[go: up one dir, main page]

JP3410125B2 - Manufacturing method of high strength copper base alloy - Google Patents

Manufacturing method of high strength copper base alloy

Info

Publication number
JP3410125B2
JP3410125B2 JP32219692A JP32219692A JP3410125B2 JP 3410125 B2 JP3410125 B2 JP 3410125B2 JP 32219692 A JP32219692 A JP 32219692A JP 32219692 A JP32219692 A JP 32219692A JP 3410125 B2 JP3410125 B2 JP 3410125B2
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
rolling
treatment
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32219692A
Other languages
Japanese (ja)
Other versions
JPH06128708A (en
Inventor
郁 田辺
章 菅原
満弘 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP32219692A priority Critical patent/JP3410125B2/en
Publication of JPH06128708A publication Critical patent/JPH06128708A/en
Application granted granted Critical
Publication of JP3410125B2 publication Critical patent/JP3410125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、リードフレーム等に代
表される電気・電子部品用材料などとして好適な高強度
銅基合金の製造法に関するものである。 【0002】 【従来の技術】近時、エレクトロニクス産業の発達に伴
い、リードフレーム等の電気・電子部品材料もその使用
量が増大すると共に、特性面では高信頼性が要求され、
コスト面では一層の低廉価が要求されている。 【0003】ここで、リードフレームとは、「ICのリ
ードを製造工程の途中および製造後に支える単一な枠構
造」のことであり、要求される特性としては、 (1)熱および電気伝導性が良いこと。 リードフレームの主な働きの一つとして、Siチップの
劣化を防ぐため、チップに生じた熱を放散させることが
挙げられるが、その効率を上げるために熱伝導性の良い
こと、しかもリード部分での発熱を小さくするために電
気伝導性の良いことが要求される。ここで、一般に熱伝
導性と電気伝導性の間には比例関係が認められているの
で、評価としては導電率の大きさを測定することで代表
される。 【0004】(2)強度が高いこと。 リードフレームはICのリードを製造工程の途中ならび
に製造後に支えるので、このために充分な強度が要求さ
れる。その評価基準としては、引張強度と耐力が大きい
こと、ならびにスティフネス(腰の強さ)やばね限界値
が充分であること等が挙げられる。 【0005】(3)充分な耐熱性を有すること。 リードフレームは製造工程中あるいは工程後にある程度
の加熱を受けることが予想される。従って、このような
熱的負荷による強度劣化を起こさないように、充分な耐
熱性が必要である。しかし、実際には耐熱温度が高すぎ
ると素材製造時に焼鈍温度が高くなる等、コスト的に不
利になることが予想される。従って、実用的には450
℃で数分間程度の加熱で軟化しなければ充分である。 【0006】(4)曲げ加工性が良好であること。 リードフレームではリード部に曲げの施されるものがほ
とんどであるので、曲げ加工性が良好であることが要求
される。その評価としては、V・W曲げや繰返し曲げ試
験等が挙げられる。 【0007】(5)メッキ密着性および半田耐候性が良
好であること。 リードフレームではインナーリードにAgやAuメッキ
が、またアウターリードには半田メッキが施される場合
が多いので、良好なメッキ密着性と更にその半田耐候性
が必要である。 【0008】リードフレームには以上のような諸特性が
要求されるのである。しかしながら、従来は上記のよう
な諸特性を同時に兼備した、しかも安価な材料は得られ
なかった。 【0009】 【本発明が解決しようとする課題】本発明は、リードフ
レーム等の電気・電子部品用材料に要求される前記のよ
うな諸特性を兼備した銅基合金、詳しくは強度と熱およ
び電気伝導性に優れ、しかも耐熱性および曲げ加工性等
に優れた銅基合金の製造方法を提供するものである。 【0010】 【課題を解決するための手段】本発明は、Cu−Ni−
Al系合金において、最高のレベルで強度と導電率をバ
ランスさせる組成の条件下で溶体化熱処理後に2回の時
効処理を施すことにより、強度,弾性,ばね限界値およ
び成形加工性に優れた高強度銅基合金の製造方法を提供
するものである。 【0011】 即ち、本発明は、Ni:6〜10.8w
t%,Al:1〜2wt%を含み、Ni/Alの成分組
成比率が重量比で4〜7の範囲で、更にZn:0.01
〜2.0wt%,B:0.005〜0.1wt%のうち
1種または2種を合計で0.005〜2.0wt%を含
み、酸素:0.005wt%以下で、残部がCuおよび
不可避不純物からなる銅基合金の素材を圧延するに当
り、まず該素材を700℃以上、加工率:80%以上で
熱間圧延し、次に該熱間圧延後の冷却過程で少なくとも
700〜300℃の温度域を50℃/分以上の冷却速度
で冷却し、しかる後冷間加工率70%以上で1次冷間圧
延し、次いで該冷間圧延後の板材を820〜920℃の
温度で60〜600秒間溶体化熱処理を行い、次に40
0〜600℃の温度で5〜360分間の中間熱処理を行
った後、加工率70%以上、圧下率:70〜95%で2
次冷間圧延し、最終処理として380〜700℃で5〜
360秒のテンションアニール処理を行うことを特徴と
する高強度銅基合金の製造方法に関するものである。 【0012】 【0013】次に、本願発明に係る銅基合金の成分組成
範囲を上記の通りに限定した理由について説明する。 (1)Ni:NiはCuマトリックス中に固溶して強
度,弾性,耐熱性を向上させ、更にAlと化合物を形成
して分散析出することにより、電気伝導性を向上させ、
しかも強度と弾性を向上させる。しかしながら、Ni含
有量が6重量%未満では上記のような効果が充分に得ら
れず、一方12重量%を超えるとAlとの共存下でも電
気伝導性の低下が著しく、また経済的にも不利となる。
従って、Ni含有量は6〜12重量%の範囲とする。 【0014】(2)Al:Alは1重量%未満ではNi
との共存下でも強度,弾性,耐熱性の向上効果が不充分
であり、一方2重量%を超えると析出物が過度に多くな
り、合金の延性,成形加工性,めっき性を低下させ、更
に鋳造性が低下し、経済的にも不利になるのでAl含有
量は1〜2重量%の範囲とする。 【0015】(3)Ni:Alの成分組成比率 Ni,AlはNi−Al系金属間化合物として析出し
て、上記本発明の基本的な特徴が有利に達成される。こ
のNi−Al系金属間化合物による特性強化を、より充
分に発揮させるためにNi/Al成分組成比率(重量
比)は3〜10の範囲とする。その理由はNi/Al成
分組成比率(重量比)が3より小さい場合には析出物が
過度に多くなり、合金の延性,成形加工性,めっき性を
低下させ、また鋳造性も低下する。一方、Ni/Al成
分組成比率(重量比)が10より大きい場合には、Ni
がCuマトリックス中に固溶する量が過度に多くなり、
電気伝導性を低下させ、また効率よく強度,弾性を向上
させることができなくなる。 【0016】(4)Zn ZnはSnめっきや溶融半田等の表面処理層の耐熱密着
性の向上効果があり、本合金のめっきや表面処理の信頼
性が向上するだけではなく、また強度,弾性,耐熱性を
より一層向上させる効果がある。このような効果はZn
含有量が0.01重量%未満では充分でなく、一方2.
0重量%を超えて含有すると電気伝導性および成形加工
性の低下が著しくなり、また鋳造性も低下し経済的にも
不利となる。従ってZn含有量は0.01〜2.0重量
%の範囲とする。 【0017】(5)B Bは本発明合金の溶解,鋳造時の脱酸剤として寄与し、
また溶体化処理時の結晶粒の粗大化を防止する作用を果
たす。B含有量が0.005重量%未満ではこのような
効果が十分でなく、また0.1重量%を超えると成形加
工性が低下し、また経済的にも不利となるのでB含有量
は0.005〜0.1重量%の範囲とする。 【0018】(6)酸素 酸素含有量については0.005重量%(50ppm)
より多量に合金中に含有すると、酸素との親和力の大き
いAlが酸化してAlとなり、めっき付け性,め
っき信頼性,プレス金型寿命の低下等,特性の劣化を招
くことになる。また酸素含有量が多いと合金の製造過程
でHガスを用いる場合には、表面および内部に水素脆
化が起きることが懸念される。従って、酸素含有量は
0.005重量%以下の範囲とする。 【0019】上記のような成分組成に調整した本発明に
係る銅基合金は、Ni−Al系金属間化合物を微細に析
出させることにより、近時のリードフレーム用材料に要
求される諸特性を兼備した材料とすることができる。 【0020】本発明法により製造する銅基合金は、上記
の通りCu中にNi:6〜12重量%,Al:1〜2重
量%を含有する成分組成のものであり、本発明法は上記
成分組成の銅基合金の鋳片から熱間圧延と冷間圧延によ
って所望の板厚まで加工する製造工程中で冷間圧延後の
熱処理条件等をコントロールすることにより、Ni−A
l系金属間化合物を微細に析出させて析出硬化を効果的
に達成せしめた点に大きな特徴がある。 【0021】熱間圧延工程では、上記鋳塊を例えば85
0℃以上に加熱し熱間圧延仕上温度を700℃以上とし
て処理する。その際の熱間圧延圧下率を80%以上とす
ると鋳造組織を完全につぶすことができ、しかも鋳塊に
おける偏析の影響を無くすことができる。 【0022】上記の熱間圧延加工後の冷却過程において
は、700℃以上の温度から300℃以下まで、つまり
冷却過程中の少なくとも700〜300℃の温度域を5
0℃/分以上の冷却速度で冷却する。 【0023】この冷却は急水冷方式によって行なうのが
良く、急冷を行なうのはNiおよびAlが固溶した熱間
圧延材を得ることにある。上記温度域での冷却速度が5
0℃/分より遅いと、この冷却過程でこれらの元素が析
出して粗大なNi−Al系化合物が生ずる。50℃/分
以上の急冷の場合でも急冷開始温度が700℃より低い
場合、更にまた急冷開始温度が700℃以上であっても
冷却速度が50℃/分より遅い場合には、この間に粗大
なNi−Al系化合物が析出する。 【0024】この段階で析出したNi−Al系化合物に
よる強度,弾性,耐熱性および耐応力緩和特性等の向上
は期待できない。 【0025】なお、上記急冷温度の冷却終点温度は30
0℃以下とする必要がある。その理由は300℃以下の
温度では、Ni−Al系化合物の析出は実質上起こらな
いからである。 【0026】上記のように本発明においては、熱間圧延
過程ではNi−Al系化合物を析出させないで、Ni−
Alが固溶した熱間圧延材を得ることがまず重要なので
ある。 【0027】上記のようにして得られた熱間圧延材は、
必要に応じて表面研削あるいは酸洗処理を施してから冷
間圧延に供される。 【0028】冷間圧延工程は、冷間での圧延と熱処理を
繰返して所定板厚の板材製品を得る工程であり、本発明
法においては、最初の溶体化熱処理,中間熱処理および
テンションアニール処理の処理条件を適切にコントロー
ルすることによって微細なNi−Al系化合物が析出し
た製品を製造することができ、この過程でNi−Al系
化合物の凝集による粗大化を可及的に防止するのであ
る。 【0029】上記のインゴットを熱間圧延で圧延し(加
工率80%以上)、次に1次冷間圧延を行なう。この
時、冷間加工率が70%未満では引続き行なう溶体化熱
処理工程において鋳造時の偏析を消去させるに必要な時
間が著しく長くなるため、1次冷間圧延の冷間加工率は
70%以上が好ましいのである。 【0030】次いで、この板材に対して820〜920
℃の温度で60〜600秒の溶体化熱処理を行なう。溶
体化熱処理の温度が820℃未満では充分にマトリック
ス中にNi,Alが固溶せず、一方920℃を超えると
短時間で結晶粒が粗大化するので溶体化熱処理の温度は
820〜920℃の範囲とし、処理時間については60
秒間未満では、鋳造時の偏析が残り、溶体化熱処理が不
充分であり、一方600秒間を超えると結晶粒が粗大化
しかつ経済的でないので、溶体化熱処理時間は60〜6
00秒間の範囲とする。 【0031】次いで、中間熱処理(時効処理)として、
400〜600℃の温度で5〜360分間の熱処理を行
なうのであるが、400℃未満では析出するに要する時
間が長くなり過ぎて不経済であり、一方600℃を超え
ると過時効となり特性の向上が飽和する。従って、時効
処理温度は400〜600℃の温度範囲とする。時効処
理時間については5分未満では析出物の形成が不充分で
あり、一方360分を超えると析出物の形成が飽和し、
かつ不経済となるので時効処理時間は5〜360分間の
範囲とする。 【0032】次いで、1次冷間圧延→溶体化熱処理→中
間熱処理(時効処理)後の材料に2次冷間圧延(加工
率:70%以上)を行なうが、2次冷間圧延の圧下率は
70〜95%が好ましいのである。70%未満では加工
によって付与される加工歪が小さく次の熱処理工程(テ
ンションアニール処理)での時効析出における強度およ
び弾性の向上が不充分となり、一方、95%を超えると
圧延集合組織の発達が著しく、機械的性質に方向性(異
方性)をもつようになり、また成形加工性を低下させ
る。従って、2次冷間圧延の加工率は70〜95%が好
ましいのである。 【0033】次に、最終処理として、380〜700℃
の温度で5〜360秒間のテンションアニール処理を行
なう。熱処理温度として、380℃未満では時効析出す
るのに要する時間が長くなり過ぎて不経済であり、一方
700℃を超えると過時効となって特性のより一層の向
上が期待できなくなる。従って、テンションアニール処
理温度は380〜700℃の温度範囲とする。処理時間
については、5秒未満では析出物の形成が不十分であ
り、一方向360秒を超えるような長時間では析出物の
成長のうえからも、経済性のうえからも好ましくない。
従って、テンションアニール処理時間は5〜360秒間
の範囲とする。 【0034】即ち、上記の要旨は次の通りである。 a)熱間圧延後の冷却過程において、700℃以上の温
度から300℃以下の温度までの温度域を50℃/分以
上の冷却速度で冷却する。 b)最初の1次冷間圧延を圧下率70%以上で行なう。 c)次に820〜920℃の温度で60〜600秒間、
溶体化熱処理を行なう。 d)次に400〜600℃で5〜360分間の中間熱処
理を行なう。 e)2次冷間圧延の冷間加工率を70%以上とする。 f)最終処理として380〜700℃で5〜360秒間
のテンションアニール処理を行なう。 上記a)〜f)の諸条件で加工と熱処理を施すことによ
って、Ni−Al系金属間化合物がマトリックス中に微
細に析出した組織の銅基合金の薄板が製造でき、これは
後記の実施例に示すように高強度,高弾性,高伝導性に
優れているので近年のリードフレーム等の電気・電子部
品用材料として最適なものである。次に、本発明の実施
例により具体的に説明する。 【0035】 【実施例】表1に化学成分値(重量%)を示す銅基合金
No.1〜No.13を高周波誘導溶解炉を用いて溶製
し、20×100×1000(mm)の鋳塊に連続鋳造
した。ただし、溶解鋳造時の雰囲気はArガスシールと
した。また、鋳型の材質はカーボン鋳型を用い、引出し
はパルス方式により平均引出し速度100mm/分で行
なった。 【0036】得られたインゴットを熱間圧延により厚さ
4mm(t)まで圧延(加工率:80%)した後、80
0℃から急冷(この時の700℃から300℃までの冷
却速度は50℃/分を超える速度であった。)し、冷間
圧延によって厚さ1mm(t)まで圧延(加工率:75
%)し、以下本発明法に係るA方式と比較例として従来
方式であるB方式に分けて各最終工程まで加工処理を施
した。 【0037】A方式(本発明法) 冷間圧延された厚さ:1mm(t)の試料を850℃の
温度で300秒間熱処理した後、水急冷する。次いで、
この熱処理材を500℃の温度で30分間の中間熱処理
を行ない、その後に厚さ:0.25mm(t)まで冷間
圧延(加工率:75%)し、500℃の温度で180秒
間のテンションアニール処理を施す。 【0038】B方式(比較法) 冷間圧延された厚さ1mm(t)の試料を630℃の温
度で360分間熱処理する。次いで、この熱処理材を厚
さ0.4mm(t)まで冷間圧延(加工率:60%)し
た後、880℃の温度で300秒間熱処理後、水急冷す
る。その後、厚さ0.25mm(t)まで冷間圧延(加
工率:38%)し、420℃の温度で180秒間テンシ
ョンアニール処理を施す。(即ち、溶体化熱処理後、中
間熱処理せず、また最終加工率も異なる。) 【0039】 A方式 連鋳 → 熱間圧延 → 冷間圧延 → 溶体化熱処理 → 中間熱処理 1mm(t) → 冷間圧延 → テンションアニール処理 0.25mm(t) 【0040】 B方式 連鋳 → 熱間圧延 → 冷間圧延 → 熱処理 → 冷間圧延 1mm(t) 0.4mm(t) → 溶体化熱処理 → 冷間圧延 → テンションアニール処理 0.25mm(t) 【0041】上記A方式およびB方式の各工程内の熱処
理は、その雰囲気を不活性または還元ガス雰囲気とし
て、材料表面および内部の酸化を極力抑制した。上記A
方式およびB方式により試作した試験材を用いて硬度,
強度,ばね限界値,導電率および曲げ加工性を調査し、
その結果を表1に示す。 【0042】硬度,引張強さ,ばね限界値および導電率
の測定はそれぞれJIS−Z−2244,JIS−Z−
2241,JIS−H−3130およびJIS−H−0
505に従った。 【0043】曲げ加工性は、90°w曲げ試験(CES
−M−0002−6,R=0.2mm,曲げ軸が圧延方
向に平行)を行ない、中央部の山表面が良好なものを○
印、割れが発生したものは×印として評価した。 【0044】 【表1】 【0045】表1中、本発明合金No.1〜4は特性向
上のためにA方式により処理したもので、溶体化熱処理
→中間熱処理(時効処理)→テンションアニール処理
(時効処理)、即ち溶体化熱処理後に2回の時効処理を
行なったものである。 【0046】比較合金No.5〜11は、上記同様にA
方式により処理した合金であるが、本発明に係る銅基合
金とは、成分組成範囲がそれぞれ異なるものである。比
較合金No.5〜8は、それぞれNi含有量が6重量%
未満(規定範囲外)であるため、引張強さ:80kgf
/mmを確保することができず、比較合金No.9〜
10はAl含有量が規定範囲上限の2重量%を超えてい
るため加工性が悪い。比較合金No.11はNi含有量
が規定範囲上限の12重量%を超えているため、強度,
ばね限界値は向上しているが、加工性が著しく悪くて破
断してしまう。 【0047】比較合金No.12,No.13はB方式
により処理したもので、即ち溶体化熱処理後1回の時効
処理を行なったものである(最終圧下率も異なる)。両
合金とも、A方式による本発明合金(No.1〜4)と
比較して、硬度,引張強さ,ばね限界値が著しく低い。
特に、ほぼ同等の成分組成である例えばNo.13とN
o.10とを比較してみても、特性値はNo.13の方
が著しく低い値を示している。またNo.13の導電率
がNo.10のそれよりも著しく低いのは、マトリック
ス中にNi,AlがNo.10よりも多量に固溶されて
いるためであると推測される。 【0048】表1の結果から明らかなように、Cu−N
i−Al系合金を本発明法であるA方式で処理したもの
は、比較法のB方式で処理したものに比較して諸特性が
著しく優れている。特にCu−(6〜12重量%)Ni
−(1〜2重量%)Al系でNi/Al成分組成比率
(重量比)が3〜10の適正比率の銅基合金を本発明法
(A方式)で処理することにより、本発明合金No.1
〜4に示すように、硬度,引張強さ,ばね限界値および
導電率のバランスが優れ、かつ、曲げ加工性に優れた特
性を有する銅基合金材料が製造できる。 【0049】 【発明の効果】上記のように、本発明によれば高強度,
高弾性,高電気伝導性,高熱伝導性を有し、しかも加工
性,半田耐候性および耐熱性にも優れているので、各種
用途に適用でき、特にリードフレーム等の電気・電子部
品用材料として好適な高強度銅基合金が安価かつ安定し
て製造できるのである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength copper-base alloy suitable as a material for electric and electronic parts typified by lead frames and the like. . 2. Description of the Related Art In recent years, with the development of the electronics industry, the use of electric and electronic parts materials such as lead frames has increased, and high reliability has been required in terms of characteristics.
In terms of cost, even lower prices are required. Here, the lead frame is a "single frame structure that supports the IC leads during and after the manufacturing process", and the required characteristics include (1) thermal and electrical conductivity. Is good. One of the main functions of the lead frame is to dissipate the heat generated in the chip in order to prevent the deterioration of the Si chip. It is required that the electric conductivity is good in order to reduce the heat generation of the metal. Here, since a proportional relationship is generally recognized between the thermal conductivity and the electrical conductivity, the evaluation is typically represented by measuring the magnitude of the electrical conductivity. (2) High strength. Since the lead frame supports the leads of the IC during and after the manufacturing process, sufficient strength is required for this. The evaluation criteria include that the tensile strength and proof stress are large, and that the stiffness (lumbar strength) and the spring limit value are sufficient. (3) To have sufficient heat resistance. It is expected that the lead frame will be heated to some extent during or after the manufacturing process. Therefore, sufficient heat resistance is required so that the strength does not deteriorate due to such a thermal load. However, in practice, if the heat-resistant temperature is too high, it is expected that there will be disadvantages in terms of cost, such as an increase in the annealing temperature during material production. Therefore, practically 450
It is sufficient if the resin is not softened by heating at a temperature of about several minutes. (4) Good bending workability. In most lead frames, the lead portion is bent, so that good bending workability is required. Examples of the evaluation include a VW bending test and a repeated bending test. (5) Good plating adhesion and solder weather resistance. In a lead frame, an inner lead is often plated with Ag or Au, and an outer lead is often plated with solder. Therefore, good plating adhesion and solder weather resistance are required. The lead frame is required to have the above-mentioned various characteristics. However, heretofore, an inexpensive material having the above-mentioned various properties at the same time cannot be obtained. SUMMARY OF THE INVENTION The present invention relates to a copper-based alloy having the above-mentioned various characteristics required for a material for electric / electronic parts such as a lead frame, and more particularly to a strength, heat and An object of the present invention is to provide a method for producing a copper-based alloy having excellent electric conductivity and excellent heat resistance and bending workability. [0010] The present invention provides a Cu—Ni—
In an Al-based alloy, by performing aging treatment twice after solution heat treatment under the condition of composition that balances strength and electrical conductivity at the highest level, high strength, elasticity, spring limit value and excellent formability can be obtained. A method for producing a high-strength copper-based alloy is provided. That is, the present invention provides Ni: 6 to 10.8 w
%, Al: 1 to 2 wt%, the composition ratio of Ni / Al is in the range of 4 to 7 by weight, and Zn: 0.01
B: 0.005 to 0.1 wt%, including one or two of 0.005 to 2.0 wt% in total, oxygen: 0.005 wt% or less, the balance being Cu and In rolling a copper-based alloy material comprising unavoidable impurities, the material is first hot-rolled at a temperature of 700 ° C. or more and a working ratio of 80% or more, and at least in a cooling process after the hot rolling.
Cooling rate of 50 ° C / min or more in the temperature range of 700 to 300 ° C
And then the primary cold pressure at a cold working rate of 70% or more
Cast, then the plate after rolling cold at a temperature of eight hundred and twenty to nine hundred and twenty ° C. performed 60 to 600 seconds solution heat treatment, then 40
Intermediate heat treatment at a temperature of 0 to 600 ° C for 5 to 360 minutes
After processing, the reduction rate is 70% or more, and the reduction rate is 70-95%.
Next cold rolling, as final treatment at 380-700 ℃
The present invention relates to a method for producing a high-strength copper-based alloy, which comprises performing a tension annealing treatment for 360 seconds. Next, the reason why the composition range of the copper-based alloy according to the present invention is limited as described above will be described. (1) Ni: Ni forms a solid solution in a Cu matrix to improve strength, elasticity, and heat resistance, and further forms a compound with Al to disperse and precipitate, thereby improving electric conductivity.
Moreover, strength and elasticity are improved. However, if the Ni content is less than 6% by weight, the above-mentioned effects cannot be sufficiently obtained, while if it exceeds 12% by weight, the electrical conductivity is significantly reduced even in the presence of Al, and is economically disadvantageous. Becomes
Therefore, the Ni content is in the range of 6 to 12% by weight. (2) Al: Al is less than 1% by weight of Ni
The effect of improving strength, elasticity and heat resistance is insufficient even in the coexistence with, while if it exceeds 2% by weight, the precipitates become excessively large, and the ductility, formability and plating property of the alloy are reduced. Since the castability is reduced and it is economically disadvantageous, the Al content is in the range of 1 to 2% by weight. (3) Ni: Al component composition ratio Ni, Al is precipitated as a Ni-Al intermetallic compound, and the above-mentioned basic characteristics of the present invention are advantageously achieved. The composition ratio (weight ratio) of the Ni / Al component is in the range of 3 to 10 in order to more fully exhibit the property enhancement by the Ni-Al intermetallic compound. The reason is that when the composition ratio (weight ratio) of the Ni / Al component is less than 3, the amount of precipitates becomes excessively large, and the ductility, formability and plating property of the alloy are reduced, and the castability is also reduced. On the other hand, when the Ni / Al component composition ratio (weight ratio) is larger than 10, Ni
Is excessively dissolved in the Cu matrix,
Electric conductivity is not reduced, and strength and elasticity cannot be efficiently improved. (4) Zn Zn has an effect of improving the heat-resistant adhesion of a surface treatment layer such as Sn plating or molten solder, and not only improves the reliability of plating and surface treatment of the present alloy, but also has strength and elasticity. It has the effect of further improving heat resistance. Such an effect is due to Zn
If the content is less than 0.01% by weight, it is not sufficient, while 2.
If the content exceeds 0% by weight, the electric conductivity and the moldability are significantly reduced, and the castability is also decreased, which is disadvantageous economically. Therefore, the Zn content is in the range of 0.01 to 2.0% by weight. (5) BB B contributes as a deoxidizing agent during melting and casting of the alloy of the present invention.
Further, it has an effect of preventing the crystal grains from becoming coarse during the solution treatment. If the B content is less than 0.005% by weight, such an effect is not sufficient, and if the B content exceeds 0.1% by weight, the moldability deteriorates and it is economically disadvantageous. 0.005 to 0.1% by weight. (6) Oxygen Oxygen content is 0.005% by weight (50 ppm)
If a larger amount is contained in the alloy, Al having a high affinity for oxygen is oxidized to Al 2 O 3 , which leads to deterioration in characteristics such as plating property, plating reliability, and reduction in press die life. . When the oxygen content is high, when H 2 gas is used in the production process of the alloy, there is a concern that hydrogen embrittlement occurs on the surface and inside. Therefore, the oxygen content is in the range of 0.005% by weight or less. The copper-based alloy according to the present invention, which has been adjusted to the above-described component composition, is capable of precipitating Ni-Al based intermetallic compounds finely to obtain various characteristics required for recent lead frame materials. It can be a combined material. The copper-based alloy produced by the method of the present invention has a component composition containing 6 to 12% by weight of Ni and 1 to 2% by weight of Al in Cu as described above. Ni-A by controlling heat treatment conditions after cold rolling in a manufacturing process of processing a slab of a copper base alloy having a component composition to a desired thickness by hot rolling and cold rolling.
A major feature is that the l-type intermetallic compound is finely precipitated to achieve precipitation hardening effectively. In the hot rolling step, the ingot is for example 85
The treatment is carried out by heating to 0 ° C. or higher and the hot rolling finish temperature to 700 ° C. or higher. When the hot rolling reduction at that time is set to 80% or more, the cast structure can be completely crushed, and the influence of segregation in the ingot can be eliminated. In the cooling process after the hot rolling, the temperature range from 700 ° C. or more to 300 ° C. or less, that is, at least 700 to 300 ° C.
Cool at a cooling rate of 0 ° C./min or more. This cooling is preferably performed by a rapid water cooling method, and the purpose of the rapid cooling is to obtain a hot-rolled material in which Ni and Al are dissolved. Cooling rate in the above temperature range is 5
If the temperature is lower than 0 ° C./min, these elements are precipitated during the cooling process to produce a coarse Ni—Al compound. If the quenching start temperature is lower than 700 ° C. even in the case of quenching at 50 ° C./min or higher, and if the cooling rate is lower than 50 ° C./min even if the quenching start temperature is 700 ° C. or higher, the coarse cooling rate may be large. Ni-Al-based compounds precipitate. It is not expected that the Ni-Al compound precipitated at this stage will improve the strength, elasticity, heat resistance and stress relaxation resistance. The cooling end point temperature of the quenching temperature is 30.
The temperature must be 0 ° C. or lower. The reason is that at a temperature of 300 ° C. or lower, precipitation of the Ni—Al-based compound does not substantially occur. As described above, in the present invention, the Ni—Al compound is not precipitated in the hot rolling process,
It is first important to obtain a hot-rolled material in which Al is dissolved. The hot-rolled material obtained as described above is
After being subjected to surface grinding or pickling as required, it is subjected to cold rolling. The cold rolling step is a step of obtaining a sheet material having a predetermined thickness by repeating cold rolling and heat treatment. In the method of the present invention, the first solution heat treatment, the intermediate heat treatment and the tension annealing treatment are performed. By appropriately controlling the processing conditions, a product in which fine Ni-Al-based compounds are precipitated can be manufactured, and in this process, coarsening due to aggregation of the Ni-Al-based compounds is prevented as much as possible. The above-mentioned ingot is rolled by hot rolling (a working ratio of 80% or more), and then subjected to primary cold rolling. At this time, if the cold working ratio is less than 70%, the time required to eliminate segregation during casting in the subsequent solution heat treatment step becomes significantly long, so that the cold working ratio of the first cold rolling is 70% or more. Is preferred. Next, 820 to 920 are applied to the plate material.
A solution heat treatment is performed at a temperature of 60C for 60 to 600 seconds. If the temperature of the solution heat treatment is less than 820 ° C., Ni and Al do not sufficiently dissolve in the matrix, while if it exceeds 920 ° C., the crystal grains become coarse in a short time, so the temperature of the solution heat treatment is 820 to 920 ° C. And the processing time is 60
If the time is less than 2 seconds, segregation during casting remains and the solution heat treatment is insufficient. On the other hand, if the time exceeds 600 seconds, the crystal grains become coarse and uneconomical.
The range is 00 seconds. Next, as an intermediate heat treatment (aging treatment),
Heat treatment is performed at a temperature of 400 to 600 ° C. for 5 to 360 minutes. However, if the temperature is lower than 400 ° C., the time required for precipitation is too long, which is uneconomical. Saturates. Therefore, the aging treatment temperature is in a temperature range of 400 to 600 ° C. If the aging time is less than 5 minutes, the formation of precipitates is insufficient, while if it exceeds 360 minutes, the formation of precipitates is saturated,
The aging treatment time is in the range of 5 to 360 minutes because it is uneconomical. Next, the material after the first cold rolling → solution heat treatment → intermediate heat treatment (aging treatment) is subjected to a second cold rolling (working ratio: 70% or more). Is preferably 70 to 95%. If it is less than 70%, the working strain imparted by the working is small, and the improvement in strength and elasticity in aging precipitation in the next heat treatment step (tension annealing treatment) becomes insufficient. Significantly, the mechanical properties become directional (anisotropic), and the moldability decreases. Therefore, the working ratio of the secondary cold rolling is preferably 70 to 95%. Next, as final processing, 380-700 ° C.
At a temperature of 5 to 360 seconds. When the heat treatment temperature is lower than 380 ° C., the time required for aging precipitation becomes too long, which is uneconomic. On the other hand, when the heat treatment temperature is higher than 700 ° C., overaging occurs, and further improvement in properties cannot be expected. Therefore, the tension annealing temperature is set in a temperature range of 380 to 700 ° C. If the treatment time is less than 5 seconds, the formation of precipitates is insufficient, and if the treatment time is longer than 360 seconds in one direction, it is not preferable from the viewpoint of growth of the precipitates and from the viewpoint of economy.
Therefore, the tension annealing time is set in the range of 5 to 360 seconds. That is, the summary is as follows. a) In a cooling process after hot rolling, a temperature range from a temperature of 700 ° C. or more to a temperature of 300 ° C. or less is cooled at a cooling rate of 50 ° C./min or more. b) The first primary cold rolling is performed at a rolling reduction of 70% or more. c) Then at a temperature of 820-920 ° C. for 60-600 seconds,
A solution heat treatment is performed. d) Next, an intermediate heat treatment is performed at 400 to 600 ° C. for 5 to 360 minutes. e) The cold working ratio of the secondary cold rolling is set to 70% or more. f) As a final treatment, a tension annealing treatment is performed at 380 to 700 ° C. for 5 to 360 seconds. By performing working and heat treatment under the above conditions a) to f), a thin plate of a copper-based alloy having a structure in which a Ni-Al-based intermetallic compound is finely precipitated in a matrix can be produced. As shown in (1), it is excellent in high strength, high elasticity, and high conductivity, so that it is most suitable as a material for electric and electronic parts such as recent lead frames. Next, the present invention will be described specifically with reference to examples. EXAMPLES Copper-based alloy Nos. Having the chemical component values (% by weight) shown in Table 1 were obtained. 1 to No. 13 was smelted using a high-frequency induction melting furnace and continuously cast into an ingot of 20 × 100 × 1000 (mm). However, the atmosphere during melting and casting was an Ar gas seal. The material of the mold was a carbon mold, and the drawing was performed at an average drawing speed of 100 mm / min by a pulse method. After rolling the obtained ingot to a thickness of 4 mm (t) by hot rolling (working ratio: 80%),
Rapid cooling from 0 ° C. (the cooling rate from 700 ° C. to 300 ° C. at this time was a rate exceeding 50 ° C./min.), And rolling to a thickness of 1 mm (t) by cold rolling (working rate: 75).
%), And processing was performed until each final step in the A method according to the method of the present invention and the B method, which is a conventional method, as a comparative example. Method A (method of the present invention) A cold-rolled sample having a thickness of 1 mm (t) is heat-treated at a temperature of 850 ° C for 300 seconds, and then rapidly cooled with water. Then
This heat-treated material is subjected to an intermediate heat treatment at a temperature of 500 ° C. for 30 minutes, then cold-rolled (working rate: 75%) to a thickness: 0.25 mm (t), and tensioned at a temperature of 500 ° C. for 180 seconds. An annealing process is performed. Method B (Comparative Method) A cold-rolled sample having a thickness of 1 mm (t) is heat-treated at a temperature of 630 ° C. for 360 minutes. Next, the heat-treated material is cold-rolled (working rate: 60%) to a thickness of 0.4 mm (t), heat-treated at a temperature of 880 ° C. for 300 seconds, and then water-quenched. Thereafter, cold rolling (working rate: 38%) is performed to a thickness of 0.25 mm (t), and a tension annealing treatment is performed at a temperature of 420 ° C. for 180 seconds. (That is, after the solution heat treatment, no intermediate heat treatment is performed, and the final working ratio is also different.) Method A Continuous casting → hot rolling → cold rolling → solution heat treatment → intermediate heat treatment 1 mm (t) → cold Rolling → tension annealing 0.25 mm (t) B method Continuous casting → hot rolling → cold rolling → heat treatment → cold rolling 1 mm (t) 0.4 mm (t) → solution heat treatment → cold rolling → Tension annealing treatment 0.25 mm (t) The heat treatment in each step of the above-mentioned A method and B method made the atmosphere an inert or reducing gas atmosphere and suppressed the oxidation of the material surface and the inside as much as possible. A above
Hardness using the test material prototyped by the
Investigating strength, spring limit, conductivity and bending workability,
Table 1 shows the results. The measurement of hardness, tensile strength, spring limit value, and electrical conductivity was conducted according to JIS-Z-2244, JIS-Z-
2241, JIS-H-3130 and JIS-H-0
505. The bending workability was measured by a 90 ° w bending test (CES).
-M-0002-6, R = 0.2 mm, bending axis parallel to the rolling direction), and a good mountain surface at the center
Marks and those with cracks were evaluated as x marks. [Table 1] In Table 1, the alloy No. of the present invention is shown. Nos. 1 to 4 were treated by the A method to improve the characteristics, and were subjected to solution heat treatment → intermediate heat treatment (aging treatment) → tension annealing treatment (aging treatment), that is, two aging treatments after the solution heat treatment. It is. Comparative alloy no. 5 to 11 are A
It is an alloy processed by the method, but has a different component composition range from the copper-based alloy according to the present invention. Comparative alloy No. 5 to 8 each have a Ni content of 6% by weight.
(Out of the specified range), the tensile strength is 80 kgf.
/ Mm 2 could not be obtained, and the comparative alloy No. 9 ~
In No. 10, the workability is poor because the Al content exceeds the upper limit of the specified range of 2% by weight. Comparative alloy No. In No. 11, the Ni content exceeds the upper limit of the specified range of 12% by weight.
Although the spring limit value has been improved, the workability is remarkably poor, causing breakage. Comparative alloy no. 12, No. No. 13 is treated by the B method, that is, subjected to one aging treatment after the solution heat treatment (the final reduction ratio is also different). Both alloys have significantly lower hardness, tensile strength, and spring limit value than the alloys of the invention A (Nos. 1 to 4).
In particular, for example, No. 13 and N
o. As compared with No. 10, the characteristic value is no. 13 shows a significantly lower value. No. 13 has a conductivity of No. 13; No. 10 is significantly lower than that of No. 10 in the matrix. It is presumed that this is because the solid solution was dissolved in a larger amount than 10. As is clear from the results in Table 1, Cu-N
When the i-Al alloy is treated by the method A of the present invention, various properties are remarkably superior to those treated by the method B of the comparative method. In particular, Cu- (6 to 12% by weight) Ni
-(1-2% by weight) An Al-based copper-based alloy having a proper Ni / Al component composition ratio (weight ratio) of 3 to 10 is treated by the method of the present invention (method A), whereby the alloy No. of the present invention is obtained. . 1
As shown in Nos. 4 to 4, it is possible to produce a copper-based alloy material having an excellent balance between hardness, tensile strength, spring limit value, and electrical conductivity, and having excellent bending workability. As described above, according to the present invention, high strength,
It has high elasticity, high electrical conductivity, high thermal conductivity, and also has excellent workability, solder weather resistance and heat resistance, so it can be applied to various applications, especially as a material for electrical and electronic parts such as lead frames. A suitable high-strength copper-based alloy can be manufactured stably at low cost.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−149946(JP,A) 特開 昭63−250434(JP,A) 特開 昭63−266033(JP,A) 特公 平2−50184(JP,B2) 特公 平4−25340(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22F 1/08 C22C 9/00 - 9/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-149946 (JP, A) JP-A-63-250434 (JP, A) JP-A-63-266033 (JP, A) 50184 (JP, B2) JP 4-25340 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) C22F 1/08 C22C 9/00-9/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 Ni:6〜10.8wt%,Al:1〜
2wt%を含み、Ni/Alの成分組成比率が重量比で
4〜7の範囲で、更にZn:0.01〜2.0wt%,
B:0.005〜0.1wt%のうち1種または2種を
合計で0.005〜2.0wt%を含み、酸素:0.0
05wt%以下で、残部がCuおよび不可避不純物から
なる銅基合金の素材を圧延するに当り、まず該素材を7
00℃以上、加工率:80%以上で熱間圧延し、次に
熱間圧延後の冷却過程で少なくとも700〜300℃の
温度域を50℃/分以上の冷却速度で冷却し、しかる後
冷間加工率70%以上で1次冷間圧延し、次いで該冷間
圧延後の板材を820〜920℃の温度で60〜600
秒間溶体化熱処理を行い、次に400〜600℃の温度
で5〜360分間の中間熱処理を行った後、加工率70
%以上、圧下率:70〜95%で2次冷間圧延し、最終
処理として380〜700℃で5〜360秒のテンショ
ンアニール処理を行うことを特徴とする高強度銅基合金
の製造方法。
(57) [Claims 1] Ni: 6 to 10.8 wt%, Al: 1 to 1
2 wt%, the composition ratio of Ni / Al is in the range of 4 to 7 by weight, and Zn: 0.01 to 2.0 wt%.
B: One or two of 0.005 to 0.1 wt% are contained in a total of 0.005 to 2.0 wt%, and oxygen is 0.0
When rolling a copper-based alloy material having a content of not more than 05 wt% and the balance being Cu and unavoidable impurities,
00 ° C. or higher, working rate: hot rolling at 80% or more, then the
At least 700-300 ° C in the cooling process after hot rolling
Cool the temperature range at a cooling rate of 50 ° C / min or more, and then
The first cold rolling is performed at a cold working rate of 70% or more, and then the cold-rolled sheet is heated at a temperature of 820 to 920 ° C. for 60 to 600 ° C.
Solution heat treatment for 2 seconds, then at a temperature of 400-600 ° C
After performing the intermediate heat treatment for 5 to 360 minutes at a processing rate of 70
% Or more, a secondary cold-rolling at a draft of 70 to 95%, and a tension annealing treatment at 380 to 700 ° C. for 5 to 360 seconds as a final treatment.
JP32219692A 1992-10-19 1992-10-19 Manufacturing method of high strength copper base alloy Expired - Fee Related JP3410125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32219692A JP3410125B2 (en) 1992-10-19 1992-10-19 Manufacturing method of high strength copper base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32219692A JP3410125B2 (en) 1992-10-19 1992-10-19 Manufacturing method of high strength copper base alloy

Publications (2)

Publication Number Publication Date
JPH06128708A JPH06128708A (en) 1994-05-10
JP3410125B2 true JP3410125B2 (en) 2003-05-26

Family

ID=18141025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32219692A Expired - Fee Related JP3410125B2 (en) 1992-10-19 1992-10-19 Manufacturing method of high strength copper base alloy

Country Status (1)

Country Link
JP (1) JP3410125B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531192A (en) * 1994-08-04 1996-07-02 Caterpillar Inc. Hydraulically actuated valve system
JP6869119B2 (en) * 2017-06-14 2021-05-12 Dowaメタルテック株式会社 Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member
JP7126359B2 (en) * 2018-02-28 2022-08-26 株式会社神戸製鋼所 Copper alloy materials and terminals with excellent contact corrosion resistance to aluminum
JP6974250B2 (en) * 2018-05-08 2021-12-01 株式会社神戸製鋼所 Copper alloy material and terminals for terminals of aluminum wire harness
JP7202121B2 (en) 2018-09-27 2023-01-11 Dowaメタルテック株式会社 Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
KR20230044493A (en) * 2020-07-29 2023-04-04 도와 메탈테크 가부시키가이샤 Cu-Ni-Al-based copper alloy plate, manufacturing method thereof, and conductive spring member

Also Published As

Publication number Publication date
JPH06128708A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JPH0841612A (en) Copper alloy and its preparation
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
CA1119920A (en) Copper based spinodal alloys
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP5054876B2 (en) Hardened Fe-Ni alloy for manufacturing integrated circuit grids and method of manufacturing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP2002194461A (en) Copper alloy for lead frame and its production method
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP3536139B2 (en) Method for producing high strength low thermal expansion alloy wire
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPH0559974B2 (en)
JPH09316569A (en) Copper alloy for lead frame and its production
JPS6142772B2 (en)
JPH07268573A (en) Production of high strength and high conductivity copper alloy for electronic equipment
JPH0826429B2 (en) High strength and low thermal expansion Fe-Ni alloy excellent in plating property, soldering property and cyclic bending property and method for producing the same
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JPH0285330A (en) Copper alloy having good press bendability and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees