[go: up one dir, main page]

JPH11311395A - Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator - Google Patents

Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator

Info

Publication number
JPH11311395A
JPH11311395A JP10114683A JP11468398A JPH11311395A JP H11311395 A JPH11311395 A JP H11311395A JP 10114683 A JP10114683 A JP 10114683A JP 11468398 A JP11468398 A JP 11468398A JP H11311395 A JPH11311395 A JP H11311395A
Authority
JP
Japan
Prior art keywords
resin composition
vacuum heat
powder
heat insulator
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114683A
Other languages
Japanese (ja)
Inventor
Tomonao Amayoshi
智尚 天良
Yasuaki Tanimoto
康明 谷本
Noriyuki Miyaji
法幸 宮地
Tsukasa Takushima
司 宅島
Chie Hayashi
千恵 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10114683A priority Critical patent/JPH11311395A/en
Publication of JPH11311395A publication Critical patent/JPH11311395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the recycle property of a vacuum heat insulator, and reduce the weight thereof by filling the powder carrying at least the oxidation inhibitor in a part of the powder formed by crashing the organic resin composition as a core material of a vacuum heat insulator in an inner bag material having a ventilating property. SOLUTION: The powder 4 of the crashed organic resin composition powder and the oxidation inhibitor 5 are mixed and agitated so as to manufacturing the powder 4 carrying the oxidation inhibitor 5. The predetermined a quantity of this powder 4 is filled in an inner bag material 3 having a ventilating property so as to manufacture a core material 2 for vacuum heat insulator 1. After performing the heating to the core material 2, the core material 2 is inserted with the gas adsorbent 6 into an outer material 7 made of the gas barrier type laminated film. Thereafter, evacuation is performed in a vacuum chamber provided with a thermal fusion device, and an end of the outer material 7 is sealed by thermal fusion so as to form a vacuum heat insulator 1. As an organic resin composition, the hard urethane foam as a foaming body of the urethane resin composition is especially desirable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫または建築
物等の断熱材として使用可能な真空断熱体、及び断熱パ
ネルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulator which can be used as a heat insulating material for a refrigerator or a building, and a heat insulating panel.

【0002】[0002]

【従来の技術】近年、家電製品に対する省資源、省エネ
化は避けられない重要課題であり、冷蔵庫においても廃
棄物のリサイクルや断熱材の高性能化が必要不可欠であ
る。
2. Description of the Related Art In recent years, resource saving and energy saving for home electric appliances have been unavoidable important issues, and recycling of waste and improving the performance of heat insulating materials are also indispensable for refrigerators.

【0003】また、建築物についても、近年の住宅に対
する高気密・高断熱の高まりから、現在断熱材として主
流を占めているグラスウールから、より断熱性能の優れ
た硬質ウレタンフォームが使用され始めている。
[0003] Also, with respect to buildings, due to the recent increase in high airtightness and high heat insulation of houses, hard urethane foams having better heat insulation performance have begun to be used from glass wool, which is currently the mainstream heat insulating material.

【0004】以上の様に、冷蔵庫、及び建築物の切迫し
た要求として、省エネ化があり、断熱性能の向上が重要
課題となっている。
As described above, urgent demands of refrigerators and buildings include energy saving, and improvement of heat insulation performance is an important issue.

【0005】この様な課題を解決する一手段として真空
断熱体がある。例えば、無機粉末を用いた真空断熱体が
特開昭57−173689号公報で述べられている。そ
の内容は、フィルム状プラスチック容器に単粒子径が1
μm以下の粉末を充填し内部を減圧後密閉することによ
り真空断熱体を得るというものである。
One means for solving such a problem is a vacuum heat insulator. For example, a vacuum insulator using an inorganic powder is described in Japanese Patent Application Laid-Open No. 57-173689. The content is as follows.
A vacuum heat insulator is obtained by filling the powder having a size of not more than μm, sealing the inside after reducing the pressure.

【0006】効果としては工業化が容易な13〜133
パスカルの真空度で製造することができ、充填する粉末
が微細であるため、断熱性能の圧力依存性が小さく、優
れた断熱性能を示す。このような真空断熱体は、一般に
硬質ウレタンフォームの3倍以上の断熱性能を有する。
The effect is 13 to 133, which can be easily industrialized.
Since it can be manufactured at a vacuum of Pascal and the powder to be filled is fine, the pressure dependency of the heat insulating performance is small and excellent heat insulating performance is exhibited. Such a vacuum heat insulator generally has heat insulation performance three times or more that of rigid urethane foam.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
57−173689号公報のようにコア材に無機粉末で
ある合成シリカを適用した真空断熱体ではコア材の高密
度化が避けられず、製品重量が増加してしまうという問
題があった。
However, in a vacuum heat insulator in which a synthetic silica which is an inorganic powder is applied to a core material as disclosed in Japanese Patent Application Laid-Open No. 57-173689, it is inevitable to increase the density of the core material, There is a problem that the weight increases.

【0008】また、真空断熱体を用いた冷蔵庫や断熱パ
ネルの廃棄処分時には、クラッシュ等による減容化過程
において、真空断熱体が破袋し、充填されたシリカの微
粒子が飛散し作業環境の悪化を引き起こす。
When disposing of a refrigerator or a heat insulating panel using a vacuum heat insulator, the vacuum heat insulator breaks during the volume reduction process due to a crash or the like, and the filled silica particles are scattered to deteriorate the working environment. cause.

【0009】更には、ウレタンフォームと真空断熱体を
複層構造とした場合は、有機樹脂組成物と無機組成物か
らなる複合体となるためリサイクル性が悪化する。
Further, when the urethane foam and the vacuum heat insulator have a multi-layer structure, the composite is composed of an organic resin composition and an inorganic composition, so that the recyclability deteriorates.

【0010】本発明は上記課題を鑑み、真空断熱体の芯
材として有機樹脂組成物を粉砕した粉体の一部に少なく
とも酸化防止剤を担持する粉体を通気性を有する内袋材
へ充填して作製することから、従来の無機粉末を芯材と
して適用した場合の課題であった、軽量化と真空断熱体
のリサイクル性について改善を図るものである。
In view of the above problems, the present invention fills a gas-permeable inner bag material with at least a powder carrying an antioxidant as a core material of a vacuum heat insulator on a part of a powder obtained by pulverizing an organic resin composition. Therefore, the present invention aims to improve the weight reduction and the recyclability of the vacuum heat insulator, which have been problems when the conventional inorganic powder is used as the core material.

【0011】更には、今後、益々重要となってくる地球
環境保護と廃棄物問題に対応すべく、特に冷蔵庫の断熱
材に使用されているウレタンフォームのリサイクルを可
能とすると共に、真空断熱体の経時断熱性能についても
改善可能な新規の真空断熱体を提供することを目的とし
ている。
Further, in order to cope with global environmental protection and waste problems, which will become more and more important in the future, it is possible to recycle urethane foam used particularly as a heat insulating material for refrigerators, and to use a vacuum heat insulating material. It is an object of the present invention to provide a novel vacuum heat insulator capable of improving the heat insulation performance over time.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
本発明の真空断熱体は、ガスバリア性ラミネートフィル
ムからなる外装材の内部に、通気性を有する内袋材へ有
機樹脂組成物を粉砕した粉体の一部に少なくとも酸化防
止剤を担持させた粉体を充填してなる芯材と、ガス吸着
剤とを含み、外装材内部が減圧真空化されてなるもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, a vacuum heat insulator of the present invention is obtained by pulverizing an organic resin composition into a gas-permeable inner bag material inside a gas barrier laminate film exterior material. It comprises a core material in which at least a part of the powder is filled with a powder carrying at least an antioxidant, and a gas adsorbent, and the interior of the exterior material is evacuated and evacuated.

【0013】従って、芯材を構成する有機樹脂組成物か
らなる粉体は、冷蔵庫廃材、及び廃建材、及び樹脂製品
製造時の生産ロス材料等の廃材を粉砕した粉末であり、
これらは従来の合成シリカ等の無機物と比較して重量が
軽く、扱いやすい。
Accordingly, the powder comprising the organic resin composition constituting the core material is a powder obtained by pulverizing waste materials such as refrigerator waste materials, waste building materials, and production loss materials in the production of resin products.
These are lighter in weight and easier to handle than inorganic materials such as conventional synthetic silica.

【0014】また、粉砕加工についても容易、かつ低コ
ストで達成可能であり、真空断熱体の芯材が安価に製造
できるのである。
Further, the pulverization can be achieved easily and at low cost, and the core material of the vacuum heat insulator can be manufactured at low cost.

【0015】更に、有機樹脂組成物を粉砕加工して得た
粉末に酸化防止剤を担持しているため、粉砕、及び加熱
処理工程において生じるラジカルに起因する樹脂の劣化
分解が抑制され、真空断熱体の経時的な断熱性能も改善
される。
Further, since an antioxidant is carried on the powder obtained by pulverizing the organic resin composition, deterioration and decomposition of the resin due to radicals generated in the pulverization and heat treatment steps are suppressed, and vacuum insulation is performed. The thermal insulation performance of the body over time is also improved.

【0016】また、本発明の真空断熱体は、ガスバリア
性ラミネートフィルムからなる外装材の内部に、通気性
を有する内袋材へ少なくともウレタン樹脂組成物の発泡
体を含む有機樹脂組成物を粉砕した粉体の一部に少なく
とも酸化防止剤を担持させた粉体を充填してなる芯材
と、ガス吸着剤とを含み、外装材内部が減圧真空化され
てなるものである。
Further, in the vacuum heat insulator of the present invention, an organic resin composition containing at least a urethane resin composition foam is crushed into an air-permeable inner bag material inside an exterior material made of a gas barrier laminate film. It comprises a core material in which at least a part of the powder is filled with a powder carrying at least an antioxidant, and a gas adsorbent, and the interior of the exterior material is evacuated and evacuated.

【0017】従って、芯材を構成するウレタン樹脂組成
物の発泡体を粉砕した粉体は、使用済み冷蔵庫から回収
したウレタン廃材、及び建材用ウレタンボード、及びウ
レタンフォーム製品製造時の工場生産ロス材料等の廃材
であっても容易に適用できる。また、粉砕加工について
も容易、かつ低コストで達成可能であり、真空断熱体の
芯材が安価に製造できるのである。
Therefore, the powder obtained by pulverizing the foam of the urethane resin composition constituting the core material is a waste urethane material recovered from a used refrigerator, a urethane board for building materials, and a factory production loss material when urethane foam products are manufactured. It can be easily applied to waste materials such as. In addition, the pulverization can be achieved easily and at low cost, and the core material of the vacuum heat insulator can be manufactured at low cost.

【0018】また、粉砕したウレタンフォーム粉末は針
状構造を有しており嵩高いことから微粉末であっても低
密度を維持することが可能となる。
Further, since the crushed urethane foam powder has a needle-like structure and is bulky, it is possible to maintain a low density even if it is a fine powder.

【0019】更に、廃ウレタンフォームを粉砕加工して
得た粉末に酸化防止剤を担持しているため、粉砕、及び
熱処理過程に生じるラジカルに起因した樹脂の劣化分解
が抑制され、真空断熱体の経時的な断熱性能も改善され
る。
Further, since an antioxidant is carried on the powder obtained by pulverizing the waste urethane foam, deterioration and decomposition of the resin caused by radicals generated in the pulverization and heat treatment processes are suppressed, and the vacuum heat insulating material is reduced. Thermal insulation performance over time is also improved.

【0020】また、本発明の真空断熱体は、芯材となる
粉体に担持させた酸化防止剤において、その酸化防止剤
の融点が200℃以上である。
In the vacuum heat insulator of the present invention, the melting point of the antioxidant carried on the powder as the core material is 200 ° C. or more.

【0021】従って、芯材を高温で加熱脱ガス処理を行
っても、酸化防止剤が溶融することなく安定的にウレタ
ン樹脂粉体に担持されることから、ウレタン樹脂を含む
有機樹脂組成物の酸化、及び熱酸化による劣化分解が安
定的に抑制可能である。
Therefore, even when the core material is subjected to heat degassing at a high temperature, the antioxidant is stably supported on the urethane resin powder without melting, so that the organic resin composition containing the urethane resin can be used. Degradation and decomposition due to oxidation and thermal oxidation can be suppressed stably.

【0022】また、高い融点を有する酸化防止剤を適用
していることから芯材の加熱処理時に酸化防止剤の溶融
が起こらず、芯材を構成する粉体を凝縮させることも無
い。
Further, since the antioxidant having a high melting point is applied, the antioxidant does not melt during the heat treatment of the core material, and the powder constituting the core material does not condense.

【0023】また、本発明の真空断熱体は、芯材となる
粉体に担持させた酸化防止剤において、その酸化防止剤
の比表面積がウレタン樹脂組成物の発泡体を粉砕した粉
体の比表面積よりも5倍以上大きい粉体である。
Further, in the vacuum heat insulator of the present invention, the specific surface area of the antioxidant carried on the powder as the core material is the specific ratio of the powder obtained by pulverizing the foam of the urethane resin composition. The powder is at least 5 times larger than the surface area.

【0024】従って、ウレタン樹脂と相溶しなくとも、
混合攪拌するだけで容易に酸化防止剤の効果を十分発揮
させることが可能となる。
Therefore, even if it is not compatible with the urethane resin,
The effect of the antioxidant can be sufficiently exerted easily only by mixing and stirring.

【0025】また、本発明の真空断熱体は、有機樹脂組
成物を粉砕した粉体に担持させた酸化防止剤において、
その担持量が芯材の0.1重量パーセント以上5重量パ
ーセント以下である。
Further, the vacuum heat insulator of the present invention is an antioxidant in which an organic resin composition is supported on pulverized powder,
The supported amount is 0.1% by weight or more and 5% by weight or less of the core material.

【0026】従って、真空断熱体の断熱性能への弊害な
く酸化防止剤の効果を十分に発揮させることが可能とな
る。
Therefore, the effect of the antioxidant can be sufficiently exhibited without adversely affecting the heat insulating performance of the vacuum heat insulator.

【0027】また、本発明の真空断熱体の製造方法は、
有機樹脂組成物を粉砕成形した粉体と酸化防止剤とを混
合攪拌し、酸化防止剤を有機樹脂組成物からなる粉体に
担持させた後、前記粉体を通気性を有する内袋材へ充填
させ芯材とし、前記芯材を120℃〜180℃にて加熱
処理を実施した後、ガス吸着剤と共に、ガスバリア性ラ
ミネートフィルム製の外装材へ挿入し、内部を133パ
スカル以下に減圧真空後、熱融着により外装材端部を封
止してなるものである。
Further, the method for producing a vacuum heat insulator according to the present invention comprises:
The powder obtained by pulverizing the organic resin composition and the antioxidant are mixed and stirred, and the antioxidant is supported on the powder composed of the organic resin composition. After filling the core material and performing heat treatment on the core material at 120 ° C. to 180 ° C., it is inserted together with a gas adsorbent into an exterior material made of a gas barrier laminate film, and the inside is decompressed and vacuumed to 133 Pascal or less. In this case, the end of the exterior material is sealed by heat fusion.

【0028】従って、芯材となる酸化防止剤を担持した
有機樹脂組成物からなる粉末、及び前記粉末を充填した
真空断熱体の芯材を容易に作製可能である。
Therefore, it is possible to easily produce a powder made of an organic resin composition carrying an antioxidant as a core material, and a core material of a vacuum insulator filled with the powder.

【0029】また、芯材の脱水、脱ガスを目的とした加
熱処理工程、更には真空排気工程等の真空断熱材の各製
造工程においても汎用的な設備にて容易に作製可能であ
る。
Further, in the heat treatment step for the purpose of dehydrating and degassing the core material, and also in the production steps of the vacuum heat insulating material such as the vacuum evacuation step, it can be easily produced by general-purpose equipment.

【0030】また、芯材として適用する有機樹脂組成物
の粉体が熱酸化分解を引き起こすような従来の加熱処理
温度においても酸化防止剤を適用しているため問題なく
加熱処理が可能となり、従来、処理できなかったウレタ
ン樹脂に強固に親和溶解したガス成分についても容易に
除去可能となる。
Further, since the antioxidant is applied even at the conventional heat treatment temperature at which the powder of the organic resin composition used as the core material causes thermal oxidative decomposition, heat treatment can be performed without any problem. Also, gas components that have been strongly dissolved in the urethane resin that could not be treated can be easily removed.

【0031】また本発明の断熱箱体は、内箱と外箱とで
構成される箱体内部に真空断熱体を有し、前記真空断熱
体以外の空間部がウレタン樹脂組成物で発泡充填された
断熱箱体において、前記真空断熱体が請求項1または2
記載の真空断熱体である。
Further, the heat insulation box of the present invention has a vacuum heat insulator inside a box composed of an inner box and an outer box, and a space other than the vacuum heat insulator is foam-filled with a urethane resin composition. In a heat-insulated box, the vacuum heat-insulating body is formed by a vacuum.
It is a vacuum insulator described.

【0032】従って、長期にわたって断熱性能が優れた
断熱箱体が得られる。更に、断熱箱体の軽量化が達成さ
れる。
Therefore, a heat insulating box having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating box is reduced.

【0033】また、本発明の断熱パネルは、有機樹脂組
成物からなる凹構造を有する構造体と、構造体の凹部に
配設した真空断熱体と、その構造体の凹部開放面を被覆
する面材とにより構成された断熱パネルにおいて、前記
真空断熱体が請求項1または2記載の真空断熱体であ
る。
Further, the heat insulating panel of the present invention comprises a structure having a concave structure made of an organic resin composition, a vacuum heat insulator disposed in a concave portion of the structure, and a surface covering an open surface of the concave portion of the structure. In a heat insulation panel constituted by a material, the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.

【0034】従って、長期にわたって断熱性能が優れた
断熱パネルが得られる。更に断熱パネルの軽量化が達成
される。
Therefore, a heat insulating panel having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating panel is reduced.

【0035】また、本発明の断熱パネルは、ウレタン樹
脂組成物と、複数個の真空断熱体と、真空断熱体の外方
に設けられる面材とにより構成され、真空断熱体の少な
くとも一平面がウレタン樹脂組成物によって覆われてい
る断熱パネルにおいて、前記真空断熱体が請求項1また
は2記載の真空断熱体である。
The heat insulating panel of the present invention comprises a urethane resin composition, a plurality of vacuum heat insulators, and a face material provided outside the vacuum heat insulator, and at least one plane of the vacuum heat insulator is provided. In a heat insulating panel covered with a urethane resin composition, the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.

【0036】従って、長期にわたって断熱性能が優れた
断熱パネルが得られる。更に断熱パネルの軽量化が達成
される。
Accordingly, a heat insulating panel having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating panel is reduced.

【0037】[0037]

【発明の実施の形態】本発明の真空断熱体は、ガスバリ
ア性ラミネートフィルムからなる外装材の内部に、通気
性を有する内袋材へ有機樹脂組成物を粉砕した粉体の一
部に少なくとも酸化防止剤を担持させた粉体を充填して
なる芯材と、ガス吸着剤とを含み、外装材内部が減圧真
空化されてなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The vacuum heat insulator according to the present invention is characterized in that at least a part of a powder obtained by pulverizing an organic resin composition into a gas-permeable inner bag material is oxidized inside an exterior material made of a gas barrier laminate film. It contains a core material filled with a powder carrying an inhibitor and a gas adsorbent, and the interior of the exterior material is evacuated to a reduced pressure.

【0038】従って、芯材を構成する有機樹脂組成物
は、冷蔵庫廃材、及び廃建材、及び樹脂製品製造時の生
産ロス材料等の廃材であっても、有機樹脂組成物の回
収、分別、粉砕という工程を経て容易に適用できる。ま
た、粉砕についても汎用の粉砕機による容易、かつ低コ
ストで達成可能である。
Therefore, even if the organic resin composition constituting the core material is a refrigerator waste material, a waste building material, and a waste material such as a production loss material in the production of a resin product, the organic resin composition is collected, separated, and pulverized. The process can be easily applied. Also, pulverization can be achieved easily and at low cost by a general-purpose pulverizer.

【0039】なお、粉砕機は汎用的なカッターミル、ハ
ンマーミルの様な機器にて問題なく適用できるが、粉体
粒度を調整し易い摩砕型粉砕機が特に優れている。
The pulverizer can be applied to a general-purpose device such as a cutter mill or a hammer mill without any problem. However, a pulverization type pulverizer which can easily adjust the particle size of the powder is particularly excellent.

