of the present invention for operating a rigid furnace using a sintered ore having good high-temperature properties has an average diameter of open pores of 300 μm or less.
It is characterized in that a sintered ore having a good high-temperature property of about 0.15 μm is charged from the top of a hard furnace. In addition, in a method of operating a hard furnace in which pulverized coal is blown at a rate of 150 kg / t or more from a tuyere of a blast furnace, a sintered ore having good high-temperature properties having an average diameter of open pores of 300 µm or less of 0.05 to 0.15 µm Is charged from the top of the rigid furnace.
【0007】[0007]
【発明の実施の形態】上述した焼結鉱を製造する方法を
開発するために、本発明者らは、特開平7−27623
号公報に開示されているように、電気炉を2つとし、一
方の電気炉で加熱を、もう一方の電気炉で温度調節を行
い、焼結鉱に強制的に熱を与えることなく実炉と同じ熱
の与え方をすることにより、実炉内で生じている加熱還
元の現象を測定できる測定装置および測定方法を開発し
た。すなわち、電気炉を上下2段に配設し、該電気炉の
継ぎ目はフランジで結合し、下段電気炉の下方より還元
ガスを導入し、該下段電気炉を空塔のまま昇温するとと
もに、上段電気炉に焼結鉱を装入したるつぼを配設し、
上段電気炉の温度とるつぼ内焼結鉱の温度を同時に測定
し、該温度の差をあらかじめ設定した一定の値となるよ
うに上段電気炉の電力を調整する。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to develop a method for producing the above-mentioned sintered ore, the present inventors have disclosed Japanese Patent Application Laid-Open No. 7-27623.
As disclosed in Japanese Unexamined Patent Publication, the number of electric furnaces is set to two, heating is performed in one electric furnace, and temperature control is performed in the other electric furnace. By using the same method as above, a measuring device and a measuring method that can measure the phenomenon of heat reduction occurring in the actual furnace were developed. That is, the electric furnace is arranged in upper and lower two stages, the joint of the electric furnace is connected by a flange, a reducing gas is introduced from below the lower electric furnace, and the lower electric furnace is heated as an empty tower, A crucible charged with sinter is placed in the upper electric furnace,
The temperature of the upper electric furnace and the temperature of the sintered ore in the crucible are simultaneously measured, and the electric power of the upper electric furnace is adjusted so that the difference between the temperatures becomes a predetermined constant value.
【0008】前述した測定装置を用いた測定方法による
と、図1に示す測定データが得られる。図1の横軸は実
験経過時間(分)を示し、左縦軸は焼結鉱の還元率
(%)、右縦軸は焼結鉱の充填層の圧損(mmH2 O)
を示す。焼結鉱の高温性状を評価する指標として図1に
示す時間−圧損曲線において、圧損が200mmH2 O
以上である部分の面積(図1中斜線部分)を算出し、こ
れをS値と名付けた。そして本発明者らは、種々の実機
で製造した焼結鉱を前述した測定装置を用いた測定方法
により測定し、このS値が高炉の炉下部通気性を支配し
ていることを見出した。それを図2に示す。図2の横軸
はS値を示し、縦軸は高炉の炉下部通気性の指標である
下部K値を示すが、S値が低いほど下部K値は低く、高
炉の操業は安定している。According to the measuring method using the above-described measuring device, the measured data shown in FIG. 1 is obtained. The horizontal axis in FIG. 1 shows the elapsed time of the experiment (minutes), the left vertical axis shows the reduction rate (%) of the sinter, and the right vertical axis shows the pressure loss (mmH 2 O) of the packed bed of the sinter.
Is shown. Time 1 as an index for evaluating the high-temperature properties of the sintered ore - in pressure loss curve, pressure loss 200 mm 2 O
The area of the above portion (the hatched portion in FIG. 1) was calculated, and this was named as S value. Then, the present inventors measured sinter ore manufactured by various actual machines by the measuring method using the above-described measuring device, and found that this S value governed the gas permeability in the lower part of the blast furnace. It is shown in FIG. The horizontal axis in FIG. 2 shows the S value, and the vertical axis shows the lower K value, which is an index of the lower air permeability of the blast furnace. The lower the S value, the lower the lower K value and the operation of the blast furnace is stable. .
