[go: up one dir, main page]

JPH09143516A - Operating method of vertical furnace - Google Patents

Operating method of vertical furnace

Info

Publication number
JPH09143516A
JPH09143516A JP30030095A JP30030095A JPH09143516A JP H09143516 A JPH09143516 A JP H09143516A JP 30030095 A JP30030095 A JP 30030095A JP 30030095 A JP30030095 A JP 30030095A JP H09143516 A JPH09143516 A JP H09143516A
Authority
JP
Japan
Prior art keywords
sio
content
cao
sinter
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30030095A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Yozo Hosoya
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30030095A priority Critical patent/JPH09143516A/en
Publication of JPH09143516A publication Critical patent/JPH09143516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】 【課題】 高炉等の竪型炉の炉頂から装入する焼結鉱
を、その塩基度(CaO/SiO2 )、SiO2 含有量
およびMgO含有量が、ある設定された範囲のものを使
用し、その操業を安定的に維持する。 【解決手段】 (1) 1.4≦ CaO/SiO2 ≦1.8 、 4.0≦
SiO2 含有量(%)≦6.0 、およびMgO含有量(%)
≦1.4 、(2) 1.8≦ CaO/SiO2 ≦2.3 および 4.0≦ S
iO2 含有量(%)≦10.55-2.75×(CaO/SiO2 )、(3)
1.8≦ CaO/SiO2≦2.3 、 6.0≧ SiO2 含有量(%)≧1
0.55-2.75×(CaO/SiO2 )、およびMgO含有量(%)
≧2.0 のいずれかの条件を満足する焼結鉱を炉頂から装
入する。 【効果】 本発明の条件を満足する焼結鉱を使用した高
炉は通気性が改善され、操業を安定的に維持することが
可能となり、生産性向上、燃料比低減を達成できる。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To set the basicity (CaO / SiO 2 ), SiO 2 content and MgO content of a sintered ore charged from the furnace top of a vertical furnace such as a blast furnace to a certain level. Use the one in the specified range and maintain its operation stably. SOLUTION: (1) 1.4 ≦ CaO / SiO 2 ≦ 1.8, 4.0 ≦
SiO 2 content (%) ≦ 6.0, and MgO content (%)
≤ 1.4, (2) 1.8 ≤ CaO / SiO 2 ≤ 2.3 and 4.0 ≤ S
iO 2 content (%) ≦ 10.55-2.75 × (CaO / SiO 2 ), (3)
1.8 ≦ CaO / SiO 2 ≦ 2.3, 6.0 ≧ SiO 2 content (%) ≧ 1
0.55-2.75 × (CaO / SiO 2 ) and MgO content (%)
A sintered ore satisfying any of the conditions ≧ 2.0 is charged from the furnace top. [Effects] A blast furnace using a sinter that satisfies the conditions of the present invention has improved air permeability, can maintain stable operation, and can achieve improved productivity and reduced fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉等の竪型炉に
おいて微粉炭の多量吹込み操業等を行う際に、炉頂から
装入する焼結鉱に着目して、操業を安定的に維持する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention focuses on a sinter ore charged from the top of a furnace when performing a blast furnace operation such as a blast furnace in which a large amount of pulverized coal is injected, and the operation is stably performed. Regarding how to maintain.

【0002】[0002]

【従来の技術】高炉等の竪型炉の操業にあって、炉頂か
ら装入する焼結鉱の高温性状を良好に保つことは、操業
を安定的に維持するために必要である。特に微粉炭多量
吹込み等の高負荷操業を安定的に維持するためには必須
である。それには、「鉄と鋼」(昭和55年,P185
0)や「鉄と鋼・鉄鋼協会講演大会」(昭和58年,S
755)に紹介されているように、焼結鉱をるつぼに装
入し、このるつぼを電気炉内に配置して、電気炉の下方
より還元ガスを導入し、焼結鉱の加熱還元を行なうこと
によって、焼結鉱の常温から1500℃付近までの温度
における、還元率、軟化収縮率、層内圧損等の高温性状
を測定する測定法が必要となってくる。
2. Description of the Related Art In the operation of a vertical furnace such as a blast furnace, it is necessary to keep the high-temperature property of the sintered ore charged from the top of the furnace in order to keep the operation stable. In particular, it is indispensable to stably maintain high-load operations such as blowing a large amount of pulverized coal. For that, "Iron and Steel" (1955, P185
0) and "Steel and Steel-Steel Association Lecture Meeting" (Showa 58, S
755), the sinter ore is charged into a crucible, the crucible is placed in an electric furnace, and a reducing gas is introduced from below the electric furnace to heat and reduce the sinter. Therefore, a measuring method for measuring high-temperature properties such as reduction rate, softening shrinkage rate, in-layer pressure loss and the like of the sintered ore at a temperature from room temperature to around 1500 ° C. is required.