【0040】一方、有機樹脂組成物としては、ウレタ
ン、フェノール、ポリスチレン、ポリプロピレン、ポリ
エチレン樹脂等、熱硬化性樹脂、熱可塑性樹脂の何れに
関わらず殆どの有機樹脂組成物が適用できるが、樹脂熱
伝導率が低い樹脂組成物が適している。その中でも、特
にウレタン樹脂組成物の発泡体である硬質ウレタンフォ
ームを粉砕した粉末が、粉末の嵩高さ、樹脂熱伝導率、
樹脂からの発生ガスといった経時特性等の面で真空断熱
体の芯材としてより適している。
On the other hand, as the organic resin composition, most organic resin compositions such as urethane, phenol, polystyrene, polypropylene, polyethylene resin and the like can be applied irrespective of thermosetting resin or thermoplastic resin. Resin compositions with low conductivity are suitable. Among them, the powder obtained by pulverizing hard urethane foam, which is a foam of the urethane resin composition, is particularly bulky powder, resin thermal conductivity,
It is more suitable as a core material of a vacuum heat insulator in terms of aging characteristics such as gas generated from resin.

【0041】従って、使用済み冷蔵庫から回収したウレ
タン廃材、及び建築物用廃建材のウレタンボードやウレ
タンパネル、及び硬質ウレタンフォーム製品製造時の工
場生産ロス材料等の廃材を適用することが地球環境保護
や省資源リサイクルの面からも適している。
Therefore, the application of urethane waste materials recovered from used refrigerators, waste materials such as urethane boards and urethane panels of waste construction materials for buildings, and waste materials produced at the factory when manufacturing rigid urethane foam products can be applied. It is also suitable from the viewpoint of resource saving and recycling.

【0042】また、粉砕した硬質ウレタンフォーム粉末
は針状構造を有しており、嵩高い粉末であるため芯材の
低密度化が可能であり、真空断熱体の軽量化も可能とな
る。
Further, the crushed rigid urethane foam powder has a needle-like structure and is a bulky powder, so that the core material can be reduced in density and the vacuum heat insulator can be reduced in weight.

【0043】更に、有機樹脂組成物を粉砕加工して得た
粉末に酸化防止剤を担持しているため、粉砕工程でメカ
ノケミカル的に発生するラジカル、及び芯材の加熱処理
工程に発生するラジカルや過酸化物、及び真空断熱体中
の酸素により経時的に発生するラジカルや過酸化物に起
因して引き起こされる樹脂の劣化分解による低分子量の
生成物やガス成分の発生が抑制され、真空断熱体の経時
的な断熱性能が改善される。
Further, since an antioxidant is carried on the powder obtained by pulverizing the organic resin composition, radicals generated mechanochemically in the pulverization step and radicals generated in the heat treatment step of the core material. Generation of low molecular weight products and gas components due to degradation and decomposition of resin caused by radicals and peroxides caused by oxygen and peroxides and oxygen in the vacuum insulator over time, and vacuum insulation The heat insulation performance of the body over time is improved.

【0044】なお、酸化防止剤とは、有機樹脂組成物の
経時的な樹脂劣化を抑制するため通常有機樹脂組成物に
添加して使用される汎用的な酸化防止剤のことであり、
発生したラジカルを補足し、ラジカル連鎖反応の進行を
禁止するラジカル連鎖禁止剤や、生成した過酸化物をラ
ジカルを発生しない形で分解する過酸化物分解剤などを
指す。
Incidentally, the antioxidant is a general-purpose antioxidant usually added to the organic resin composition and used to suppress the deterioration of the organic resin composition with time.
It refers to a radical chain inhibitor that supplements the generated radicals and inhibits the progress of the radical chain reaction, and a peroxide decomposer that decomposes the generated peroxide without generating radicals.

【0045】なお、ラジカル連鎖禁止剤とは、フェノー
ル系、モノフェノール系、ビスフェノール系、高分子フ
ェノール系、アミン系等が適用可能であり、過酸化物分
解剤とは、硫黄系、リン系等が適用できる。これらは、
単独、或いは混合して適用可能であるが、ラジカル連鎖
禁止剤と過酸化物分解剤を併用して適用するのが特に効
果的である。
The radical chain inhibitor may be phenol, monophenol, bisphenol, high molecular phenol, amine or the like, and the peroxide decomposer may be sulfur, phosphorus or the like. Can be applied. They are,
Although they can be used alone or as a mixture, it is particularly effective to use a radical chain inhibitor and a peroxide decomposer in combination.

【0046】具体的には、ビス(2.6−ジ−t−ブチ
ル−4−メチルフェニル)ペンタエリストール−ジ−ホ
スファイト(融点234℃)、1.3.5−トリス
(3.5−ジ−t−ブチル−4−ヒドロキシベンジル)
−s−トリアジン−2.4.6−(1H.3H.5H)
トリオン(融点221℃)、1.3.5−トリメチル−
2.4.6トリス(3.5−ジ−t−ブチル−4−ヒド
ロキシベンジル)ベンゼン(融点244℃)等が適用で
きる。
Specifically, bis (2.6-di-t-butyl-4-methylphenyl) pentaerythol-di-phosphite (mp 234 ° C.), 1.3.5-tris (3.5 -Di-t-butyl-4-hydroxybenzyl)
-S-Triazine-2.4.6- (1H.3H.5H)
Trione (melting point 221 ° C), 1.3.5-trimethyl-
2.4.6 Tris (3.5-di-t-butyl-4-hydroxybenzyl) benzene (melting point: 244 ° C.) can be used.

【0047】この様にして作製した有機樹脂組成物から
なる粉体と、前記酸化防止剤とを混合攪拌し、酸化防止
剤を有機樹脂組成物からなる粉体に担持させ芯材を構成
する粉体を作製する。
The powder composed of the organic resin composition thus prepared and the above-mentioned antioxidant are mixed and stirred, and the antioxidant is carried on the powder composed of the organic resin composition to constitute the core material. Make a body.

【0048】この時、酸化防止剤の比表面積を限定して
いるため、有機樹脂組成物からなる粉体への分散と担持
が容易に達成される。
At this time, since the specific surface area of the antioxidant is limited, dispersion and support of the organic resin composition in the powder can be easily achieved.

【0049】なお、この時、必要に応じて酸化防止剤以
外に、難燃剤等も適用できる。その後、前記粉体を通気
性を有する内袋材へ充填させ真空断熱体の芯材を作製す
る。
At this time, in addition to the antioxidant, a flame retardant or the like can be applied as necessary. Thereafter, the powder is filled into a gas-permeable inner bag material to prepare a core material of a vacuum heat insulator.

【0050】前記芯材は120℃〜180℃にて加熱処
理を実施した後、ガス吸着剤と共に、ガスバリア性ラミ
ネートフィルム製の外装材へ挿入し、内部を133パス
カル以下に減圧真空後、熱融着により外装材端部を封止
して真空断熱体を作製するのである。
After the core material is subjected to a heat treatment at 120 ° C. to 180 ° C., it is inserted together with a gas adsorbent into an exterior material made of a gas barrier laminate film. The vacuum heat insulator is manufactured by sealing the end of the exterior material by attaching.

【0051】なお、芯材の脱水、脱ガスを目的とした加
熱処理工程、更には真空排気工程等の真空断熱体の全て
の製造工程においても汎用的な設備にて容易に作製可能
である。
It is to be noted that the heat treatment step for dehydrating and degassing the core material, as well as all the steps for manufacturing the vacuum heat insulator such as the vacuum evacuation step, can be easily made with general-purpose equipment.

【0052】この様な形態により、従来の無機粉末を芯
材として適用した場合の課題であった、軽量化、及びリ
サイクル性について改善を図るものである。
With such an embodiment, the weight reduction and the recyclability, which are problems when the conventional inorganic powder is used as the core material, are intended to be improved.

【0053】更には、地球環境保護と廃棄物問題に対応
すべく、特に冷蔵庫の断熱材に使用されているウレタン
フォームのリサイクルを可能とすると共に、真空断熱体
の経時断熱性能についても改善可能な新規の真空断熱体
が提供できる。
Further, in order to protect the global environment and deal with the problem of waste, it is possible to recycle urethane foam used particularly as a heat insulating material for refrigerators, and it is also possible to improve the temporal insulation performance of a vacuum heat insulator. A new vacuum insulator can be provided.

【0054】[0054]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0055】(実施例1)図1は本発明の一実施例にお
ける真空断熱体断面の模式図であり、1は真空断熱体、
2は芯材、3は内袋材、4は有機樹脂組成を粉砕した粉
体、5は酸化防止剤であり、粉体4に担持されている様
子を示している。また、6はガス吸着剤、7はガスバリ
ア性ラミネートフィルムからなる外装材である。
(Embodiment 1) FIG. 1 is a schematic view of a cross section of a vacuum heat insulator according to one embodiment of the present invention.
Reference numeral 2 denotes a core material, 3 denotes an inner bag material, 4 denotes a powder obtained by pulverizing an organic resin composition, 5 denotes an antioxidant, and shows how the powder is carried by the powder 4. Reference numeral 6 denotes a gas adsorbent, and reference numeral 7 denotes an exterior material made of a gas barrier laminate film.

【0056】内袋材3は、ポリエチレンテレフタレート
で構成された不織布を熱融着により袋状に製袋したもの
である。
The inner bag material 3 is made by forming a non-woven fabric made of polyethylene terephthalate into a bag by heat fusion.

【0057】粉体4は、使用済み冷蔵庫から回収、分
離、分別した硬質ウレタンフォームを汎用的な摩砕型粉
砕機を適用し平均粒径150〜200μmに粉砕したも
のである。なお、ウレタン粉砕品の平均粒径は島津製作
所製のレーザ回折式の粒度分布測定装置SALD−30
00Jにより測定した。
The powder 4 is obtained by pulverizing hard urethane foam collected, separated and fractionated from a used refrigerator to an average particle size of 150 to 200 μm using a general-purpose pulverizer. The average particle size of the urethane pulverized product is a laser diffraction type particle size distribution analyzer SALD-30 manufactured by Shimadzu Corporation.
It was measured by 00J.

