JPH11335800A - Production of copper base alloy with excellent stress relaxation resistance - Google Patents
Production of copper base alloy with excellent stress relaxation resistanceInfo
- Publication number
- JPH11335800A JPH11335800A JP17525698A JP17525698A JPH11335800A JP H11335800 A JPH11335800 A JP H11335800A JP 17525698 A JP17525698 A JP 17525698A JP 17525698 A JP17525698 A JP 17525698A JP H11335800 A JPH11335800 A JP H11335800A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- rolling
- copper
- stress relaxation
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010949 copper Substances 0.000 title claims abstract description 41
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 35
- 239000000956 alloy Substances 0.000 title claims abstract description 35
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 33
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000137 annealing Methods 0.000 claims abstract description 43
- 238000005098 hot rolling Methods 0.000 claims abstract description 16
- 238000005096 rolling process Methods 0.000 claims abstract description 13
- 238000005097 cold rolling Methods 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 11
- 229910052718 tin Inorganic materials 0.000 abstract description 8
- 229910052759 nickel Inorganic materials 0.000 abstract description 6
- 230000005012 migration Effects 0.000 abstract description 4
- 238000013508 migration Methods 0.000 abstract description 4
- 238000007747 plating Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018100 Ni-Sn Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 229910018532 Ni—Sn Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 102220253765 rs141230910 Human genes 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910009038 Sn—P Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐応力緩和特性に
優れた銅基合金の製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-based alloy having excellent stress relaxation resistance.
【0002】[0002]
【従来の技術】この種の従来技術としては、次のような
ものが提案されている。即ち、特公平8−9745号公
報には、重量%でNi:0.5〜3.0%、Sn:0.
5〜2.0%、P:0.05〜0.20%を含有し、残
部がCuと不可避不純物からなる組成を有する銅基合金
が、Ni/Pの重量百分率の比率が20〜35の範囲と
なる相対量が添加されているNiとPとの一部がNi−
P系の化合物となってマトリックス中に均一微細に析出
した組織を有していることによって、引張強さが50K
gf/mm2以上、ばね限界値が40Kgf/mm2以
上、応力緩和率10%以下及び導電率30%IACS以
上の特性を有する銅基合金に関する技術が開示されてい
る。2. Description of the Related Art As the prior art of this kind, the following has been proposed. That is, Japanese Patent Publication No. Hei 8-9745 discloses that Ni: 0.5 to 3.0% and Sn: 0.
A copper-based alloy containing 5 to 2.0% and P: 0.05 to 0.20% and having a balance of Cu and unavoidable impurities has a Ni / P weight percentage ratio of 20 to 35. A part of Ni and P to which a relative amount in a range is added is Ni-
Having a structure which is a P-based compound and uniformly and finely precipitated in the matrix, the tensile strength is 50K.
A technique relating to a copper-based alloy having characteristics of gf / mm 2 or more, a spring limit value of 40 Kgf / mm 2 or more, a stress relaxation rate of 10% or less, and a conductivity of 30% IACS or more is disclosed.
【0003】また、特開平4−154942号公報に
は、Ni、Sn、Pを適量添加した銅基合金の鋳片から
熱間圧延工程及び冷間圧延と焼鈍とを繰返す冷間圧延工
程を経て、所定の板厚まで圧延するに際し、特定の条件
で処理する技術が開示されている。Japanese Patent Application Laid-Open No. 4-154942 discloses that a slab of a copper-based alloy containing an appropriate amount of Ni, Sn, and P is subjected to a hot rolling step and a cold rolling step in which cold rolling and annealing are repeated. There is disclosed a technique of performing processing under specific conditions when rolling to a predetermined plate thickness.
【0004】特に最終焼鈍は、300〜750℃の温度
で5〜180秒間のテンションアニール処理を施すこと
により、ばね限界値、耐応力緩和特性の向上ならびに延
性の回復が発現でき、均質かつ平坦度の良好な製品を得
る技術が開示されている。[0004] In particular, in the final annealing, by applying a tension annealing treatment at a temperature of 300 to 750 ° C for 5 to 180 seconds, an improvement in spring limit value, stress relaxation resistance and recovery of ductility can be exhibited, and uniform and flatness can be obtained. A technique for obtaining a good product is disclosed.