【0003】ところで、高温性状の良好な焼結鉱を製造
するために、このような従来から行なわれている焼結鉱
の高温性状測定法を駆使し、そこから得られたデータを
フィードバックすることにより、焼結鉱製造工程におけ
る原料の成分調整最適化を図るまでには至っていない。
現状は、単に実機で製造された焼結鉱の高温性状を測定
しているのみである。その理由は、これらの測定法の精
度がそれほど良くなく、実高炉の炉内における焼結鉱の
高温性状を忠実に再現しているとはいえないことによ
る。
By the way, in order to produce a sinter having a good high-temperature property, the conventional method for measuring a high-temperature property of a sinter is used, and the data obtained therefrom is fed back. Therefore, it has not been attempted to optimize the raw material composition adjustment in the sinter production process.
At present, only the high temperature properties of the sintered ore produced by the actual machine are measured. The reason is that the accuracy of these measurement methods is not so good, and it cannot be said that the high temperature properties of the sintered ore in the furnace of the actual blast furnace are faithfully reproduced.

【0004】従来の測定法は、1つの電気炉による測定
法であり、電気炉の下方の還元ガス入口より還元ガスを
導入し、電気炉内に設置した温度計の測定値があらかじ
め設定した昇温プログラムに従うように昇温して、電気
炉内に配置したるつぼ内の焼結鉱を加熱還元する方法で
あるため、焼結鉱が軟化溶融して溶融FeOの還元(吸
熱反応)が起こり、焼結鉱の温度が低下しても、昇温プ
ログラムに従って電気炉が昇温していくため、焼結鉱に
強制的に熱が与えられる形で加熱還元が進行してしま
う。
The conventional measuring method is a measuring method using one electric furnace, in which a reducing gas is introduced from a reducing gas inlet below the electric furnace, and a measured value of a thermometer installed in the electric furnace is set to a preset value. Since it is a method of heating and reducing the sinter in the crucible arranged in the electric furnace by increasing the temperature according to the temperature program, the sinter softens and melts, and the reduction of the molten FeO (endothermic reaction) occurs, Even if the temperature of the sinter decreases, the temperature of the electric furnace rises according to the temperature increasing program, so that the heat reduction proceeds in the form of forcibly applying heat to the sinter.

【0005】しかし、実際の竪型炉内においては、焼結
鉱が軟化溶融して溶融FeOの還元(吸熱反応)が起こ
り、焼結鉱の温度が下がったとき、上記の測定法とは異
なって、焼結鉱に強制的に熱が与えられることがないた
め、温度低下による溶融物の流動性悪化、およびそれに
伴う溶融FeOの還元遅れが発生し、加熱還元は遅延す
る。
However, in the actual vertical furnace, when the sinter ore softens and melts and the molten FeO is reduced (endothermic reaction), and the temperature of the sinter decreases, it differs from the above-mentioned measurement method. Since heat is not forcibly applied to the sinter, the fluidity of the melt deteriorates due to the temperature decrease, and the reduction of the molten FeO is delayed, which delays the thermal reduction.

【0006】このように従来の測定法では、実炉内で起
こっている現象と異なるため、実炉内では焼結鉱の高温
性状に差が生じるはずなのに、前記測定法によると焼結
鉱の高温性状に差が生じておらず、従って、こうして得
られた測定結果を駆使しても、操業を安定的に維持する
ための焼結鉱の成分条件は不正確なものであった。
As described above, in the conventional measuring method, since the phenomenon different from the phenomenon occurring in the actual furnace should cause a difference in the high-temperature property of the sintered ore in the actual furnace, according to the above measuring method, There was no difference in the high-temperature properties, so even if the measurement results thus obtained were used, the constituent conditions of the sintered ore for maintaining stable operation were inaccurate.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、実炉
内で起こっている焼結鉱の加熱還元時の現象、特に昇温
速度、還元率、層の圧損等を正確に測定できるようにす
るために、実炉内で生じている焼結鉱の高温性状の差
が、測定においても検出できるように測定法を改善し、
これを駆使して得られたデータから高温性状の良好な焼
結鉱の成分条件を明確にし、この条件を満足する焼結鉱
を高炉に装入して、その操業を安定的に維持することを
目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention enables accurate measurement of a phenomenon occurring in a real furnace at the time of heat reduction of a sinter, in particular, a temperature rising rate, a reduction rate, a layer pressure loss, and the like. In order to do so, we improved the measurement method so that the difference in the high-temperature properties of the sintered ore occurring in the actual furnace can be detected even in the measurement,
Clarify the composition conditions of sinter having good high-temperature properties from the data obtained by making full use of this, and insert sinter that satisfies these conditions into the blast furnace to maintain stable operation. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明は、高炉等の竪型
炉において微粉炭の吹込み操業等を行う際に、成分組成
が、 塩基度(CaO/SiO2 )1.4〜1.8、SiO
2 含有量4.0〜6.0wt%、かつ、MgO含有量1.
4wt%以下であること、 塩基度(CaO/SiO2 )1.8〜2.3であり、
かつ、SiO2 含有量(wt%)が、式 4.0 ≦[SiO2 含有量(wt%)]≦10.55-2.75×(CaO/SiO2 ) を満足すること、 塩基度(CaO/SiO2 )1.8〜2.3であり、
SiO2 含有量(wt%)が、式 10.55-2.75×(CaO/SiO2 )≦[SiO2 含有量(wt%)]≦6.0 を満足し、かつMgO含有量2.0wt%以上であるこ
と、の3通りのいずれかを満足する焼結鉱を炉頂から装
入することを特徴とする竪型炉の操業方法である。
Means for Solving the Problems In the present invention, when a pulverized coal blowing operation is carried out in a vertical furnace such as a blast furnace, the component composition is such that the basicity (CaO / SiO 2 ) is 1.4 to 1. 8, SiO
2 content 4.0 to 6.0 wt% and MgO content 1.
4 wt% or less, basicity (CaO / SiO 2 ) of 1.8 to 2.3,
Further, the SiO 2 content (wt%) satisfies the formula 4.0 ≤ [SiO 2 content (wt%)] ≤ 10.55-2.75 × (CaO / SiO 2 ), and the basicity (CaO / SiO 2 ) 1 .8 to 2.3,
The SiO 2 content (wt%) must satisfy the formula 10.55-2.75 × (CaO / SiO 2 ) ≦ [SiO 2 content (wt%)] ≦ 6.0, and the MgO content must be 2.0 wt% or more. The method for operating a vertical furnace is characterized in that sinter ore satisfying any one of the above three conditions is charged from the furnace top.

【0009】[0009]

【発明の実施の形態】上述したような焼結鉱の成分条件
を明らかにするため、本発明者は、特開平7−2762
3号公報に開示したように、電気炉を2つとし、一方の
電気炉で加熱を、もう一方の電気炉で温度調節を行なっ
て、焼結鉱に強制的に熱を与えることなく、実際の竪型
炉と同じ熱の与え方をすることにより、実炉内で生じて
いる加熱還元現象を測定可能な測定装置および測定方法
を開発した。
BEST MODE FOR CARRYING OUT THE INVENTION In order to clarify the constituent conditions of the above-mentioned sinter, the present inventor has disclosed in Japanese Patent Laid-Open No. 7-2762.
As disclosed in Japanese Patent Publication No. 3, the number of electric furnaces is two, one electric furnace is used for heating, and the other electric furnace is used for temperature control. We have developed a measuring device and a measuring method that can measure the thermal reduction phenomenon occurring in an actual furnace by applying the same heat as in the vertical furnace.

【0010】すなわち、前述したように、電気炉を上下
2段に配設し、両電気炉はフランジで結合し、下段の電
気炉の下方より還元ガスを導入しながら下段の電気炉を
空塔のまま昇温するとともに、上段の電気炉に測定対象
とする焼結鉱の充填層を形成したるつぼを配置して、上
段の電気炉の炉内温度とるつぼ内の焼結鉱の温度を同時
に測定し、両者の温度差があらかじめ設定した一定の値
となるように上段の電気炉に付与する電力を調整する。
That is, as described above, the electric furnaces are arranged in upper and lower two stages, both electric furnaces are connected by a flange, and the lower stage electric furnace is emptied while introducing the reducing gas from the lower side of the lower stage electric furnace. While raising the temperature as it is, place the crucible in which the packed bed of the sintered ore to be measured is formed in the upper electric furnace, and the furnace temperature of the upper electric furnace and the temperature of the sintered ore in the crucible are simultaneously measured. The electric power applied to the upper electric furnace is measured and measured so that the temperature difference between the two becomes a preset constant value.

【0011】このような測定装置を用いて測定すると、
図1に示すような測定データが得られる。図1の横軸は
実験経過時間(分)を示し、左縦軸は焼結鉱の還元率
(%)、右縦軸は焼結鉱充填層の圧損(mmH2 O)を示
す。ここで、焼結鉱の高温性状を評価する指標として、
次の5つを採用した。 最大層圧損(ΔPmax (mmH2 O),図1参照)、
層の圧損が200mmH2 O以上である温度幅(ΔT
(℃),図1参照)、実験終了直前の層の圧損(ΔP
E(mmH2 O),図1参照)、滴下開始温度(TD
(℃))、実験終了時のメタル滴下収率(Ratio of M
etal Dropping [RMDと略す] (%))。
When measuring using such a measuring device,
The measurement data as shown in FIG. 1 is obtained. The horizontal axis of FIG. 1 represents the elapsed time (minutes) of the experiment, the left vertical axis represents the reduction rate (%) of the sintered ore, and the right vertical axis represents the pressure loss (mmH 2 O) of the packed bed of the sintered ore. Here, as an index for evaluating the high temperature properties of the sinter,
The following five are adopted. Maximum layer pressure loss (ΔPmax (mmH 2 O), see Fig. 1)
Temperature range where pressure loss of the layer is 200 mmH 2 O or more (ΔT
(° C), see Fig. 1), pressure loss of the layer (ΔP
E (mmH 2 O), see Fig. 1), drop start temperature (TD
(℃)), Metal drop yield at the end of the experiment (Ratio of M
et al Dropping [abbreviated as RMD] (%)).

【0012】そして本発明者は、この5つの指標が、下
記の範囲のすべてを満足する焼結鉱は高温性状が良好
で、微粉炭の多量吹込み操業を行う際にも有効な焼結鉱
であることを見出した。すなわち、ΔPmax ≦4,5
00mmH2 O、ΔT≦250℃、ΔPE≦125mm
2 O、TD≧1,400℃、RMD≧50%であ
る。
The inventor of the present invention has found that the sintered ores satisfying all of the following five ranges are excellent in high-temperature properties and are effective even in the operation of blowing a large amount of pulverized coal. I found that. That is, ΔPmax ≦ 4,5
00mmH 2 O, ΔT ≦ 250 ° C, ΔPE ≦ 125mm
H 2 O, TD ≧ 1,400 ° C., RMD ≧ 50%.

【0013】ここで、ΔPmax が低くかつΔTが小さい
ということは、融着層の幅が狭くかつ通気抵抗が小さい
ことを示し、ΔPEが低いということは、高温(155
0℃程度)の融着層の通気抵抗が小さいことを示す。ま
たTDが高いということは、融着層が高温(1400℃
以上)まで存在し、溶銑温度が高くて高炉の炉熱が高く
維持されることを示す。さらにRMDが大きいというこ
とは、焼結鉱の融着層中に生成する融液の流動性が良
く、急速溶融滴下が起こることを示し、結果として融着
層の通気抵抗は小さくなる。
Here, a low ΔPmax and a small ΔT means that the width of the fusion layer is narrow and a ventilation resistance is small, and a low ΔPE means that the temperature is high (155).
It shows that the fusion resistance of the fusion layer at about 0 ° C.) is small. Also, the high TD means that the fusion layer has a high temperature (1400 ° C).
The above shows that the hot metal temperature is high and the furnace heat of the blast furnace is kept high. Further, a large RMD means that the melt generated in the fusion layer of the sintered ore has a good fluidity and rapid melt dripping occurs, and as a result, the ventilation resistance of the fusion layer becomes small.

【0014】そして本発明者は、種々の実機および試験
鍋で製造した焼結鉱を、前述した測定装置を用いた測定
方法により測定し本発明で指定した上記5つの指標範囲
のすべてを満足する高温性状良好な焼結鉱の成分は、塩
基度(CaO/SiO2 )、SiO2 含有量、およびM
gO含有量を用いて、次のような3つの範囲に整理され
ることを見出した。すなわち(1)1.4≦CaO/S
iO2 ≦1.8、4.0≦SiO2 含有量(wt%)≦
6.0、およびMgO含有量(wt%)≦1.4、(2)
1.8≦CaO/SiO2 ≦2.3、および4.0≦S
iO2 含有量(wt%)≦10.55−2.75×(Ca
O/SiO2 )、(3)1.8≦CaO/SiO2
2.3、6.0≧SiO2 含有量(wt%)≧10.55
−2.75×(CaO/SiO2 )、およびMgO含有
量(wt%)≧2.0。図2にこれら3つの範囲を斜線で
示す。
The present inventor measured the sintered ore produced by various actual machines and test pots by the measuring method using the above-mentioned measuring device, and satisfied all of the above five index ranges specified in the present invention. The components of sinter having good high-temperature properties are basicity (CaO / SiO 2 ), SiO 2 content, and M
It has been found that the gO content is used and arranged into the following three ranges. That is, (1) 1.4 ≦ CaO / S
iO 2 ≦ 1.8, 4.0 ≦ SiO 2 content (wt%) ≦
6.0, and MgO content (wt%) ≦ 1.4, (2)
1.8 ≦ CaO / SiO 2 ≦ 2.3, and 4.0 ≦ S
iO 2 content (wt%) ≤ 10.55-2.75 x (Ca
O / SiO 2 ), (3) 1.8 ≦ CaO / SiO 2
2.3, 6.0 ≧ SiO 2 content (wt%) ≧ 10.55
-2.75 × (CaO / SiO 2) , and MgO content (wt%) ≧ 2.0. In FIG. 2, these three ranges are indicated by diagonal lines.

【0015】(1)の塩基度(CaO/SiO2 )が低
い場合は、焼結鉱の融着層中に生成する融液の流動性が
良いため、MgO含有量を高くする必要がなく、むしろ
高いとかえって流動性が悪くなる。またSiO2 含有量
に上下限の数値限定をしているのは、4.0wt%未満だ
と焼結鉱を製造するに必要とされる強度を維持できない
ため好ましくなく、また、6.0wt%を超えると焼結鉱
の融着層中に生成する融液の量が多すぎ、通気抵抗が大
きくなるため好ましくない。さらにCaO/SiO2
下限の数値限定をしているのは、1.4未満だと焼結鉱
の被還元性が悪化し、FeOが融液中に溶融してみかけ
の融液量が増大するため、通気抵抗が大きくなり、好ま
しくない。
When the basicity (CaO / SiO 2 ) of (1) is low, the fluidity of the melt formed in the fused layer of the sinter is good, so that it is not necessary to increase the MgO content. If it is rather high, the liquidity deteriorates. Further, it is not preferable that the SiO 2 content be limited to the upper and lower limits because the strength required for producing a sintered ore cannot be maintained if it is less than 4.0 wt%, and 6.0 wt%. If it exceeds, the amount of the melt produced in the fused layer of the sinter becomes too large, and the ventilation resistance becomes large, which is not preferable. Further, the lower limit of CaO / SiO 2 is that if it is less than 1.4, the reducibility of the sinter deteriorates and FeO melts in the melt, increasing the apparent melt amount. Therefore, ventilation resistance increases, which is not preferable.

【0016】(2)の塩基度(CaO/SiO2 )が高
い場合は、CaO/SiO2 によって決まるSiO2
有量よりも低い値にSiO2 含有量を設定すると、焼結
鉱の融着層中に生成する融点の高い融液の量を少なくす
ることができるため、通気抵抗は小さい。またSiO2
含有量に下限の数値限定をしているのは上述の場合に同
じく4.0wt%未満だと焼結鉱を製造する際に必要とさ
れる強度を維持できないため好ましくない。さらにCa
O/SiO2 に上限の数値限定をしているのは、2.3
を越えると焼結鉱の融着層中に融液がほとんど生成せ
ず、従ってメタルの滴下が起らなくて、通気抵抗が大き
くなることによる。なおこの場合には、MgO含有量の
規定はないが、焼結鉱の融着層中に生成する融点の高い
融液の量を少なくするために、低くする方が望ましい。
When the basicity (CaO / SiO 2 ) of ( 2 ) is high, if the SiO 2 content is set to a value lower than the SiO 2 content determined by CaO / SiO 2 , the fused layer of sinter ore Since the amount of the melt having a high melting point generated therein can be reduced, the ventilation resistance is small. Also SiO 2
It is not preferable to limit the content to the lower limit if the content is less than 4.0 wt% in the above-mentioned case because the strength required for producing a sintered ore cannot be maintained. Further Ca
The upper limit of O / SiO 2 is 2.3.
If it exceeds, the melt is hardly generated in the fused layer of the sinter, and therefore the metal does not drop and the ventilation resistance increases. In this case, the MgO content is not specified, but it is desirable to lower it in order to reduce the amount of the high-melting-point melt generated in the fused layer of the sintered ore.

【0017】(3)の塩基度(CaO/SiO2 )が高
い場合は、CaO/SiO2 によって決まるSiO2
有量よりも高い値にSiO2 含有量を設定するととも
に、MgO含有量を高くすることにより、焼結鉱の融着
層中に生成する融液の流動性が良くなり、通気抵抗が小
さくなる。またSiO2 含有量に上限の数値限定をして
いるのは、6.0wt%を越えると焼結鉱の融着層中に生
成する融液の量が多すぎ、通気抵抗が大きくなるため好
ましくない。さらにCaO/SiO2 に上限の数値限定
をしているのは上述の場合に同じく2.3を越えると焼
結鉱の融着層中に融液がほとんど生成せず、従ってメタ
ルの滴下が起らなくて、通気抵抗が大きくなり、好まし
くない。
When (3) the basicity (CaO / SiO 2 ) is high, the SiO 2 content is set to a value higher than the SiO 2 content determined by CaO / SiO 2 and the MgO content is increased. As a result, the fluidity of the melt generated in the fused layer of the sinter becomes good and the ventilation resistance becomes small. Further, the upper limit of the SiO 2 content is limited, because if it exceeds 6.0 wt%, the amount of the melt produced in the fusion layer of the sinter becomes too large, and the ventilation resistance becomes large. Absent. Further, the upper limit of CaO / SiO 2 is limited. In the same manner as above, when 2.3 is exceeded, almost no melt is formed in the fusion layer of the sintered ore, and therefore metal dripping occurs. It is not preferable because the ventilation resistance becomes large.

【0018】[0018]

【実施例】以下実施例により本発明の特徴を具体的に説
明する。表1に焼結鉱の成分条件及び高炉への使用結果
を示す。
EXAMPLES The features of the present invention will be specifically described with reference to the following examples. Table 1 shows the component conditions of the sinter and the results of its use in the blast furnace.

【0019】[0019]

【表1】 [Table 1]

【0020】[実施例1]焼結鉱の塩基度(CaO/S
iO2 )=1.68、SiO2 含有量=5.74wt%、
MgO含有量=1.38wt%となるように成分調整をし
て焼結鉱を製造した。この焼結鉱を高炉で使用したと
き、後述する比較例1に比べて、通気抵抗を示す送風圧
力が低い。
[Example 1] Basicity of sinter (CaO / S
iO 2 ) = 1.68, SiO 2 content = 5.74 wt%,
Sintered ore was manufactured by adjusting the components so that the MgO content = 1.38 wt%. When this sinter is used in a blast furnace, the blast pressure showing ventilation resistance is lower than in Comparative Example 1 described later.

【0021】[実施例2]焼結鉱の塩基度(CaO/S
iO2 )=2.13、SiO2 含有量=4.22wt%と
なるように成分調整をして焼結鉱を製造した。このとき
MgO含有量は0.95wt%であった。この焼結鉱を高
炉で使用したとき、後述する比較例2に比べて、通気抵
抗を示す送風圧力が低い。
[Example 2] Basicity of sinter (CaO / S
Sintered ore was manufactured by adjusting the components so that i0 2 ) = 2.13 and SiO 2 content = 4.22 wt%. At this time, the MgO content was 0.95 wt%. When this sinter is used in a blast furnace, the blast pressure showing ventilation resistance is lower than in Comparative Example 2 described later.

【0022】[実施例3]焼結鉱の塩基度(CaO/S
iO2 )=1.94、SiO2 含有量=5.60wt%、
MgO含有量=3.05wt%となるように成分調整をし
て焼結鉱を製造した。この焼結鉱を高炉で使用したと
き、後述する比較例3に比べて、通気抵抗を示す送風圧
力が低い。
[Example 3] Basicity of sinter (CaO / S
iO 2 ) = 1.94, SiO 2 content = 5.60 wt%,
Sintered ore was manufactured by adjusting the components so that the MgO content = 3.05 wt%. When this sinter is used in a blast furnace, the blast pressure indicating ventilation resistance is lower than in Comparative Example 3 described later.

【0023】[比較例1]従来の原料配合調整だけによ
り焼結鉱を製造した結果、塩基度(CaO/SiO2
=1.67、SiO2 含有量=5.71wt%、MgO含
有量=1.75wt%の成分を有する焼結鉱となった。こ
の焼結鉱を高炉で使用したとき、実施例1に比べて、通
気抵抗を示す送風圧力は高い。
[Comparative Example 1] As a result of producing a sinter by only adjusting the conventional raw material composition, the basicity (CaO / SiO 2 )
= 1.67, SiO 2 content = 5.71 wt%, MgO content = 1.75 wt%. When this sinter is used in a blast furnace, the blast pressure exhibiting ventilation resistance is higher than in Example 1.

【0024】[比較例2]従来の原料配合調整だけによ
り焼結鉱を製造した結果、塩基度(CaO/SiO2
=2.15、SiO2 含有量=4.95wt%、MgO含
有量=1.60wt%の成分を有する焼結鉱となった。こ
の焼結鉱を高炉で使用したとき、実施例2に比べて、通
気抵抗を示す送風圧力は高い。
[Comparative Example 2] As a result of producing a sintered ore only by adjusting the conventional raw material mixture, the basicity (CaO / SiO 2 )
= 2.15, SiO 2 content = 4.95 wt%, MgO content = 1.60 wt%. When this sinter is used in a blast furnace, the blast pressure showing ventilation resistance is higher than in Example 2.

【0025】[比較例3]従来の原料配合調整だけによ
り焼結鉱を製造した結果、塩基度(CaO/SiO2
=1.93、SiO2 含有量=5.62wt%、MgO含
有量=1.80wt%の成分を有する焼結鉱となった。こ
の焼結鉱を高炉で使用したとき、実施例3に比べて、通
気抵抗を示す送風圧力は高い。
[Comparative Example 3] As a result of producing a sintered ore only by adjusting the conventional raw material composition, the basicity (CaO / SiO 2 )
= 1.93, SiO 2 content = 5.62 wt%, MgO content = 1.80 wt%. When this sinter is used in a blast furnace, the blast pressure showing ventilation resistance is higher than in Example 3.

【0026】[0026]

【発明の効果】以上説明したように、本発明において
は、焼結鉱の塩基度(CaO/SiO2)、SiO2
有量およびMgO含有量を、ある設定された範囲に調整
することにより、この焼結鉱で形成される融着層の通気
抵抗が低く、滴下温度が高く、メタル滴下量も多くなっ
て高温性状は良好となり、その結果、この焼結鉱を使用
した高炉の通気性は改善され、高炉の操業を安定的に維
持することが可能となる。それによって、生産性向上、
燃料比低減を達成することができる。
As described above, in the present invention, by adjusting the basicity (CaO / SiO 2 ), SiO 2 content and MgO content of the sinter to a certain set range, The fusion resistance layer formed from this sinter has a low air flow resistance, a high dropping temperature, and a large amount of metal drops, resulting in good high-temperature properties. As a result, the blast furnace using this sinter has a high air permeability. It will be improved and it will be possible to maintain stable operation of the blast furnace. This improves productivity,
A fuel ratio reduction can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高温性状測定装置を用いた測定方法により測定
されたデータの一例を示す図であり、焼結鉱の高温性状
を評価する5つの指標を明示している。
FIG. 1 is a diagram showing an example of data measured by a measuring method using a high temperature property measuring device, and clearly shows five indexes for evaluating the high temperature property of a sintered ore.

【図2】本発明に用いる高温性状良好な焼結鉱の塩基度
(CaO/SiO2 )、SiO2 含有量およびMgO含
有量の範囲を示す図である。
FIG. 2 is a diagram showing the ranges of basicity (CaO / SiO 2 ), SiO 2 content, and MgO content of sinter ore used in the present invention with good high-temperature properties.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成分組成が、塩基度(CaO/Si
2 )1.4〜1.8、SiO2 含有量4.0〜6.0
wt%、かつ、MgO含有量1.4wt%以下である焼結鉱
を炉頂から装入することを特徴とする竪型炉の操業方
法。
1. The composition of components is basicity (CaO / Si
O 2 ) 1.4 to 1.8, SiO 2 content 4.0 to 6.0
A method for operating a vertical furnace, characterized in that sinter having a wt% and an MgO content of 1.4 wt% or less is charged from the furnace top.
【請求項2】 成分組成が、塩基度(CaO/Si
2 )1.8〜2.3であり、かつ、SiO2 含有量
(wt%)が、式 4.0 ≦[SiO2 含有量(wt%)]≦10.55-2.75×(CaO/SiO2 ) を満足する焼結鉱を炉頂から装入することを特徴とする
竪型炉の操業方法。
2. The composition of components is basicity (CaO / Si
O 2 ) 1.8 to 2.3, and the SiO 2 content (wt%) is expressed by the formula 4.0 ≦ [SiO 2 content (wt%)] ≦ 10.55-2.75 × (CaO / SiO 2 ). A method for operating a vertical furnace, which comprises charging a satisfactory sinter from the top of the furnace.
【請求項3】 成分組成が、塩基度(CaO/Si
2 )1.8〜2.3であり、SiO2 含有量(wt%)
が、式 10.55-2.75×(CaO/SiO2 )≦[SiO2 含有量(wt%)]≦6.0 を満足し、かつMgO含有量2.0wt%以上である焼結
鉱を炉頂から装入することを特徴とする竪型炉の操業方
法。
3. The composition of components is basicity (CaO / Si
O 2 ) 1.8 to 2.3 and SiO 2 content (wt%)
However, a sinter that satisfies the formula 10.55-2.75 × (CaO / SiO 2 ) ≦ [SiO 2 content (wt%)] ≦ 6.0 and has a MgO content of 2.0 wt% or more is charged from the furnace top. A method for operating a vertical furnace characterized by:
JP30030095A 1995-11-17 1995-11-17 Operating method of vertical furnace Withdrawn JPH09143516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30030095A JPH09143516A (en) 1995-11-17 1995-11-17 Operating method of vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30030095A JPH09143516A (en) 1995-11-17 1995-11-17 Operating method of vertical furnace

Publications (1)

Publication Number Publication Date
JPH09143516A true JPH09143516A (en) 1997-06-03

Family

ID=17883131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30030095A Withdrawn JPH09143516A (en) 1995-11-17 1995-11-17 Operating method of vertical furnace

Country Status (1)

Country Link
JP (1) JPH09143516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199550A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Operation method for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199550A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Operation method for blast furnace

Similar Documents

Publication Publication Date Title
JPH09143516A (en) Operating method of vertical furnace
CN115061522B (en) LF temperature control method
KR101246436B1 (en) Prediction method for product measuring of pig iron
JP3589016B2 (en) Blast furnace operation method
JPH1143709A (en) Operating method of hard furnace using sintered ore with good high temperature properties
JP3010405B2 (en) High-temperature property measurement method for iron ores
JPH10298620A (en) How to charge ore into blast furnace
JP7626931B2 (en) Blast furnace operation method
JPS58727B2 (en) Estimation method of cohesive zone shape in blast furnace
JPH05215700A (en) Measuring method for softening and melting temperatures of ni-containing ore
JP7589727B2 (en) Sintered ore manufacturing method and manufacturing device
JP7560735B2 (en) Method for designing mixture of iron-containing raw materials and method for operating blast furnace
JPH049740B2 (en)
JPS6089525A (en) Method for controlling high-temperature characteristic of sintered ore
JPS5837132A (en) Sintering operating method
JPH0841511A (en) Blast furnace control method and apparatus
JP2935611B2 (en) Manufacturing method of ferroalloys in electric furnaces
CN115083536A (en) A method for calculating the melting degree of iron ore in high temperature liquid slag at different times
JP3017009B2 (en) Blast furnace operation method
JP3283739B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
CN119043980A (en) Method for judging blast furnace conditions based on iron reduction degree measurement
CN117110356A (en) High-temperature metallurgical performance evaluation method and system for blast furnace burden structure
JPH0625368B2 (en) Blast furnace operation method
Shiau et al. Effect of magnesium oxide content on final slag fluidity of blast furnace
JP2002069517A (en) Operation method of smelting reduction furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204