【0009】次に本発明者らは、種々の実機で製造した
焼結鉱の性状を調査することにより、S値は焼結鉱中の
300μm以下の開気孔の平均径(MS)によって決ま
ることを見出した。それを図3に示す。図3の横軸はM
Sを示し、縦軸はS値を示すが、MSが低いほどS値が
低いことがわかる。MSは焼結鉱中の気孔径分布を水銀
圧入式ポロシメーターで測定することにより求めた。こ
の方法は、2〜3mmに破砕した焼結鉱を4〜5g採取
し、それを圧入密封容器に装入し、この密封容器の中
に、水銀を圧入し徐々にその圧力を上昇させていく。あ
る圧入圧力に対応した水銀の侵入可能な開気孔径は装置
特性からわかっており、圧入された水銀の容積からその
開気孔径に対応する気孔量が求められる。最大水銀圧入
圧力は33000Psi、水銀が侵入できる最大開気孔
径は300μmである。この開気孔径と気孔量の累計デ
ータから、300μm以下の開気孔の平均径を算出でき
る。したがって、300μmという数値限定は、水銀圧
入式ポロシメーターが測定できる限界である。Next, the present inventors investigated the properties of sintered ores produced by various actual machines, and found that the S value was determined by the average diameter (MS) of open pores of 300 μm or less in the sintered ores. Was found. It is shown in FIG. The horizontal axis in FIG.
S is shown and the vertical axis shows the S value. It can be seen that the lower the MS, the lower the S value. The MS was determined by measuring the pore size distribution in the sintered ore using a mercury intrusion porosimeter. According to this method, 4 to 5 g of a sintered ore crushed to a size of 2 to 3 mm is sampled, charged in a press-fitting sealed container, and mercury is pressed into the sealed container and the pressure is gradually increased. . The open pore diameter at which mercury can enter, corresponding to a certain injection pressure, is known from the device characteristics, and the amount of pores corresponding to the open pore diameter is determined from the volume of the injected mercury. The maximum mercury intrusion pressure is 33000 Psi, and the maximum open pore diameter into which mercury can enter is 300 μm. From the total data of the open pore diameter and the pore volume, the average diameter of the open pores of 300 μm or less can be calculated. Therefore, the numerical limit of 300 μm is the limit at which a mercury intrusion porosimeter can be measured.
【0010】S値が低いということは、焼結鉱で形成さ
れる融着層の通気抵抗が小さいことを示し、図1に示す
焼結鉱の充填層の圧損が上昇しても、還元ガスの浸透が
確保されて還元遅延が起こらない。300μm以下の開
気孔の平均径(MS)が小さいということは、焼結鉱中
の還元ガスと接触する比表面積が大きいことを示し、還
元が促進されやすい。そしてMSが小さいと、300μ
m以下の気孔量は減少する傾向を示すが、気孔数は維持
され還元された金属鉄が微細な状態で存在するため、焼
結鉱層の収縮が抑制され還元ガスの浸透を確保する。こ
のため、焼結鉱の還元が促進され生成融液の量が少なく
融着層の通気性が確保される。A low S value indicates that the porosity of the fused layer formed of the sintered ore is small, and even if the pressure loss of the packed bed of the sintered ore shown in FIG. And the delay of reduction does not occur. The small average diameter (MS) of the open pores of 300 μm or less indicates that the specific surface area in contact with the reducing gas in the sinter is large, and the reduction is easily promoted. And when MS is small, 300μ
Although the amount of pores below m tends to decrease, the number of pores is maintained and the reduced metallic iron is present in a fine state, so that the shrinkage of the sintered ore layer is suppressed and the permeation of the reducing gas is secured. For this reason, reduction of the sintered ore is promoted, and the amount of the generated melt is small, and the permeability of the fusion layer is ensured.
【0011】開気孔の平均径(MS)を300μm以下
に数値限定した理由は、図2に示すように、S値が高く
なり11を超えると高炉の下部K値が増加して安定操業
が維持できなくなり、図3に示すように、S値=11が
MS=0.15μmに対応することにより、MSは0.
15μm以下が好ましく、0.05μm未満では現状の
焼結鉱製造技術では経済的でないことによる。The reason why the average diameter (MS) of the open pores is limited to 300 μm or less is that, as shown in FIG. 2, when the S value increases and exceeds 11, the lower K value of the blast furnace increases and the stable operation is maintained. As shown in FIG. 3, since the S value = 11 corresponds to the MS = 0.15 μm, the MS becomes 0.1.
It is preferably 15 μm or less, and if it is less than 0.05 μm, it is not economical with the current sinter production technology.
【0012】次に、MSを0.05〜0.15μmの範
囲となるように焼結鉱を製造する方法に関しては、次の
ように対処する。その1つの方法は、焼結配合原料中の
0.25mm以下の微粉量、粉コークス配合量、粉コー
クスの平均径、0.25mm以下の微粉コークス量、操
業負圧のいずれか1つまたは2つ以上のアクションを実
施することである。これにより微粉量の調整、粉コーク
ス燃焼性の改善、熱の効き方の調整、融液凝固時の冷却
速度の調整等を行い、目的を達成することができる。も
う1つの方法は、焼結鉱中の塩基度(CaO/SiO
2 )、アルミナ(Al2 O3 )含有量、シリカ(SiO
2 )含有量、マグネシア(MgO)含有量のいずれか1
成分または2成分以上の調整を実施することである。C
aO/SiO2を高く、Al2 O3 、SiO2 、MgO
を低くすることにより目的を達成できるが、焼結鉱の強
度、還元粉化性、高炉の出銑口から流出するスラグの成
分調整を勘案して調整する必要がある。Next, a method for producing a sintered ore so that the MS is in the range of 0.05 to 0.15 μm will be dealt with as follows. One of the methods is any one or two of a fine powder amount of 0.25 mm or less in a sintering compounding raw material, a fine coke powder amount, an average diameter of fine coke powder, a fine coke amount of 0.25 mm or less, and an operation negative pressure. Performing one or more actions. Thus, the purpose can be achieved by adjusting the amount of fine powder, improving the combustibility of coke breeze, adjusting the effect of heat, adjusting the cooling rate during melt solidification, and the like. Another method is to use basicity (CaO / SiO
2 ), alumina (Al 2 O 3 ) content, silica (SiO
2 ) Any one of content and magnesia (MgO) content
An adjustment of a component or two or more components. C
high aO / SiO 2 , Al 2 O 3 , SiO 2 , MgO
However, it is necessary to make adjustments in consideration of the strength of the sinter, the reduction pulverizability, and the component adjustment of the slag flowing out of the tap hole of the blast furnace.
【0013】[0013]
【実施例】以下、実施例により本発明の特徴を具体的に
説明する。表1に本発明による高炉操業結果を従来法と
比較して示す。対象高炉は内容積3000m3 の中型高
炉であり、鉄鉱石中の焼結鉱使用割合が75wt%、焼
結鉱中(SiO2 )=5.5wt%、(Al2 O3 )=
1.9wt%、(MgO)=1.5wt%、(CaO/
SiO2 )=1.9で操業していた。微粉炭吹込み量1
40kg/t、燃料比500kg/tに維持しながら溶
銑を6000t/日製造していた。このとき水銀圧入式
ポロシメーターで測定してみると、300μm以下の開
気孔の平均径(MS)は0.10〜0.25μmの範囲
を推移していた。DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be specifically described below with reference to embodiments. Table 1 shows the blast furnace operation results according to the present invention in comparison with the conventional method. The target blast furnace is a medium-sized blast furnace having an inner volume of 3000 m 3, the use ratio of sinter in iron ore is 75 wt%, (SiO 2 ) = 5.5 wt% in sinter, (Al 2 O 3 ) =
1.9 wt%, (MgO) = 1.5 wt%, (CaO /
(SiO 2 ) = 1.9. Pulverized coal injection amount 1
The hot metal was manufactured at 6000 t / day while maintaining the fuel ratio at 40 kg / t and the fuel ratio at 500 kg / t. At this time, when measured by a mercury intrusion porosimeter, the average diameter (MS) of the open pores of 300 μm or less was in the range of 0.10 to 0.25 μm.
【0014】[0014]
【表1】 [Table 1]
【0015】(実施例1)燃料比500kg/tのまま
微粉炭吹込み量を180kg/tに増加するときに、焼
結鉱中の成分はそのままにしておき、焼結配合原料中の
0.25mm以下の微粉量と粉コークス配合量の2つの
アクションを実施することにより、水銀圧入式ポロシメ
ーターで測定した300μm以下の開気孔の平均径(M
S)を0.08〜0.15μmの範囲に調整した本発明
による操業例である。比較例1に対比すると、燃料比が
低く出銑量が多い。 (実施例2)燃料比500kg/tのまま微粉炭吹込み
量を180kg/tに増加するときに、焼結操業は従来
の方法のままにしておき、焼結鉱中(SiO2 )=5.
3±0.2wt%、(Al2 O3 )=1.9wt%、
(MgO)=1.3±0.2wt%、(CaO/SiO
2 )=2.0とする配合調整を行うことにより、水銀圧
入式ポロシメーターで測定した300μm以下の開気孔
の平均径(MS)を0.05〜0.15μmの範囲に調
整した本発明による操業例である。比較例1に対比する
と、燃料比が低く出銑量が多い。 (比較例1)燃料比500kg/tのまま微粉炭吹込み
量を180kg/tに増加するときに、焼結鉱中の成分
はそのままにしておき、焼結操業も従来の方法のままに
した従来法による操業例である。実施例1、2に比べ
て、燃料比を上昇せざるを得ず、生産量が低下してい
る。(Example 1) When the pulverized coal injection rate is increased to 180 kg / t while keeping the fuel ratio at 500 kg / t, the components in the sinter are kept as they are, and the amount of 0.1% in the sintering compound raw material is maintained. By performing the two actions of the fine powder amount of 25 mm or less and the blending amount of coke breeze, the average diameter of the open pores of 300 μm or less measured by a mercury intrusion porosimeter (M
5 is an operation example according to the present invention in which S) was adjusted to a range of 0.08 to 0.15 μm. Compared to Comparative Example 1, the fuel ratio is low and the tapping amount is large. (Example 2) When the pulverized coal injection rate is increased to 180 kg / t while keeping the fuel ratio at 500 kg / t, the sintering operation is kept in the conventional method, and the sintering operation (SiO 2 ) = 5 .
3 ± 0.2 wt%, (Al 2 O 3 ) = 1.9 wt%,
(MgO) = 1.3 ± 0.2 wt%, (CaO / SiO
2 ) An operation according to the present invention in which the average diameter (MS) of the open pores of 300 μm or less measured by a mercury intrusion porosimeter was adjusted to a range of 0.05 to 0.15 μm by adjusting the composition to 2.0. It is an example. Compared to Comparative Example 1, the fuel ratio is low and the tapping amount is large. (Comparative Example 1) When the pulverized coal injection rate was increased to 180 kg / t while keeping the fuel ratio at 500 kg / t, the components in the sinter were left as they were, and the sintering operation was also the conventional method. It is an operation example by a conventional method. As compared with the first and second embodiments, the fuel ratio has to be increased and the production amount is reduced.
【0016】[0016]
【発明の効果】以上説明したように、本発明において
は、焼結鉱中の300μm以下の開気孔の平均径が0.
05〜0.15μmの範囲となるように焼結操業を調整
するか、焼結鉱成分を調整することによりこの焼結鉱で
形成される融着層の通気性が良好となり、高炉の炉下部
通気性が改善され、高炉の操業を安定的に維持すること
が可能となり、微粉炭吹込み量上昇、生産性向上、燃料
比低下を達成することができる。As described above, according to the present invention, the average diameter of the open pores having a size of 300 μm or less in the sintered ore is not more than 0.3 μm.
By adjusting the sintering operation so as to be in the range of 0.5 to 0.15 μm or adjusting the sinter composition, the permeability of the fusion layer formed by this sinter becomes good, and the lower part of the blast furnace The air permeability is improved, the operation of the blast furnace can be stably maintained, and an increase in pulverized coal injection, an improvement in productivity, and a decrease in fuel ratio can be achieved.
【図1】本発明において、焼結鉱の高温性状を評価する
指標としてS値を算出するための時間−圧損曲線を示す
図FIG. 1 is a diagram showing a time-pressure loss curve for calculating an S value as an index for evaluating the high-temperature properties of a sintered ore in the present invention.
【図2】本発明において、高炉の炉下部通気性の低い範
囲を求め、S値の上限を決定するためのS値と下部K値
の関係を示す図FIG. 2 is a diagram showing a relationship between an S value and a lower K value for determining a range in which the blast furnace has low permeability in the lower part of the furnace and determining an upper limit of the S value in the present invention.
【図3】本発明において、300μm以下の開気孔の平
均径(MS)の適正範囲を決定するためのMSとS値の
関係を示す図FIG. 3 is a diagram showing a relationship between MS and S value for determining an appropriate range of average diameter (MS) of open pores of 300 μm or less in the present invention.
Claims (2)
05〜0.15μmである高温性状良好な焼結鉱を、堅
型炉の炉頂から装入することを特徴とする高温性状良好
な焼結鉱を用いた堅型炉の操業方法。1. The method according to claim 1, wherein the average diameter of the open pores of 300 μm or less is 0.
A method of operating a hard furnace using a sintered ore having good high-temperature properties, comprising charging a sintered ore having good high-temperature properties of from 0.5 to 0.15 μm from the furnace top of the hard furnace.
以上吹込む堅型炉の操業方法において、300μm以下
の開気孔の平均径が0.05〜0.15μmである高温
性状良好な焼結鉱を、堅型炉の炉頂から装入することを
特徴とする高温性状良好な焼結鉱を用いた堅型炉の操業
方法。2. 150 kg / t of pulverized coal from the tuyere of the blast furnace
In the method of operating a hardened furnace, the sintered ore having a high temperature property having an average diameter of open pores of 300 μm or less of 0.05 to 0.15 μm is charged from the top of the hardened furnace. A method of operating a solid furnace using a sintered ore with excellent high-temperature properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21125397A JPH1143709A (en) | 1997-07-23 | 1997-07-23 | Operating method of hard furnace using sintered ore with good high temperature properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21125397A JPH1143709A (en) | 1997-07-23 | 1997-07-23 | Operating method of hard furnace using sintered ore with good high temperature properties |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1143709A true JPH1143709A (en) | 1999-02-16 |
Family
ID=16602855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21125397A Withdrawn JPH1143709A (en) | 1997-07-23 | 1997-07-23 | Operating method of hard furnace using sintered ore with good high temperature properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1143709A (en) |
-
1997
- 1997-07-23 JP JP21125397A patent/JPH1143709A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102482730B (en) | Unfired carbon-containing agglomerate for blast furnaces and production method therefor | |
JP4422307B2 (en) | Evaluation method of iron ore powder | |
JPH04263003A (en) | Method for operating blast furnace | |
JPH1143709A (en) | Operating method of hard furnace using sintered ore with good high temperature properties | |
JP4598204B2 (en) | Blast furnace operation method when a large amount of pulverized coal is injected | |
KR102524475B1 (en) | Method for controlling slag composition for hydrogen-based reduction ironmaking process by controlling the mixing ratio of low-reduced iron, sintered ore and coke, and slag compostion thereof | |
JPH0913107A (en) | Blast furnace operation method | |
JP2006028538A (en) | Blast furnace operation method using sintered ore with excellent high temperature reducibility | |
JP3746842B2 (en) | Blast furnace operation method when a large amount of pulverized coal is injected | |
JP4392302B2 (en) | Method for producing sintered ore | |
JPH10298620A (en) | How to charge ore into blast furnace | |
JPH09143516A (en) | Operating method of vertical furnace | |
JP3010405B2 (en) | High-temperature property measurement method for iron ores | |
JP7035869B2 (en) | Sintered ore | |
JP3874313B2 (en) | Blast furnace operation method | |
JP7560735B2 (en) | Method for designing mixture of iron-containing raw materials and method for operating blast furnace | |
JP2969249B2 (en) | Blast furnace operation method | |
WO2022201562A1 (en) | Pig iron production method | |
JP4196613B2 (en) | High-depot ratio blast furnace operation method | |
JPH049740B2 (en) | ||
JP2935611B2 (en) | Manufacturing method of ferroalloys in electric furnaces | |
JPS5935969B2 (en) | Method for manufacturing sintered ore | |
JPH02285010A (en) | Method for regulating si in molten pig iron | |
SU87190A1 (en) | Method of making low-protoxidic agglomerate | |
KR100466170B1 (en) | Suitable operation method of blast furnace for charging rum of coke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041005 |