【0058】また、酸化防止剤5は、過酸化物分解剤で
あるリン系の酸化防止剤で、融点235℃のビス(2.
6−ジ−t−ブチル−4−メチルフェニル)ペンタエリ
ストール−ジ−ホスファイトと、ラジカル連鎖禁止剤で
あるヒンダードフェノール系の酸化防止剤で、融点24
4℃の1.3.5−トリメチル−2.4.6−トリス
(3.5−ジ−t−ブチル−4−ヒドロキシベンジル)
ベンゼンとを1対1で混合し適用した。なお、酸化防止
剤5はボールミルにより比表面積が10m2 /g以上に
なるように調整した。
The antioxidant 5 is a phosphorus-based antioxidant that is a peroxide decomposer, and is a bis (2.
6-di-t-butyl-4-methylphenyl) pentaeristol-di-phosphite and a hindered phenol-based antioxidant which is a radical chain inhibitor, having a melting point of 24
1.3.5-trimethyl-2.4.6-tris (3.5-di-t-butyl-4-hydroxybenzyl) at 4 ° C.
Benzene and benzene were mixed one by one and applied. The antioxidant 5 was adjusted by a ball mill so that the specific surface area became 10 m 2 / g or more.

【0059】また、ガス吸着剤には合成ゼオライト5A
を適用した。また、外装材は、片面が表面保護層にポリ
エチレンテレフタレート(12μm)、中間層にアルミ
箔(6μm)、熱融着層に高密度ポリエチレン(50μ
m)であり、もう片面が表面保護層にポリエチレンテレ
フタレート(12μm)、中間層にアルミ蒸着エチレン
・ビニルアルコール共重合体(15μm)、熱融着層が
高密度ポリエチレン(50μm)をラミネートした積層
フィルムを用いている。
As the gas adsorbent, synthetic zeolite 5A was used.
Was applied. The exterior material has polyethylene terephthalate (12 μm) as a surface protective layer on one side, aluminum foil (6 μm) as an intermediate layer, and high-density polyethylene (50 μm) as a heat-sealing layer.
m), the other side of which is a laminated film in which polyethylene terephthalate (12 μm) is laminated on the surface protective layer, aluminum-deposited ethylene / vinyl alcohol copolymer (15 μm) is laminated on the intermediate layer, and high-density polyethylene (50 μm) is laminated on the heat-sealing layer. Is used.

【0060】なお、前記構成以外にも、表面保護層に
は、突き刺し強度、曲げ強度等に優れた二軸延伸ナイロ
ン等も適用可能である。また、熱溶着層には、熱融着性
に優れたポリプロピレン、ポリアクリロニトリル、低密
度ポリエチレン等も適用可能である。
In addition to the above-mentioned constitution, biaxially stretched nylon or the like having excellent piercing strength, bending strength and the like can be applied to the surface protective layer. In addition, polypropylene, polyacrylonitrile, low-density polyethylene, and the like, which are excellent in heat-sealing properties, can be applied to the heat-sealing layer.

【0061】更に、真空断熱体の適用状態によっては外
装材の両面が表面保護層にポリエチレンテレフタレート
(12μm)、中間層にアルミ箔(6μm)、熱融着層
に高密度ポリエチレン(50μm)を適用する外装材が
適している場合もある。
Further, depending on the application state of the vacuum heat insulator, polyethylene terephthalate (12 μm) is applied to the surface protective layer on both sides of the exterior material, aluminum foil (6 μm) is applied to the intermediate layer, and high-density polyethylene (50 μm) is applied to the heat sealing layer. In some cases, an exterior material is suitable.

【0062】次に、この真空断熱体の製造方法を説明す
る。前記方法により粉砕作製した硬質ウレタンフォーム
粉末からなる粉体と、芯材重量の3wt%にあたる前記
酸化防止剤の混合体とを混合攪拌して、酸化防止剤を担
持させた粉体を作製する。
Next, a method of manufacturing this vacuum heat insulator will be described. A powder made of the hard urethane foam powder pulverized and produced by the above method and a mixture of the antioxidant corresponding to 3% by weight of the core material are mixed and stirred to prepare a powder carrying the antioxidant.

【0063】その後、前記粉体を通気性を有する内袋材
へ所定量を充填させ真空断熱体の芯材を作製する。
Thereafter, a predetermined amount of the powder is filled in a gas-permeable inner bag material to prepare a core material of a vacuum heat insulator.

【0064】なお、この時、粉体の流動性を向上させる
ため、一般的に流動化剤として知られている合成シリカ
粉末を芯材の3wt%添加している。
At this time, in order to improve the fluidity of the powder, 3 wt% of the core material is added with synthetic silica powder generally known as a fluidizing agent.

【0065】前記芯材は180℃にて1時間加熱処理を
実施した後、ガス吸着剤と共に、ガスバリア性ラミネー
トフィルム製の外装材へ挿入し、熱融着装置を備えた真
空チャンバーにて真空排気し、外装材端部を熱融着によ
り封止して真空断熱体を作製したものである。
The core material was subjected to a heat treatment at 180 ° C. for 1 hour, then inserted together with a gas adsorbent into an exterior material made of a gas barrier laminate film, and evacuated in a vacuum chamber equipped with a heat fusion device. Then, a vacuum heat insulator was produced by sealing the end of the exterior material by heat fusion.

【0066】この時、真空断熱体の内部圧力が13パス
カル以下になるように排気減圧を行った。
At this time, the exhaust pressure was reduced so that the internal pressure of the vacuum heat insulator became 13 Pascal or less.

【0067】この様にして作製した真空断熱体は、芯材
に合成シリカ粉末を用いた真空断熱体と比較して真空断
熱体の密度が20%以上低減された。従って、真空断熱
体自身の取扱い性、搬送効率の向上と、適用する製品重
量の低減が図れる。
The density of the vacuum heat insulator in the vacuum heat insulator thus manufactured was reduced by 20% or more as compared with the vacuum heat insulator using the synthetic silica powder as the core material. Therefore, it is possible to improve the handleability and transport efficiency of the vacuum insulator itself and reduce the weight of the product to be applied.

【0068】また、粉体に酸化防止剤を担持した場合と
担持しない場合について、真空断熱体の熱伝導率を英弘
精機(株)製のAUTO−Aにて測定し比較した。その
結果、エージング条件、40℃6カ月間で酸化防止剤の
適用により熱伝導率の増加率は50%改善される。
The thermal conductivity of the vacuum heat insulator was measured using AUTO-A manufactured by Eiko Seiki Co., Ltd. and compared with the case where the antioxidant was supported on the powder and the case where the antioxidant was not supported. As a result, the rate of increase of the thermal conductivity is improved by 50% by applying the antioxidant at aging conditions and 40 ° C. for 6 months.

【0069】この様に熱伝導率が改善される理由は、粉
体に酸化防止剤を担持した場合は、芯材の加熱脱ガス処
理工程において、粉末の主成分であるウレタン樹脂の熱
酸化が抑制され、ウレタン分子内にヒドロペルオキシド
基が生成されにくくなると考えられる。その結果、真空
断熱体作製後に、ヒドロペルオキシド基の分解により生
じるアルコキシ基に起因したラジカルや水酸基に起因し
たラジカルによる分解反応が抑制され、水分,一酸化炭
素,二酸化炭素、及びその他低分子量の分解物が生成さ
れにくくなるためと考えられる。
The reason why the thermal conductivity is improved as described above is that when an antioxidant is supported on the powder, the thermal oxidation of the urethane resin, which is the main component of the powder, occurs in the step of heating and degassing the core material. It is considered that this is suppressed and a hydroperoxide group is hardly generated in the urethane molecule. As a result, after the vacuum insulator is formed, the decomposition reaction due to the radicals caused by the alkoxy groups and the hydroxyl groups generated by the decomposition of the hydroperoxide groups is suppressed, and the decomposition of water, carbon monoxide, carbon dioxide, and other low molecular weights is suppressed. It is considered that a product is hardly generated.

【0070】また、有機樹脂組成物を粉砕して適用して
いるため、粉砕時に既にメカノケミカル的に生じるラジ
カルについても補足されるため、その後の樹脂劣化、及
び低分子分解物への酸化分解が抑制されると考える。
In addition, since the organic resin composition is pulverized and applied, radicals generated mechanochemically at the time of pulverization are also supplemented. Think it will be suppressed.

【0071】従って、酸化防止剤のうち、ラジカル連鎖
禁止作用と過酸化物分解作用の両方の作用を有するも
の、或いは前記作用を有するものを併用して適用するの
が効果的である。
Therefore, it is effective to use, among the antioxidants, one having both the action of inhibiting the radical chain and the action of decomposing the peroxide, or one having the above action.

【0072】なお、ガス吸着剤については、酸化防止剤
を適用した場合はその使用量が大幅に削減可能である。
また、ラジカルに起因した不安定な樹脂の分解反応につ
いて考慮する必要が無くなるため、ガス吸着剤仕様の決
定が容易に行え、真空断熱体の断熱性能の長期信頼性が
容易に保証可能となる。
When an antioxidant is used, the amount of the gas adsorbent can be greatly reduced.
In addition, since it is not necessary to consider the decomposition reaction of the unstable resin caused by radicals, the specification of the gas adsorbent can be easily determined, and the long-term reliability of the heat insulation performance of the vacuum heat insulator can be easily guaranteed.

【0073】しかし、酸化防止剤を適用した場合も真空
断熱体の外部から侵入するガス成分が若干考えられるた
め、これを除去すべく少量のガス吸着剤の添加が必要で
ある。
However, even when an antioxidant is applied, a small amount of gas components entering from the outside of the vacuum heat insulator can be considered. Therefore, it is necessary to add a small amount of a gas adsorbent to remove the gas components.

【0074】また、融点の低い酸化防止剤を適用した場
合は、芯材の加熱脱ガス処理工程に酸化防止剤が溶融し
芯材を構成する粉体を凝結させてしまい芯材の特性低下
につながる。更には、酸化防止剤の粉体への分散が不均
一になり酸化防止効果の低下が生じるためか、熱伝導率
の改善効果が低下した。
When an antioxidant having a low melting point is used, the antioxidant is melted in the heating and degassing process of the core material, and the powder constituting the core material is condensed, thereby deteriorating the properties of the core material. Connect. Furthermore, the effect of improving the thermal conductivity was reduced, possibly because the dispersion of the antioxidant in the powder was not uniform and the antioxidant effect was reduced.

【0075】また、酸化防止剤の比表面積が有機樹脂組
成物を粉砕した粉体の比表面積の5倍未満である場合
も、同様に、酸化防止剤の粉体への分散が不均一になり
酸化防止効果が低下するためか、熱伝導率の改善効果が
低下した。
When the specific surface area of the antioxidant is less than 5 times the specific surface area of the powder obtained by pulverizing the organic resin composition, the dispersion of the antioxidant in the powder also becomes non-uniform. Presumably, the effect of improving the thermal conductivity was reduced, probably because the antioxidant effect was reduced.

【0076】更に、酸化防止剤の担持量については、芯
材の0.1重量パーセント以上5重量パーセント以下の
場合が最も効率的に熱伝導率の改善効果が得られた。
Further, with respect to the loading amount of the antioxidant, the effect of improving the thermal conductivity was most efficiently obtained when the amount of the antioxidant was 0.1% by weight or more and 5% by weight or less.

【0077】なお、酸化防止剤は、前記融点、前記比表
面積、及び前記添加量にて適用するのが最も効率的であ
り、経時的な断熱性能においても高性能であるが、この
範囲を超えて適用しても何等問題なく、低融点の酸化防
止剤を使用した場合は粉体を凝縮固化させる事も可能で
ある。
It is most efficient to apply the antioxidant at the melting point, the specific surface area, and the amount of addition, and the antioxidant is also high in heat insulation performance over time. There is no problem even if it is applied in the form of a powder. When a low melting point antioxidant is used, the powder can be condensed and solidified.

【0078】一方、芯材を構成する有機樹脂組成物とし
ては、ウレタン、フェノール、ポリスチレン、ポリプロ
ピレン、ポリエチレン樹脂等、熱硬化性樹脂、熱可塑性
樹脂の何れに関わらず殆どの有機樹脂組成物が適用でき
るが、樹脂熱伝導率が低い樹脂組成物が適している。そ
の中でも、特にウレタン樹脂組成物の発泡体である硬質
ウレタンフォームを粉砕した粉末が真空断熱体の芯材と
して最も効果的であった。
On the other hand, most organic resin compositions such as urethane, phenol, polystyrene, polypropylene, polyethylene resin and the like, regardless of thermosetting resin or thermoplastic resin, can be used as the organic resin composition constituting the core material. Although it is possible, a resin composition having a low resin thermal conductivity is suitable. Among them, a powder obtained by grinding hard urethane foam, which is a foam of the urethane resin composition, was most effective as the core material of the vacuum heat insulator.

【0079】また、硬質ウレタンフォームを粉砕した粉
末を適用する場合は、使用済み冷蔵庫から回収したウレ
タン廃材、及び建築物用のウレタンボード廃材、及び硬
質ウレタンフォーム製品製造時の工場生産ロス材料等、
様々な廃材、及び産業廃棄物が適用できるため地球環境
保護や省資源リサイクルの面からも適している。
When a powder obtained by crushing hard urethane foam is used, urethane waste collected from used refrigerators, urethane board waste for buildings, and loss of materials produced at the factory for manufacturing rigid urethane foam products, etc.
Since various waste materials and industrial wastes can be applied, they are also suitable from the viewpoint of global environmental protection and resource saving and recycling.

【0080】また、硬質ウレタンフォームを平均粒径1
50〜200μm程度の粒径に粉砕したウレタン粉末は
針状構造を有しており、嵩密度の小さい、嵩高い粉末で
あるため芯材の低密度化が可能、すなわち真空断熱体の
軽量化が達成される。
Further, the rigid urethane foam was prepared with an average particle size of 1
Urethane powder pulverized to a particle size of about 50 to 200 μm has a needle-like structure, and has a small bulk density and is a bulky powder, so that the core material can have a low density. Achieved.

【0081】(実施例2)一方、図2は、本発明の一実
施例における断熱箱体の断面図であり、断熱箱体8は、
ABS樹脂を真空成形した内箱9と鉄板をプレス成形し
た外箱10とがフランジ11を介して構成される箱体内
部に予め真空断熱体1を配設し、前記真空断熱体以外の
空間部を硬質ウレタンフォーム12で発泡充填したもの
である。
(Embodiment 2) FIG. 2 is a sectional view of a heat insulating box according to an embodiment of the present invention.
The vacuum heat insulator 1 is disposed in advance in a box body including an inner box 9 formed by vacuum-molding an ABS resin and an outer box 10 formed by press-forming an iron plate via a flange 11, and a space other than the vacuum heat insulator is provided. Is foam-filled with a rigid urethane foam 12.

【0082】なお、真空断熱体1は、実施例1で示した
ものと同等品である。従って、上記構成によって、経時
的にも優れた断熱性能を維持することができる。また、
無機粉末を芯材とする真空断熱体を適用する場合と比較
して断熱箱体重量が低減する。更には、断熱箱体のリサ
イクル性が大幅に向上する。
The vacuum heat insulator 1 is equivalent to that shown in the first embodiment. Therefore, with the above configuration, excellent heat insulating performance can be maintained over time. Also,
The weight of the heat-insulating box is reduced as compared with the case where a vacuum heat-insulating material having an inorganic powder as a core material is applied. Furthermore, the recyclability of the heat insulating box is greatly improved.

【0083】更に、芯材に、使用済み冷蔵庫から回収し
たウレタン廃材、及び建築物用のウレタンボード廃材、
及び硬質ウレタンフォーム製品製造時の工場生産ロス材
料等、様々な廃材、及び産業廃棄物となった硬質ウレタ
ンフォームを粉砕した粉末を適用しているため、地球環
境保護や省資源リサイクルの面からも優れた断熱箱体が
提供できる。
Further, as core materials, urethane waste materials recovered from used refrigerators and urethane board waste materials for buildings,
Since various types of waste materials, such as loss of materials produced at the factory when manufacturing rigid urethane foam products, and powders obtained by crushing hard urethane foam that has become industrial waste are applied, from the viewpoint of global environmental protection and resource saving recycling. An excellent heat insulation box can be provided.

【0084】また、この様な断熱箱体は極めて高い断熱
性能を有しており、一般的な冷蔵庫や冷凍庫の筐体、及
びそのドア体として適用すると一層効果的である。
Further, such a heat-insulating box has extremely high heat-insulating performance, and is more effective when applied as a housing of a general refrigerator or freezer and a door thereof.

【0085】(実施例3)図3は、本発明の一実施例に
おける断熱パネルの断面図である。
(Embodiment 3) FIG. 3 is a sectional view of a heat insulating panel according to an embodiment of the present invention.

【0086】13は断熱パネルであり、1は真空断熱
体、14はスチロール樹脂を発泡成形した凹構造を有す
る構造体であり、15はABS樹脂をインジェクション
により成形した面材であり、これらを取り外し可能なよ
うに組み合わせて作製されている。
Reference numeral 13 denotes a heat insulating panel, 1 denotes a vacuum heat insulator, 14 denotes a structure having a concave structure formed by foaming styrene resin, and 15 denotes a face material formed by injection molding of an ABS resin. They are made in combination as possible.

【0087】なお、真空断熱体1は、実施例1で示した
ものと同等品である。従って、上記構成によって、経時
的にも優れた断熱特性を維持することができる。また、
無機粉末を芯材とする真空断熱体を適用する場合と比較
して断熱パネルの重量が低減する。更には、断熱パネル
のリサイクル性が大幅に向上する。
The vacuum heat insulator 1 is equivalent to that shown in the first embodiment. Therefore, with the above configuration, excellent heat insulating properties can be maintained over time. Also,
The weight of the heat insulating panel is reduced as compared with the case where a vacuum heat insulator using inorganic powder as a core material is applied. Furthermore, the recyclability of the heat insulating panel is greatly improved.

【0088】更に、芯材に、使用済み冷蔵庫から回収し
たウレタン廃材、及び建築物用のウレタンボード廃材、
及び硬質ウレタンフォーム製品製造時の工場生産ロス材
料等、様々な廃材、及び産業廃棄物となった硬質ウレタ
ンフォームを粉砕した粉末を適用しているため、地球環
境保護や省資源リサイクルの面からも優れた断熱パネル
が提供できる。
Further, as core materials, urethane waste materials recovered from used refrigerators and urethane board waste materials for buildings,
Since various types of waste materials, such as loss of materials produced at the factory when manufacturing rigid urethane foam products, and powders obtained by crushing hard urethane foam that has become industrial waste are applied, from the viewpoint of global environmental protection and resource saving recycling. Excellent insulation panels can be provided.

【0089】また、この様な断熱パネルは極めて高い断
熱性能を有しており、一般的な冷蔵庫において、冷蔵室
と冷凍室を仕切るバリア用のパネル、及び冷蔵庫のドア
パネル等様々な用途における断熱パネルとして適用でき
る。
Further, such a heat insulating panel has extremely high heat insulating performance, and is used in various applications such as a general refrigerator, a panel for a barrier separating a refrigerator compartment and a freezer compartment, and a door panel of a refrigerator. Applicable as

【0090】更に、真空断熱体が断熱パネルの構造体と
接着固定されていないため、真空断熱体が破袋した場合
等のサービス性も良好である。
Further, since the vacuum heat insulator is not adhered and fixed to the structure of the heat insulating panel, the serviceability in the case where the vacuum heat insulator breaks or the like is good.

【0091】(実施例4)図4は、本発明の一実施例に
おける断熱パネルの断面図である。
(Embodiment 4) FIG. 4 is a sectional view of a heat insulating panel according to an embodiment of the present invention.

【0092】16は断熱パネルであり、1は真空断熱体
で複数個配設されている。また、17はウレタン樹脂組
成物であり、18はアルミ箔をラミネートしたポリエチ
レンコート紙からなる面材である。
Reference numeral 16 denotes a heat insulating panel, and 1 denotes a plurality of vacuum heat insulators. Reference numeral 17 denotes a urethane resin composition, and reference numeral 18 denotes a face material made of polyethylene-coated paper laminated with aluminum foil.

【0093】本断熱パネルは図4に示すように、真空断
熱体の少なくとも一平面がウレタン樹脂組成物で発泡充
填により覆われており、真空断熱体、或いはウレタン樹
脂組成物の外方が面材で被覆され断熱パネルである。
As shown in FIG. 4, at least one plane of the vacuum heat insulator is covered with a urethane resin composition by foam filling, and the outside of the vacuum heat insulator or the urethane resin composition is a face material. It is a heat insulation panel covered with.

【0094】なお、真空断熱体1は、実施例1で示した
ものと同等品である。また、本実施例では、断熱パネル
を平面上に複数個配設しているが、積層に複数個配設し
ても何等問題なく、配設する真空断熱体の大きさ、個数
についても任意に設定できる。
The vacuum heat insulator 1 is equivalent to that shown in the first embodiment. Further, in the present embodiment, a plurality of heat insulating panels are arranged on a plane, but there is no problem even if a plurality of heat insulating panels are arranged in a stack, and the size and the number of vacuum heat insulators to be arranged are arbitrarily determined. Can be set.

【0095】従って、上記構成によって、経時的にも優
れた断熱特性を維持することができる。また、無機粉末
を芯材とする真空断熱体を適用する場合と比較して断熱
パネル重量が低減することから取り扱い性が向上する。
更には、断熱パネルのリサイクル性が大幅に向上する。
Therefore, with the above configuration, excellent heat insulating properties can be maintained over time. In addition, since the weight of the heat insulating panel is reduced as compared with the case where a vacuum heat insulator having an inorganic powder as a core material is applied, handleability is improved.
Furthermore, the recyclability of the heat insulating panel is greatly improved.

【0096】また、真空断熱体が面材やウレタン樹脂組
成物によって覆われているため、外的衝撃が真空断熱体
に直接加わることがない。
Further, since the vacuum heat insulator is covered with the face material and the urethane resin composition, no external impact is directly applied to the vacuum heat insulator.

【0097】更に、芯材に、使用済み冷蔵庫から回収し
たウレタン廃材、及び建築物用のウレタンボード廃材、
及び硬質ウレタンフォーム製品製造時の工場生産ロス材
料等、様々な廃材、及び産業廃棄物となった硬質ウレタ
ンフォームを粉砕した粉末を適用しているため、地球環
境保護や省資源リサイクルの面からも優れた断熱パネル
が提供できる。
Further, in the core material, urethane waste materials recovered from used refrigerators and urethane board waste materials for buildings,
Since various types of waste materials, such as loss of materials produced at the factory when manufacturing rigid urethane foam products, and powders obtained by crushing hard urethane foam that has become industrial waste are applied, from the viewpoint of global environmental protection and resource saving recycling. Excellent insulation panels can be provided.

【0098】また、この様な断熱パネルは極めて高い断
熱性能を有しており、一般的な建築物用の断熱パネル、
及び建築物の構造材等様々な用途において断熱パネルと
して適用できる。
Further, such a heat insulating panel has extremely high heat insulating performance, and is generally used for a building.
It can be applied as a heat insulating panel in various uses such as structural materials for buildings.

【0099】また、面材の材料については特に限定する
ものではなく、有機材料、無機材料いずれの材料を用い
てもよいが、パネル全体の難燃性を考慮すると石膏ボー
ド等の難燃性面材であることが望ましい。
The material of the face material is not particularly limited, and any of an organic material and an inorganic material may be used. However, considering the flame retardancy of the entire panel, a flame-retardant surface such as a gypsum board is used. Desirably, it is a material.

【0100】更に、面材は発泡断熱材への水分侵入や発
泡断熱材気泡内からのガス拡散、及び空気の透過侵入を
防止するためにガスバリア性を有する材料の適用が望ま
しく、面材のガスバリア性が低い場合は金属箔等の材料
を併用することがより望ましい。
Further, it is desirable to use a material having a gas barrier property for preventing moisture penetration into the foamed heat insulating material, gas diffusion from inside the foamed heat insulating material bubbles, and permeation and invasion of air. When the property is low, it is more desirable to use a material such as a metal foil in combination.

【0101】また、ウレタン樹脂組成物は、難燃性のウ
レタン樹脂組成物であることが望ましくベンジリックエ
ーテル型フェノールポリオールや、有機リン含有難燃ポ
リオールや、イソシアヌレート環含有ポリマーポリオー
ル等の難燃性ポリオール成分を適用して発泡生成したウ
レタン樹脂組成物や、イソシアネートインデクスを増加
させて発泡生成したイソシアヌレートフォームであるこ
とが望ましい。
The urethane resin composition is preferably a flame-retardant urethane resin composition, such as a benzylic ether-type phenol polyol, an organic phosphorus-containing flame-retardant polyol, or an isocyanurate ring-containing polymer polyol. It is preferable to use a urethane resin composition foamed by applying a water-soluble polyol component, or an isocyanurate foam foamed by increasing an isocyanate index.

【0102】また、ウレタン樹脂組成物には難燃剤を適
用することが望ましく、難燃剤としては有機系、無機
系、及び反応型、添加型を問わないが有毒な燃焼ガスを
発生しない非ハロゲン系化合物であることが望ましい。
より好ましくは、有機リン酸系化合物とポリリン酸アン
モニウム系化合物や、メラミン、及びその誘導体を複合
化したものが特に効果的である。
It is desirable to apply a flame retardant to the urethane resin composition. Examples of the flame retardant include organic, inorganic, and non-halogen flame retardants that do not generate toxic combustion gas, regardless of reaction type or addition type. Desirably, it is a compound.
More preferably, a compound obtained by complexing an organic phosphoric acid compound with an ammonium polyphosphate compound, melamine, or a derivative thereof is particularly effective.

【0103】また、本実施例では図示していないが断熱
パネルは用途に応じて枠体、或いは縦材、或いは横材を
配設することも可能である。
Although not shown in this embodiment, the heat insulation panel may be provided with a frame, a vertical member, or a horizontal member depending on the application.

【0104】[0104]

【発明の効果】以上のように本発明の真空断熱体は、ガ
スバリア性ラミネートフィルムからなる外装材の内部
に、通気性を有する内袋材へ有機樹脂組成物を粉砕した
粉体の一部に少なくとも酸化防止剤を担持させた粉体を
充填してなる芯材と、ガス吸着剤とを含み、外装材内部
が減圧真空化されてなるものである。
As described above, the vacuum heat insulator of the present invention can be used as a part of the powder obtained by pulverizing the organic resin composition into a gas-permeable inner bag material inside the exterior material made of a gas barrier laminate film. It contains a core material filled with at least a powder carrying an antioxidant and a gas adsorbent, and the interior of the exterior material is evacuated to a reduced pressure.

【0105】従って、芯材を構成する有機樹脂組成物の
粉体は、冷蔵庫廃材、及び廃建材、及び樹脂製品製造時
の生産ロス材料等の廃材を粉砕した粉末であり、これら
は従来の合成シリカ等の無機物と比較して重量が軽く、
扱いやすい。また、粉砕加工についても容易、かつ低コ
ストで達成可能であり、真空断熱体の芯材が安価に製造
できるのである。
Therefore, the powder of the organic resin composition constituting the core material is a powder obtained by pulverizing waste materials such as refrigerator waste materials, waste building materials, and production loss materials in the production of resin products. Lighter weight than inorganic substances such as silica,
easy to handle. In addition, the pulverization can be achieved easily and at low cost, and the core material of the vacuum heat insulator can be manufactured at low cost.

【0106】更に、有機樹脂組成物を粉砕加工して得た
粉末に酸化防止剤を担持しているため、粉砕、及び熱処
理過程に生じるラジカルに起因した樹脂の劣化分解が抑
制され、真空断熱体の経時的な断熱性能も改善される。
Further, since an antioxidant is carried on the powder obtained by pulverizing the organic resin composition, deterioration and decomposition of the resin caused by radicals generated during the pulverization and heat treatment are suppressed, and the vacuum insulator The heat insulation performance over time is also improved.

【0107】また、本発明の真空断熱体は、ガスバリア
性ラミネートフィルムからなる外装材の内部に、通気性
を有する内袋材へ少なくともウレタン樹脂組成物の発泡
体を含む有機樹脂組成物を粉砕した粉体の一部に少なく
とも酸化防止剤を担持させた粉体を充填してなる芯材
と、ガス吸着剤とを含み、外装材内部が減圧真空化され
てなるものである。
Further, in the vacuum heat insulator of the present invention, an organic resin composition containing at least a urethane resin composition foam is crushed into an air-permeable inner bag material inside an exterior material made of a gas barrier laminate film. It comprises a core material in which at least a part of the powder is filled with a powder carrying at least an antioxidant, and a gas adsorbent, and the interior of the exterior material is evacuated and evacuated.

【0108】従って、芯材を構成するウレタン樹脂組成
物の発泡体を粉砕した粉体は、使用済み冷蔵庫から回収
したウレタン廃材、及び建材用ウレタンボード廃材、及
びウレタンフォーム製品製造時の工場生産ロス材料等の
廃材であっても容易に適用できる。また、粉砕加工につ
いても容易、かつ低コストで達成可能であり、真空断熱
体の芯材が安価に製造できるのである。
Therefore, the powder obtained by pulverizing the foam of the urethane resin composition constituting the core material is a waste of urethane recovered from used refrigerators, a waste of urethane boards for building materials, and a factory production loss in the production of urethane foam products. Even waste materials such as materials can be easily applied. In addition, the pulverization can be achieved easily and at low cost, and the core material of the vacuum heat insulator can be manufactured at low cost.

【0109】また、粉砕したウレタンフォーム粉末は針
状構造を有しており嵩高いことから微粉末であっても低
密度を維持することが可能となる。
Further, the crushed urethane foam powder has a needle-like structure and is bulky, so that it is possible to maintain a low density even if it is a fine powder.

【0110】更に、廃ウレタンフォームを粉砕加工して
得た粉末に酸化防止剤を担持しているため、粉砕、及び
熱処理過程に生じるラジカルに起因した樹脂の劣化分解
が抑制され、真空断熱体の経時的な断熱性能も改善され
る。
Further, since an antioxidant is carried on the powder obtained by pulverizing the waste urethane foam, deterioration and decomposition of the resin caused by radicals generated in the pulverization and heat treatment processes are suppressed, and the vacuum heat insulator is reduced. Thermal insulation performance over time is also improved.

【0111】また、本発明の真空断熱体は、芯材となる
粉体に担持させた酸化防止剤において、その酸化防止剤
の融点が200℃以上である。
In the vacuum heat insulator of the present invention, the melting point of the antioxidant carried on the powder as the core material is 200 ° C. or higher.

【0112】従って、芯材を高温で加熱脱ガス処理を行
っても、酸化防止剤が溶融することなく安定的にウレタ
ン樹脂粉体に担持されることから、ウレタン樹脂の酸
化、及び熱酸化による劣化分解が安定的に抑制可能であ
る。
Therefore, even when the core material is subjected to heat degassing at a high temperature, the antioxidant is stably supported on the urethane resin powder without melting, so that the urethane resin is oxidized and thermally oxidized. Deterioration and decomposition can be suppressed stably.

【0113】また、高い融点を有する酸化防止剤を適用
していることから芯材の加熱処理時に酸化防止剤の溶融
が生じず、芯材を構成する粉体を凝縮させることも無
い。
Further, since the antioxidant having a high melting point is applied, the antioxidant does not melt during the heat treatment of the core material, and the powder constituting the core material does not condense.

【0114】また、本発明の真空断熱体は、芯材となる
粉体に担持させた酸化防止剤において、その酸化防止剤
の比表面積がウレタン樹脂組成物の発泡体を粉砕した粉
体の比表面積よりも5倍以上大きい粉体である。
Further, in the vacuum heat insulator of the present invention, the specific surface area of the antioxidant carried on the powder as the core material is the same as that of the powder obtained by pulverizing the foam of the urethane resin composition. The powder is at least 5 times larger than the surface area.

【0115】従って、ウレタン樹脂と相溶しなくとも、
混合攪拌するだけで容易に酸化防止剤の効果を十分発揮
させることが可能となる。
Therefore, even if it is not compatible with the urethane resin,
The effect of the antioxidant can be sufficiently exerted easily only by mixing and stirring.

【0116】また、本発明の真空断熱体は、有機樹脂組
成物を粉砕した粉体に担持させた酸化防止剤において、
その担持量が芯材の0.1重量パーセント以上5重量パ
ーセント以下である。
Further, the vacuum heat insulator of the present invention is an antioxidant in which an organic resin composition is supported on pulverized powder.
The supported amount is 0.1% by weight or more and 5% by weight or less of the core material.

【0117】従って、真空断熱体の断熱性能への弊害な
く酸化防止剤の効果を十分に発揮させることが可能とな
る。
Therefore, the effect of the antioxidant can be sufficiently exhibited without adversely affecting the heat insulating performance of the vacuum heat insulator.

【0118】また、本発明の真空断熱体の製造方法は、
有機樹脂組成物を粉砕成形した粉体と酸化防止剤とを混
合攪拌し、酸化防止剤を有機樹脂組成物からなる粉体に
担持させた後、前記粉体を通気性を有する内袋材へ充填
させ芯材とし、前記芯材を120℃〜180℃にて加熱
処理を実施した後、ガス吸着剤と共に、ガスバリア性ラ
ミネートフィルム製の外装材へ挿入し、内部を133パ
スカル以下に減圧真空後、熱融着により外装材端部を封
止してなるものである。
The method for producing a vacuum heat insulator of the present invention
The powder obtained by pulverizing the organic resin composition and the antioxidant are mixed and stirred, and the antioxidant is supported on the powder composed of the organic resin composition. After filling the core material and performing heat treatment on the core material at 120 ° C. to 180 ° C., it is inserted together with a gas adsorbent into an exterior material made of a gas barrier laminate film, and the inside is decompressed and vacuumed to 133 Pascal or less. In this case, the end of the exterior material is sealed by heat fusion.

【0119】従って、芯材となる酸化防止剤を担持した
有機樹脂組成物からなる粉末、及び前記粉末を充填した
真空断熱体の芯材を容易に作製可能である。
Therefore, it is possible to easily produce a powder made of an organic resin composition carrying an antioxidant as a core material, and a core material of a vacuum insulator filled with the powder.

【0120】また、芯材の脱水、脱ガスを目的とした加
熱処理時、更には真空排気時等の真空断熱材の製造工程
においても汎用的な設備にて容易に作製可能である。
Further, it can be easily manufactured with general-purpose equipment in the heating process for the purpose of dehydrating and degassing the core material, and also in the vacuum insulating material manufacturing process such as vacuum evacuation.

【0121】また、芯材として適用する有機樹脂組成物
の粉体が熱酸化分解を引き起こすような従来の加熱処理
温度においても酸化防止剤を適用しているため問題なく
加熱処理が可能となり、従来、処理できなかったウレタ
ン樹脂に強固に親和溶解したガス成分についても容易に
除去可能となる。
Further, since the antioxidant is applied even at the conventional heat treatment temperature at which the powder of the organic resin composition used as the core material causes thermal oxidative decomposition, heat treatment can be performed without any problem. Also, gas components that have been strongly dissolved in the urethane resin that could not be treated can be easily removed.

【0122】また本発明の断熱箱体は、内箱と外箱とで
構成される箱体内部に真空断熱体を有し、前記真空断熱
体以外の空間部がウレタン樹脂組成物で発泡充填された
断熱箱体において、前記真空断熱体が請求項1または2
記載の真空断熱体である。
Further, the heat insulating box of the present invention has a vacuum heat insulator inside a box composed of an inner box and an outer box, and a space other than the vacuum heat insulator is foam-filled with a urethane resin composition. In a heat-insulated box, the vacuum heat-insulating body is formed by a vacuum.
It is a vacuum insulator described.

【0123】従って、長期にわたって断熱性能が優れた
断熱箱体が得られる。更に、断熱箱体の軽量化が達成さ
れる。
Accordingly, a heat insulating box having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating box is reduced.

【0124】また、本発明の断熱パネルは、有機樹脂組
成物からなる凹構造を有する構造体と、構造体の凹部に
配設した真空断熱体と、その構造体の凹部開放面を被覆
する面材とにより構成された断熱パネルにおいて、前記
真空断熱体が請求項1または2記載の真空断熱体であ
る。
Further, the heat insulating panel of the present invention has a structure having a concave structure made of an organic resin composition, a vacuum heat insulator disposed in a concave portion of the structure, and a surface covering an open surface of the concave portion of the structure. In a heat insulation panel constituted by a material, the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.

【0125】従って、長期にわたって断熱性能が優れた
断熱パネルが得られる。更に断熱パネルの軽量化が達成
される。
Therefore, a heat insulating panel having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating panel is reduced.

【0126】また、本発明の断熱パネルは、ウレタン樹
脂組成物と、複数個の真空断熱体と、真空断熱体の外方
に設けられる面材とにより構成され、真空断熱体の少な
くとも一平面がウレタン樹脂組成物によって覆われてい
る断熱パネルにおいて、前記真空断熱体が請求項1また
は2記載の真空断熱体である。
The heat insulation panel of the present invention comprises a urethane resin composition, a plurality of vacuum heat insulators, and a face material provided outside the vacuum heat insulator, and at least one plane of the vacuum heat insulator is provided. In a heat insulating panel covered with a urethane resin composition, the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.

【0127】従って、長期にわたって断熱性能が優れた
断熱パネルが得られる。更に断熱パネルの軽量化が達成
される。
Accordingly, a heat insulating panel having excellent heat insulating performance over a long period of time can be obtained. Further, the weight of the heat insulating panel is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による真空断熱体断面の模
式図
FIG. 1 is a schematic diagram of a cross section of a vacuum insulator according to an embodiment of the present invention.

【図2】本発明の一実施形態による断熱箱体の断面図FIG. 2 is a cross-sectional view of a heat insulating box according to one embodiment of the present invention.

【図3】本発明の一実施形態による断熱パネルの断面図FIG. 3 is a cross-sectional view of a heat insulating panel according to an embodiment of the present invention.

【図4】本発明の一実施形態による断熱パネルの断面図FIG. 4 is a sectional view of a heat insulating panel according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空断熱体 2 芯材 3 内袋材 4 粉体 5 酸化防止剤 6 ガス吸着剤 7 外装材 8 断熱箱体 9 内箱 10 外箱 11 フランジ 12 硬質ウレタンフォーム 13,16 断熱パネル 14 有機樹脂組成物 15,18 面材 17 ウレタン樹脂組成物 DESCRIPTION OF SYMBOLS 1 Vacuum heat insulator 2 Core material 3 Inner bag material 4 Powder 5 Antioxidant 6 Gas adsorbent 7 Exterior material 8 Heat insulation box 9 Inner box 10 Outer box 11 Flange 12 Rigid urethane foam 13, 16 Heat insulation panel 14 Organic resin composition Object 15,18 face material 17 urethane resin composition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI E04B 1/80 E04B 1/80 D (72)発明者 宅島 司 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 林 千恵 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI E04B 1/80 E04B 1/80 D (72) Inventor Tsukasa Tsushima 4-5-2-5 Takaida Hondori, Higashi-Osaka-shi, Osaka Matsushita Refrigerator Inside (72) Inventor Chie Hayashi 4-5-2-5 Takaida Hondori, Higashiosaka-shi, Osaka Matsushita Refrigeration Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガスバリア性ラミネートフィルムからな
る外装材の内部に、通気性を有する内袋材へ有機樹脂組
成物を粉砕した粉体の一部に少なくとも酸化防止剤を担
持させた粉体を充填してなる芯材と、ガス吸着剤とを含
み、外装材内部が減圧真空化されてなることを特徴とす
る真空断熱体。
1. An outer package made of a gas barrier laminate film is filled with a powder in which at least an antioxidant is carried on a part of a powder obtained by pulverizing an organic resin composition into a breathable inner bag material. A vacuum heat insulator comprising: a core material formed as described above; and a gas adsorbent, wherein the interior of the exterior material is evacuated to a reduced pressure.
【請求項2】 ガスバリア性ラミネートフィルムからな
る外装材の内部に、通気性を有する内袋材へ少なくとも
ウレタン樹脂組成物の発泡体を含む有機樹脂組成物を粉
砕した粉体の一部に少なくとも酸化防止剤を担持させた
粉体を充填してなる芯材と、ガス吸着剤とを含み、外装
材内部が減圧真空化されてなることを特徴とする真空断
熱体。
2. At least a part of a powder obtained by pulverizing an organic resin composition containing a foam of a urethane resin composition into an inner bag material having air permeability inside an exterior material made of a gas barrier laminate film is oxidized to at least a part of the powder. A vacuum heat insulator comprising a core material filled with a powder carrying an inhibitor and a gas adsorbent, wherein the interior of the exterior material is evacuated to a reduced pressure.
【請求項3】 ガスバリア性ラミネートフィルムからな
る外装材の内部に、通気性を有する内袋材へ少なくとも
ウレタン樹脂組成物の発泡体を含む有機樹脂組成物を粉
砕した粉体の一部に少なくとも酸化防止剤を担持させた
粉体を充填してなる芯材と、ガス吸着剤とを含み、外装
材内部が減圧真空化されてなる真空断熱体において、前
記酸化防止剤の融点が200℃以上であることを特徴と
する真空断熱体。
3. At least a part of a powder obtained by pulverizing an organic resin composition containing a foam of a urethane resin composition into an inner bag material having air permeability inside an exterior material made of a gas barrier laminate film is at least oxidized. In a vacuum insulator comprising a core material filled with a powder carrying an antioxidant and a gas adsorbent, and the interior of the exterior material is evacuated to a reduced pressure, the melting point of the antioxidant is 200 ° C or more. A vacuum insulator comprising:
【請求項4】 ガスバリア性ラミネートフィルムからな
る外装材の内部に、通気性を有する内袋材へ少なくとも
ウレタン樹脂組成物の発泡体を含む有機樹脂組成物を粉
砕した粉体の一部に少なくとも酸化防止剤を担持させた
粉体を充填してなる芯材と、ガス吸着剤とを含み、外装
材内部が減圧真空化されてなる真空断熱体において、前
記酸化防止剤の比表面積が有機樹脂組成物を粉砕した粉
体の比表面積よりも5倍以上大きい粉体であることを特
徴とする真空断熱体。
4. At least a part of a powder obtained by pulverizing an organic resin composition containing a foam of a urethane resin composition into an inner bag material having air permeability inside an exterior material made of a gas barrier laminate film is at least oxidized. In a vacuum insulating body including a core material filled with a powder carrying an antioxidant and a gas adsorbent, and the inside of the exterior material is evacuated to a reduced pressure, the specific surface area of the antioxidant is an organic resin composition. A vacuum heat insulator characterized in that the powder is at least five times as large as the specific surface area of the powder obtained by grinding the material.
【請求項5】 ガスバリア性ラミネートフィルムからな
る外装材の内部に、通気性を有する内袋材へ少なくとも
ウレタン樹脂組成物の発泡体を含む有機樹脂組成物を粉
砕した粉体の一部に少なくとも酸化防止剤を担持させた
粉体を充填してなる芯材と、ガス吸着剤とを含み、外装
材内部が減圧真空化されてなる真空断熱体において、前
記酸化防止剤の担持量が芯材の0.1重量パーセント以
上5重量パーセント以下であることを特徴とする真空断
熱体。
5. At least a part of a powder obtained by pulverizing an organic resin composition containing a foam of a urethane resin composition into an inner bag material having air permeability inside an exterior material made of a gas barrier laminate film is at least oxidized. In a vacuum insulator including a core material filled with a powder loaded with an antioxidant and a gas adsorbent, and the interior of the exterior material is evacuated to a reduced pressure, the amount of the antioxidant carried is the core material. A vacuum insulator having a content of 0.1% by weight or more and 5% by weight or less.
【請求項6】 有機樹脂組成物を粉砕成形した粉体と酸
化防止剤とを混合攪拌し、酸化防止剤を有機樹脂組成物
からなる粉体に担持させた後、前記粉体を通気性を有す
る内袋材へ充填させ芯材とし、前記芯材を120℃〜1
80℃にて加熱処理を実施した後、ガス吸着剤と共に、
ガスバリア性ラミネートフィルム製の外装材へ挿入し、
内部を133パスカル以下に減圧真空後、熱融着により
外装材端部を封止してなることを特徴とする真空断熱体
の製造方法。
6. A powder obtained by pulverizing and molding an organic resin composition and an antioxidant are mixed and stirred, and the antioxidant is carried on a powder comprising the organic resin composition. The core material is filled in the inner bag material having the core material,
After performing the heat treatment at 80 ° C, together with the gas adsorbent,
Insert into the gas barrier laminate film exterior material,
A method for manufacturing a vacuum heat insulator, comprising reducing the pressure of the interior to 133 Pascal or less and then sealing the end of the exterior material by heat fusion.
【請求項7】 内箱と外箱とで構成される箱体内部に真
空断熱体を有し、前記真空断熱体以外の空間部がウレタ
ン樹脂組成物で発泡充填された断熱箱体において、前記
真空断熱体が請求項1または2記載の真空断熱体である
ことを特徴とする断熱箱体。
7. A heat insulating box body having a vacuum heat insulator inside a box constituted by an inner box and an outer box, wherein a space other than the vacuum heat insulator is foam-filled with a urethane resin composition. A heat insulating box, wherein the vacuum heat insulator is the vacuum heat insulator according to claim 1.
【請求項8】 有機樹脂組成物からなる凹構造を有する
構造体と、構造体の凹部に配設した真空断熱体と、その
構造体の凹部開放面を被覆する面材とにより構成された
断熱パネルにおいて、前記真空断熱体が請求項1または
2記載の真空断熱体であることを特徴とする断熱パネ
ル。
8. A heat insulator comprising a structure having a concave structure made of an organic resin composition, a vacuum heat insulator disposed in a concave portion of the structure, and a surface material covering an open surface of the concave portion of the structure. 3. A heat insulating panel, wherein the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.
【請求項9】 ウレタン樹脂組成物と、複数個の真空断
熱体と、真空断熱体の外方に設けられる面材とにより構
成され、真空断熱体の少なくとも一平面がウレタン樹脂
組成物によって覆われている断熱パネルにおいて、前記
真空断熱体が請求項1または2記載の真空断熱体である
ことを特徴とする断熱パネル。
9. A urethane resin composition, a plurality of vacuum heat insulators, and a face material provided outside the vacuum heat insulator, wherein at least one plane of the vacuum heat insulator is covered with the urethane resin composition. A heat insulation panel, wherein the vacuum heat insulator is the vacuum heat insulator according to claim 1 or 2.
JP10114683A 1998-04-24 1998-04-24 Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator Pending JPH11311395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114683A JPH11311395A (en) 1998-04-24 1998-04-24 Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114683A JPH11311395A (en) 1998-04-24 1998-04-24 Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator

Publications (1)

Publication Number Publication Date
JPH11311395A true JPH11311395A (en) 1999-11-09

Family

ID=14644040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114683A Pending JPH11311395A (en) 1998-04-24 1998-04-24 Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator

Country Status (1)

Country Link
JP (1) JPH11311395A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167882A (en) * 2000-08-03 2002-06-11 Va Q Tec Ag Heat insulating element wrapped up with air tight foil and vacuumized, and its manufacturing method
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Insulation
JP2008240507A (en) * 2007-02-27 2008-10-09 Mitsubishi Electric Corp Heat insulating material, heat insulating sheet and heat reserving sheet
CN100432520C (en) * 2005-05-20 2008-11-12 日立空调·家用电器株式会社 Vacuum heat insulating material production method
JP2009079448A (en) * 2007-09-27 2009-04-16 Panasonic Corp Building and construction method of this building
WO2016143781A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, and refrigerator
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167882A (en) * 2000-08-03 2002-06-11 Va Q Tec Ag Heat insulating element wrapped up with air tight foil and vacuumized, and its manufacturing method
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Insulation
CN100432520C (en) * 2005-05-20 2008-11-12 日立空调·家用电器株式会社 Vacuum heat insulating material production method
JP2008240507A (en) * 2007-02-27 2008-10-09 Mitsubishi Electric Corp Heat insulating material, heat insulating sheet and heat reserving sheet
JP2009079448A (en) * 2007-09-27 2009-04-16 Panasonic Corp Building and construction method of this building
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
WO2016143781A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, and refrigerator
CN107407454A (en) * 2015-03-10 2017-11-28 东芝生活电器株式会社 Vacuum heat-insulating plate, core and refrigerator
CN107407454B (en) * 2015-03-10 2019-10-18 东芝生活电器株式会社 Vacuum heat-insulating plate, core material and refrigerator
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US12202175B2 (en) 2015-12-08 2025-01-21 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US12275050B2 (en) 2016-08-18 2025-04-15 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system

Similar Documents

Publication Publication Date Title
JPH11311395A (en) Vacuum heat insulator, heat insulating box body, heat insulating panel, and manufacture of vacuum heat insulator
JPH11336990A (en) Vacuum heat insulating body, heat insulated housing and heat insulating panel
US11608472B2 (en) Method for imparting flame retardancy to a substrate material
US6266941B1 (en) Vacuum heat-insulating panel and method for producing the same
EP1400770B1 (en) Insulated box body, refrigerator having the box body, and method of recycling materials for insulated box body
US9145674B2 (en) Vacuum insulation panels comprising nanoporous polymer particles
US20160340517A1 (en) Flame retardant compositions and processes for preparation thereof
CN102020801A (en) Halogen-free flame-retardant polyethylene foaming plastic and preparation method
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
CN103848934A (en) Preparation method for synthesizing expandable polystyrene through efficient composite fire retardation agent
KR20140064904A (en) Vacuum insulation panels containing nanoporous polymer particles
Sharma et al. Polyurethane foams as packing and insulating materials
Wang et al. Influence of caged bicyclic phosphate and CaCO3 nanoparticles on char-forming property of PU rigid foams
JP2009293770A (en) Vacuum heat insulation material and refrigerator using it
JP2002504879A (en) Composite vacuum insulation panel of polystyrene and polyurethane and its use for manufacturing insulation members
KR20220001044A (en) Method for manufacturing highly flame resistant and eco-friendly polyolefin nanocomposite foam using waste polyolefin foam powder
KR102615736B1 (en) Heat reflective insulation panel and manufacturing method thereof
CN105315423A (en) Continuous production-type all-water low-density acoustical board material and preparation method thereof
KR102666785B1 (en) Flame-retardant foam insulation using triazine-based flame retardant and manufacturing method thereof
US20250023159A1 (en) Mineral improving the thermal insulation for under the lid application for battery safety automotive electrification
JP2003227594A (en) Vacuum insulation panel and refrigerator using the same
KR100596192B1 (en) Manufacturing method of porous sheet for building
KR102118390B1 (en) a highly flame resisting and heat insulating styrofoam
KR102434208B1 (en) Method for manufacturing highly flame resistant and eco-friendly rubber-based nanocomposite foam using waste rubber foam powder
KR102360096B1 (en) Highly flame resistant and eco-friendly rubber-based nanocomposite masterbatch using waste rubber foam powder