【0005】自動車等のコネクタに使用される材料は、
近年のエレクトロニクスの発達に伴い、高密度化、小型
化、軽量化そして信頼性の向上が求められるようになっ
てきている。[0005] Materials used for connectors of automobiles and the like include:
With the development of electronics in recent years, higher density, smaller size, lighter weight, and improved reliability have been required.
【0006】また、更にエンジンの高性能化に伴い、エ
ンジンルーム内の温度も上昇してきており、そこに使用
される導電材料であるコネクタ用銅基合金には、優れた
耐応力緩和特性が要求されるようになってきている。[0006] Further, as the performance of the engine has been further improved, the temperature in the engine room has been rising, and a copper-based alloy for connectors, which is a conductive material used therein, is required to have excellent stress relaxation resistance. It is becoming.
【0007】その対策として、上記の特公平8−974
5号公報や特開平4−154942号公報に記載されて
いるように、特定組成のNi、Sn、Pを含有する耐応
力緩和特性に優れた銅基合金等が提案されている。As a countermeasure, the above-mentioned Japanese Patent Publication No. 8-974
As described in Japanese Patent Application Laid-open No. 5 and JP-A-4-154942, a copper-based alloy containing Ni, Sn, and P having a specific composition and having excellent stress relaxation resistance has been proposed.
【0008】従来の技術では、銅基合金をばね材料とし
て利用するために、最終板厚まで圧延された後の低温焼
鈍において、ばね限界値が最大となる条件を採用してい
た。しかしながら、本願発明者らは最終低温焼鈍を更に
詳しく検討したところ、従来の低温焼鈍条件で得られた
材料より更に耐応力緩和特性が向上できることを見出し
た。[0008] In the prior art, in order to use a copper-based alloy as a spring material, a condition that maximizes a spring limit value in low-temperature annealing after rolling to a final sheet thickness has been adopted. However, the inventors of the present application have studied the final low-temperature annealing in more detail, and have found that the stress relaxation resistance can be further improved as compared with a material obtained under the conventional low-temperature annealing conditions.
【0009】[0009]
【発明が解決しようとする課題】本発明は、従来技術の
問題点に鑑みて、自動車等のコネクタ用端子材料として
極めて優れた耐応力緩和特性を有し、かつ強度、弾性、
電気伝導性、曲げ加工性、耐マイグレーション性および
めっき信頼性等に優れた銅基合金の製造方法を提案する
ものである。SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention has extremely excellent stress relaxation resistance as a terminal material for connectors of automobiles and the like, and has strength, elasticity, and the like.
The present invention proposes a method for producing a copper-based alloy having excellent electrical conductivity, bending workability, migration resistance, plating reliability, and the like.
【0010】[0010]
【課題を解決するための手段】本発明は、重量%で、N
i:0.1〜10%,Sn:0.1〜9%,P:0.0
01〜0.30%を含有し、残部がCuと不可避不純物
からなる銅基合金の鋳片から場合によっては熱間圧延工
程を、そして更に冷間圧延と焼鈍とを繰返す加工熱処理
工程を経て所定の板厚まで圧延加工した後の最終工程に
おいて、低温焼鈍の条件をばね限界値が最高値を示す低
温焼鈍温度より高い温度で行うことを特徴とする耐応力
緩和特性に優れた銅基合金の製造方法を提供するもので
ある。SUMMARY OF THE INVENTION The present invention provides a method for producing N by weight percent.
i: 0.1 to 10%, Sn: 0.1 to 9%, P: 0.0
A copper-based alloy slab containing 0.01 to 0.30%, with the balance being Cu and unavoidable impurities, may be subjected to a hot rolling step and, if necessary, to a working heat treatment step in which cold rolling and annealing are repeated. In the final step after rolling to the sheet thickness of the copper-based alloy excellent in stress relaxation resistance characterized by performing the conditions of low-temperature annealing at a temperature higher than the low-temperature annealing temperature at which the spring limit value shows the maximum value It is intended to provide a manufacturing method.
【0011】[0011]
【作用】本発明により製造する銅基合金は、上記の通り
Cu中に重量%でNi:0.1〜10%、Sn:0.1
〜9%、P:0.001〜0.30%を含有する成分組
成を有するものであり、その製造法は、上記成分組成の
銅基合金の鋳片から場合によっては熱間圧延工程を、そ
して更に冷間圧延と焼鈍とを繰返す加工熱処理工程を経
て所定の板厚まで加工する製造工程中で、熱間圧延後の
冷却条件、冷間圧延工程での圧下率と焼鈍条件を適切に
コントロールすることによって、Ni−P系の化合物を
この製造工程中で微細かつ均質分散させて優れた強度、
電気伝導性を有し、特に最終工程における低温焼鈍の条
件を、ばね限界値が最高値を示す低温焼鈍温度よりも高
い温度で行い、ばね限界値の最高値の80%以上100
%未満を達成する条件にすることによって、極めて優れ
た耐応力緩和特性を示す銅基合金を得ることができる
(図2参照)。The copper-based alloy produced according to the present invention contains Ni: 0.1 to 10% and Sn: 0.1% by weight in Cu as described above.
-9%, P: 0.001-0.30%, and the manufacturing method thereof includes a hot rolling step from a slab of a copper-based alloy having the above-mentioned component composition, if necessary. In the manufacturing process of processing to a predetermined thickness through a thermomechanical treatment process in which cold rolling and annealing are repeated, the cooling conditions after hot rolling, the rolling reduction and the annealing conditions in the cold rolling process are appropriately controlled. By doing so, the Ni-P-based compound is finely and homogeneously dispersed in this manufacturing process, and excellent strength,
It has electrical conductivity, and the condition of low-temperature annealing in the final step is performed at a temperature higher than the low-temperature annealing temperature at which the spring limit value is the highest, and is 80% or more of the maximum value of the spring limit value.
%, A copper-based alloy exhibiting extremely excellent stress relaxation resistance can be obtained (see FIG. 2).
【0012】Cu−Ni−Sn−P系の銅合金のばね限
界値と応力緩和率の関係は、図2に示すように、低温焼
鈍条件と密接な関係がある。一定時間で低温焼鈍する場
合、ばね限界値と温度の関係は、焼鈍温度を上昇させて
行くと、ある温度でばね限界値が最高値となり、それよ
り高い温度になると、徐々にばね限界値は低下し、最高
値の80%を示す温度を越えると急激に低下する。The relationship between the spring limit value and the stress relaxation rate of a Cu—Ni—Sn—P based copper alloy is closely related to the low-temperature annealing conditions, as shown in FIG. When performing low-temperature annealing for a certain period of time, the relationship between the spring limit value and the temperature is as follows: As the annealing temperature is increased, the spring limit value reaches a maximum value at a certain temperature, and when the temperature becomes higher, the spring limit value gradually increases. When the temperature exceeds 80% of the maximum value, the temperature rapidly decreases.
【0013】また、応力緩和率は焼鈍温度を上昇させる
と小さくすることができるが、ある温度を越えるとまた
大きくなる。応力緩和率が最低となる温度は、ばね限界
値が最高になる温度より高温側にあり、しかもばね限界
値の最高値の80%以上100%未満を示す温度範囲に
存在する。Although the stress relaxation rate can be reduced by increasing the annealing temperature, the stress relaxation rate increases when the temperature exceeds a certain temperature. The temperature at which the stress relaxation rate becomes minimum is on the higher temperature side than the temperature at which the spring limit value becomes maximum, and exists in a temperature range showing 80% or more and less than 100% of the maximum value of the spring limit value.
【0014】これまでコネクタ用の銅合金を製造する場
合、ばね限界値が最高値を示すように製造条件を設定し
ていた。これに対して、本発明はこのばね限界値が最高
値を示す温度より高温側で低温焼鈍するので、ばね限界
値は最高値の80%以上100%未満であるが、耐応力
緩和特性は最も優れた値(応力緩和率の最低値)を示す
ことになる。Until now, when manufacturing a copper alloy for a connector, the manufacturing conditions have been set so that the spring limit value has the highest value. On the other hand, in the present invention, since the low temperature annealing is performed at a higher temperature than the temperature at which the spring limit value is the highest value, the spring limit value is 80% or more and less than 100% of the maximum value, but the stress relaxation resistance is the most. It shows an excellent value (the lowest value of the stress relaxation rate).
【0015】次に、本発明法におけるCu−Ni−Sn
−P系銅基合金の添加元素の作用、並びに成分組成範囲
の限定理由について説明する。Next, Cu-Ni-Sn in the method of the present invention is used.
The action of the added element of the -P-based copper-based alloy and the reason for limiting the component composition range will be described.
【0016】Niは、Cuマトリックス中に固溶して耐
応力緩和特性を向上させ、強度、弾性、耐マイグレーシ
ョン性も向上させる。また、Pと化合物を形成して分散
析出することにより、更にその効果は大きくなる。しか
しながら、Niが0.1%未満では所望の効果は得られ
ず、10%を超えると電気伝導性が極めて低くなり、実
用的でなくなる。好ましくは、0.5〜3.0%の範囲
とする。Ni forms a solid solution in a Cu matrix to improve stress relaxation resistance, and also improves strength, elasticity, and migration resistance. The effect is further enhanced by forming a compound with P and dispersing and precipitating. However, if Ni is less than 0.1%, the desired effect cannot be obtained, and if it exceeds 10%, the electric conductivity becomes extremely low, which is not practical. Preferably, it is in the range of 0.5 to 3.0%.
【0017】Snは、Cuマトリックス中に固溶して強
度、弾性及び耐食性を向上させる。しかしながら、Sn
が0.1%未満では所望の効果が得られず、9%を超え
ると電気伝導性、耐マイグレーション性が著しく低下
し、また鋳造性や熱間加工性にも悪影響を及ぼす。好ま
しくは、0.5〜2.0%の範囲とする。Sn forms a solid solution in a Cu matrix to improve strength, elasticity and corrosion resistance. However, Sn
If it is less than 0.1%, the desired effect cannot be obtained, and if it exceeds 9%, the electrical conductivity and migration resistance are significantly reduced, and the castability and hot workability are adversely affected. Preferably, it is in the range of 0.5 to 2.0%.
【0018】Pは、溶湯の脱酸剤として作用すると共
に、Niと化合物を形成して分散析出することにより、
耐応力緩和特性を向上させ、かつ強度、弾性並びに電気
伝導性を向上をさせる。しかしながら、P含有量が0.
001%未満では所望の効果は得られず、一方0.30
%を越えると電気伝導性や半田耐候性の低下が著しく、
鋳造性や熱間加工性にも悪影響を及ぼす。好ましくは、
0.005〜0.20%の範囲とする。P acts as a deoxidizing agent for the molten metal and forms a compound with Ni to disperse and precipitate.
Improves stress relaxation resistance and improves strength, elasticity and electrical conductivity. However, when the P content is 0.
If it is less than 001%, the desired effect cannot be obtained, while 0.30%
%, The electrical conductivity and the weatherability of the solder decrease significantly,
It also has an adverse effect on castability and hot workability. Preferably,
The range is 0.005 to 0.20%.
【0019】次に、本発明法におけるCu−Ni−Sn
−P系銅基合金の製造条件について説明する。また本願
成分に、Fe、Co、Ti、Mg、Zr、Ca、Si、
Mn、Cd、Al、Pb、Te、In、Ag、B、Y、
La、Cr、Ce、Auの群のうち1種または2種以上
を総量で0.01〜2%の範囲で含有された合金に対し
ても本願の製造法は有効であり、耐応力緩和特性が向上
することから、Fe、Co、Ti、Mg、Zr、Ca、
Si、Mn、Cd、Al、Pb、Te、In、Ag、
B,Y、La、Cr、Ce、Auの群のうち1種または
2種以上を総量で0.01%〜2%の範囲で含有しても
よいものとする。Next, Cu-Ni-Sn in the method of the present invention is used.
The production conditions for the -P-based copper-based alloy will be described. In addition, Fe, Co, Ti, Mg, Zr, Ca, Si,
Mn, Cd, Al, Pb, Te, In, Ag, B, Y,
The production method of the present application is also effective for an alloy containing one or more of La, Cr, Ce, and Au in a total amount of 0.01 to 2%, and has a stress relaxation resistance property. Is improved, Fe, Co, Ti, Mg, Zr, Ca,
Si, Mn, Cd, Al, Pb, Te, In, Ag,
One or more of B, Y, La, Cr, Ce, and Au may be contained in a total amount of 0.01% to 2%.
【0020】熱間圧延工程では、鋳塊を750℃以上に
加熱し、熱間圧延仕上温度を650℃以上として処理す
る。その際の熱間圧延圧下率を75%以上とすると、鋳
造組織を完全に潰すことができ、しかも鋳塊における偏
析の影響を無くすことができる。In the hot rolling step, the ingot is heated to 750 ° C. or higher, and the hot rolling finish temperature is set to 650 ° C. or higher. If the hot rolling reduction at that time is 75% or more, the cast structure can be completely crushed, and the influence of segregation in the ingot can be eliminated.
【0021】熱間圧延加工後の冷却過程においては、3
00℃以下まで50℃/分以上の冷却速度で冷却し、N
i−P化合物を析出させずに、Ni、Sn、Pが固溶し
た熱間圧延材を得ることが重要である。In the cooling process after hot rolling, 3
Cool at a cooling rate of 50 ° C / min or more to 00 ° C or less,
It is important to obtain a hot-rolled material in which Ni, Sn, and P form a solid solution without precipitating the i-P compound.
【0022】熱間圧延を行った方が好ましいが、熱間圧
延を用いなくても板材を得ることは可能であり冷間圧延
では、組織の均質化のために圧下率50%以上が必要で
あり、その後の焼鈍は、400〜600℃で5〜720
分間処理する。この処理により、銅基合金中にNi−P
化合物を均一微細に分散析出させることが重要である。Although it is preferable to perform hot rolling, it is possible to obtain a sheet material without using hot rolling. In cold rolling, a rolling reduction of 50% or more is required to homogenize the structure. Yes, then annealing at 400-600 ° C for 5-720
Process for a minute. By this treatment, Ni-P is contained in the copper-based alloy.
It is important to uniformly and finely disperse and precipitate the compound.
【0023】最終圧延では、強度、弾性を得るため、3
0%以上の圧下率が必要である。In the final rolling, to obtain strength and elasticity,
A rolling reduction of 0% or more is required.
【0024】本発明法の最大の特徴である低温焼鈍の条
件は、ばね限界値が最高値を示す低温焼鈍温度より高い
温度で行うことが重要であり、ばね限界値の最高値の8
0%以上100%未満を達成する条件にすることによっ
て、極めて耐応力緩和特性に優れた銅基合金を製造する
ことができる。It is important that the low-temperature annealing condition, which is the greatest feature of the method of the present invention, is performed at a temperature higher than the low-temperature annealing temperature at which the spring limit value is the highest value.
By setting the conditions to achieve 0% or more and less than 100%, a copper-based alloy having extremely excellent stress relaxation resistance can be manufactured.
【0025】本発明の効果は、固溶強化型の銅合金、例
えばSnを固溶したりん青銅などの銅合金にも応用でき
る。The effect of the present invention can be applied to a solid solution strengthened copper alloy, for example, a copper alloy such as phosphor bronze in which Sn is dissolved.
【0026】次に、本発明の実施の形態を実施例により
説明する。Next, embodiments of the present invention will be described with reference to examples.
【0027】実施例 表1に示す組成の合金を、高周波溶解炉を用いて溶製
し、850℃に加熱した後、厚さ10.0mmまで熱間
圧延し、その後冷間圧延と熱処理を繰返し、最終加工率
を50%、67%とし、板厚0.25mmの板材を得
た。その後、各条件で低温焼鈍を行い、得られた材料の
ばね限界値、ビッカース硬さ、導電率を測定すると共に
耐応力緩和特性の調査を行った。応力緩和試験は、試験
片の中央部の応力がばね限界値の80%の応力となるよ
にアーチ曲げを行い、150℃の温度で1000時間保
持した後の曲げぐせを応力緩和率として次式により算出
した。その結果を表1に併せて示した。 応力緩和率(%)={(L1−L2)/(L1−
L0)}×100 L0=治具の長さ(mm) L1=試験開始前の試料長さ(mm) L2=試験後の試料端間の水平距離(mm)EXAMPLE An alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace, heated to 850 ° C., hot-rolled to a thickness of 10.0 mm, and then cold-rolled and heat-treated repeatedly. The final working ratio was 50% and 67%, and a plate material having a plate thickness of 0.25 mm was obtained. Thereafter, low-temperature annealing was performed under each condition, and a spring limit value, Vickers hardness, and conductivity of the obtained material were measured, and a stress relaxation resistance was investigated. In the stress relaxation test, arch bending is performed so that the stress at the center of the test piece becomes 80% of the spring limit value, and the bending after holding at a temperature of 150 ° C. for 1000 hours is defined as a stress relaxation rate by the following equation. Was calculated by The results are shown in Table 1. Stress relaxation rate (%) = {(L 1 −L 2 ) / (L 1 −
L 0 ) × 100 L 0 = Length of jig (mm) L 1 = Length of sample before start of test (mm) L 2 = Horizontal distance between sample ends after test (mm)
【0028】[0028]
【表1】 [Table 1]
【0029】表1の結果から、本発明法に係る試料1〜
5の銅基合金はいずれもばね限界値が400N/mm2
以上、導電率30%IACS以上を示し、応力緩和率は
約1%と極めて優れていることが分かった。From the results in Table 1, it is found that Samples 1 to 5 according to the present invention were used.
The copper-based alloy of No. 5 has a spring limit value of 400 N / mm 2.
As described above, the conductivity was 30% IACS or more, and the stress relaxation rate was about 1%, which was extremely excellent.
【0030】これに対して、低温焼鈍していない圧延上
りの材料であるNo.6は、応力緩和率が大きく、また
ばね限界値が小さい。低温焼鈍条件が、ばね限界値が最
高値を示す条件かもしくはそれより低温側の条件である
No.7,No8は、本発明法で作られた材料よりも応
力緩和率が劣っている。On the other hand, the as-rolled material No. No. 6 has a large stress relaxation rate and a small spring limit value. The low-temperature annealing condition is a condition in which the spring limit value indicates the maximum value or a condition on the lower temperature side. 7, No. 8 is inferior in stress relaxation rate to the material made by the method of the present invention.
【0031】また、低温焼鈍の条件が高温側になり、ば
ね限界値の最高値の80%以上を達成できない条件にな
ると、軟化が始まって実用的でない。If the condition of the low-temperature annealing is on the high-temperature side and the condition that the maximum value of the spring limit value cannot be attained is 80% or more, softening starts and is not practical.
【0032】更に、本発明合金組成の規定範囲外の合金
であるNo.9,No.10,No.11は、それぞれ
Ni,Sn,Pが不足した場合であるが、いずれの場合
も応力緩和率が著しく劣っている。Further, the alloy No. 1 which is out of the specified range of the alloy composition of the present invention. 9, No. 10, No. 11 is a case where Ni, Sn and P are insufficient, respectively, and in each case, the stress relaxation rate is remarkably inferior.
【0033】[0033]
【発明の効果】本発明は、鋳片から場合によっては熱間
圧延工程を、そして更に冷間圧延と焼鈍とを繰返す加工
熱処理工程を経て所定の板厚まで圧延加工した後の最終
工程において、低温焼鈍の条件をばね限界値が最高値を
示す低温焼鈍温度よりも高い温度とし、かつばね限界値
の最高値の80%以上100%未満を達成する条件にす
るものであり、これにより耐応力緩和特性に極めて優
れ、強度,弾性,電気伝導性にも優れた銅基合金を得る
ことができる。According to the present invention, in a final step after rolling a slab to a predetermined thickness through a hot rolling step and a working heat treatment step in which cold rolling and annealing are further repeated, as the case may be, The condition of the low-temperature annealing is set to a temperature higher than the low-temperature annealing temperature at which the spring limit value has the maximum value, and the condition to achieve 80% or more and less than 100% of the maximum value of the spring limit value. It is possible to obtain a copper-based alloy having extremely excellent relaxation properties, and excellent strength, elasticity, and electric conductivity.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明に係る耐応力緩和特性に優れた銅基合金
の概略製造工程を示す製造工程図である。FIG. 1 is a manufacturing process diagram showing a schematic manufacturing process of a copper-based alloy excellent in stress relaxation resistance according to the present invention.
【図2】低温焼鈍条件によるばね限界値と応力緩和率と
の関係(処理時間一定の場合)を示すグラフである。FIG. 2 is a graph showing a relationship between a spring limit value and a stress relaxation rate under a low-temperature annealing condition (when the processing time is constant).
A:本発明時の焼鈍条件 B:従来の焼鈍条件 A: Annealing condition in the present invention B: Conventional annealing condition
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 683 685 685Z 686 686A 691 691B 694 694B ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 683 C22F 1/00 683 685 685Z 686 686A 691 691B 694 694B
Claims (4)
n:0.1〜9%、P:0.001〜0.30%を含有
し、残部がCuと不可避不純物からなる銅基合金の鋳片
から場合によっては熱間圧延工程を、そして更に冷間圧
延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚ま
で圧延加工した後の最終工程において、低温焼鈍の条件
をばね限界値が最高値を示す低温焼鈍温度より高い温度
で行うことを特徴とする耐応力緩和特性に優れた銅基合
金の製造方法。1. Ni: 0.1 to 10% by weight, S
n: 0.1 to 9%, P: 0.001 to 0.30%, the balance being a hot-rolling step from a slab of a copper-based alloy consisting of Cu and unavoidable impurities, and further cooling In the final process after rolling to a predetermined thickness through a thermomechanical process that repeats cold rolling and annealing, the condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value shows the maximum value. A method for producing a copper-based alloy having excellent stress relaxation resistance.
n:0.1〜9%、P:0.001〜0.30%を含有
し、残部がCuと不可避不純物からなる銅基合金の鋳片
から場合によっては熱間圧延工程を、そして更に冷間圧
延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚ま
で圧延加工した後の最終工程において、低温焼鈍の温度
条件をばね限界値が最高値を示す低温焼鈍温度より高い
温度で行い、ばね限界値の最高値の80%以上100%
未満を達成する条件にすることを特徴とする耐応力緩和
特性に優れた銅基合金の製造方法。2. Ni: 0.1 to 10% by weight, S
n: 0.1 to 9%, P: 0.001 to 0.30%, the balance being a hot-rolling step from a slab of a copper-based alloy consisting of Cu and unavoidable impurities, and further cooling In the final step after rolling to a predetermined thickness through a thermomechanical treatment step of repeating cold rolling and annealing, the temperature condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value indicates the maximum value, and the spring 80% to 100% of the maximum limit
A method for producing a copper-based alloy having excellent stress relaxation resistance, characterized by satisfying the condition of attaining less than.
n:0.5〜2.0、P:0.005〜0.20%を含
有し、残部がCuと不可避不純物からなる銅基合金の鋳
片から場合によっては熱間圧延工程を、そして更に冷間
圧延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚
まで圧延加工した後の最終工程において、低温焼鈍の条
件をばね限界値が最高値を示す低温焼鈍温度より高い温
度で行うことを特徴とする耐応力緩和特性に優れた銅基
合金の製造方法。3. Ni: 0.5 to 3.0% by weight, S
a hot-rolling step, if necessary, from a slab of a copper-based alloy containing n: 0.5 to 2.0, P: 0.005 to 0.20%, the balance being Cu and unavoidable impurities, and In the final step after rolling to a predetermined thickness through a thermomechanical processing step of repeating cold rolling and annealing, the condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value indicates the maximum value. A method for producing a copper-based alloy having excellent stress relaxation resistance characteristics.
n:0.5〜2.0、P:0.005〜0.20%を含
有し、残部がCuと不可避的不純物からなる銅基合金の
鋳片から場合によっては熱間圧延工程を、そして更に冷
間圧延と焼鈍とを繰返す加工熱処理工程を経て所定の板
厚まで圧延加工した後の最終工程において、低温焼鈍の
条件をばね限界値の最高値の80%以上100%未満を
達成する条件にすることを特徴とする耐応力緩和特性に
優れた銅基合金の製造方法。4. Ni: 0.5 to 3.0% by weight, S
a hot rolling step, if necessary, from a slab of a copper-based alloy containing n: 0.5 to 2.0, P: 0.005 to 0.20%, the balance being Cu and unavoidable impurities; Further, in the final step after rolling to a predetermined thickness through a thermomechanical processing step in which cold rolling and annealing are repeated, conditions for achieving low-temperature annealing at 80% or more and less than 100% of the maximum spring limit value. A method for producing a copper-based alloy having excellent stress relaxation resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17525698A JP3733548B2 (en) | 1998-05-19 | 1998-05-19 | Method for producing a copper-based alloy having excellent stress relaxation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17525698A JP3733548B2 (en) | 1998-05-19 | 1998-05-19 | Method for producing a copper-based alloy having excellent stress relaxation resistance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005149189A Division JP4224859B2 (en) | 2005-05-23 | 2005-05-23 | Copper-based alloy with excellent stress relaxation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11335800A true JPH11335800A (en) | 1999-12-07 |
JP3733548B2 JP3733548B2 (en) | 2006-01-11 |
Family
ID=15992993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17525698A Expired - Lifetime JP3733548B2 (en) | 1998-05-19 | 1998-05-19 | Method for producing a copper-based alloy having excellent stress relaxation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3733548B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749699B2 (en) | 2000-08-09 | 2004-06-15 | Olin Corporation | Silver containing copper alloy |
EP1612285A1 (en) * | 2004-07-01 | 2006-01-04 | Dowa Mining Co., Ltd. | Copper-based alloy and method of manufacturing the same |
JP2006070335A (en) * | 2004-09-03 | 2006-03-16 | Dowa Mining Co Ltd | Copper alloy material and method for producing the same |
JP2007100111A (en) * | 2005-09-30 | 2007-04-19 | Dowa Holdings Co Ltd | Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD |
JP2007100146A (en) * | 2005-09-30 | 2007-04-19 | Dowa Holdings Co Ltd | Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR |
JP2020158830A (en) * | 2019-03-26 | 2020-10-01 | Jx金属株式会社 | Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material |
-
1998
- 1998-05-19 JP JP17525698A patent/JP3733548B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749699B2 (en) | 2000-08-09 | 2004-06-15 | Olin Corporation | Silver containing copper alloy |
EP1612285A1 (en) * | 2004-07-01 | 2006-01-04 | Dowa Mining Co., Ltd. | Copper-based alloy and method of manufacturing the same |
JP2006070335A (en) * | 2004-09-03 | 2006-03-16 | Dowa Mining Co Ltd | Copper alloy material and method for producing the same |
JP4630025B2 (en) * | 2004-09-03 | 2011-02-09 | Dowaホールディングス株式会社 | Method for producing copper alloy material |
JP2007100111A (en) * | 2005-09-30 | 2007-04-19 | Dowa Holdings Co Ltd | Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD |
JP2007100146A (en) * | 2005-09-30 | 2007-04-19 | Dowa Holdings Co Ltd | Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR |
JP2020158830A (en) * | 2019-03-26 | 2020-10-01 | Jx金属株式会社 | Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material |
JP2022034040A (en) * | 2019-03-26 | 2022-03-02 | Jx金属株式会社 | Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material |
Also Published As
Publication number | Publication date |
---|---|
JP3733548B2 (en) | 2006-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4247922B2 (en) | Copper alloy sheet for electrical and electronic equipment and method for producing the same | |
JP3803981B2 (en) | Method for producing copper alloy having high strength and high conductivity | |
JPH08325681A (en) | Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance | |
JP3510469B2 (en) | Copper alloy for conductive spring and method for producing the same | |
JP2005539140A (en) | Age-hardening copper-based alloy and manufacturing method | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP4393663B2 (en) | Copper-based alloy strip for terminal and manufacturing method thereof | |
US20110005644A1 (en) | Copper alloy material for electric/electronic parts | |
JP2844120B2 (en) | Manufacturing method of copper base alloy for connector | |
JP2000256814A (en) | Manufacture of copper-based alloy bar for terminal | |
JP2002266042A (en) | Copper alloy sheet having excellent bending workability | |
JP3511648B2 (en) | Method for producing high-strength Cu alloy sheet strip | |
JP3733548B2 (en) | Method for producing a copper-based alloy having excellent stress relaxation resistance | |
JPS619563A (en) | Manufacture of copper alloy | |
JP4186095B2 (en) | Copper alloy for connector and its manufacturing method | |
JP2001262297A (en) | Copper-base alloy bar for terminal, and its manufacturing method | |
JP2001214226A (en) | Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar | |
JP4224859B2 (en) | Copper-based alloy with excellent stress relaxation resistance | |
JP2001279347A (en) | High strength copper alloy excellent in bending workability and heat resistance and its producing method | |
JP3410125B2 (en) | Manufacturing method of high strength copper base alloy | |
JP2000038647A (en) | Method for working copper alloy | |
JP4461269B2 (en) | Copper alloy with improved conductivity and method for producing the same | |
JPH0418016B2 (en) | ||
JP2000273561A (en) | Copper base alloy for terminal and its production | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050523 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051006 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101028 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |