[go: up one dir, main page]

JP4778996B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP4778996B2
JP4778996B2 JP2008226005A JP2008226005A JP4778996B2 JP 4778996 B2 JP4778996 B2 JP 4778996B2 JP 2008226005 A JP2008226005 A JP 2008226005A JP 2008226005 A JP2008226005 A JP 2008226005A JP 4778996 B2 JP4778996 B2 JP 4778996B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
fiber
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008226005A
Other languages
Japanese (ja)
Other versions
JP2010060044A (en
Inventor
恒 越後屋
邦成 荒木
俊光 鶴賀
大五郎 嘉本
崇 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008226005A priority Critical patent/JP4778996B2/en
Priority to CN2009100042605A priority patent/CN101666415B/en
Priority to KR1020090013189A priority patent/KR101087395B1/en
Publication of JP2010060044A publication Critical patent/JP2010060044A/en
Application granted granted Critical
Publication of JP4778996B2 publication Critical patent/JP4778996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。 The present invention relates to a refrigerator according to the vacuum heat insulator and a vacuum heat insulating material.

地球温暖化防止に対する社会の取り組みとして、COの排出抑制を図るため、様々な分野で省エネ化が推進されている。近年の電気製品、特に冷熱関連の家電製品においては消費電力量低減の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進、製造工程においては燃料代や電気代の抑制等、省エネ化が推進されている。 As a social effort to prevent global warming, energy conservation is being promoted in various fields in order to control CO 2 emissions. In recent years, electric appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption. In addition, in order to reduce energy consumption from various raw materials to product manufacturing processes, energy saving is promoted by promoting recycling of raw materials and reducing fuel and electricity costs in the manufacturing process. .

現在、市場に流通している省エネ製品に採用されている真空断熱材の従来例としては特許文献1に開示されたものがあるが、この真空断熱材は、ガラス繊維であるグラスウールを芯材とし、ガスバリヤ性の外被材で覆って、内部を減圧状態としたものである。芯材であるグラスウールは一定の厚みになるように、ガラス繊維が熱変形し始める高温で加圧プレスを実施して成形するものであり、芯材にバインダーを含まないため断熱性能が良好な真空断熱材が得られるものである。この真空断熱材の適用例として、冷蔵庫等ウレタン発泡断熱材と共に使用される例が示されている。   As a conventional example of a vacuum heat insulating material used in energy-saving products currently distributed in the market, there is one disclosed in Patent Document 1, but this vacuum heat insulating material uses glass wool, which is glass fiber, as a core material. The interior is covered with a gas barrier coating material and the inside is in a reduced pressure state. Glass wool, which is the core material, is formed by pressing at a high temperature at which the glass fiber begins to thermally deform so that it has a constant thickness. Since the core material does not contain a binder, it has a good heat insulation performance. A heat insulating material is obtained. As an application example of this vacuum heat insulating material, an example used with a urethane foam heat insulating material such as a refrigerator is shown.

一方で、リサイクル性を考慮した真空断熱材の従来例として、特許文献2に開示されたものがあるが、この真空断熱材は繊維太さ1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体を芯材としたものである。この繊維径にすることによって、従来の連続気泡ウレタンフォームを上回る断熱性能を実現すると共に、使用後のリサイクル性が非常に優れるとしている。   On the other hand, as a conventional example of a vacuum heat insulating material considering recyclability, there is one disclosed in Patent Document 2, but this vacuum heat insulating material contains 50% by weight or more of polyester fiber having a fiber thickness of 1 to 6 denier. A sheet-like fiber assembly is used as a core material. By using this fiber diameter, heat insulation performance that exceeds that of conventional open-cell urethane foam is achieved, and recyclability after use is extremely excellent.

また、特許文献3に示される真空断熱材は、融点の異なる2種類のポリエステル繊維を含む繊維集合体をシート状に加工してなる芯材を用いたものである。これにより、環境負荷が少ないだけでなく、シート状に加工しやすく、従来のウレタンフォーム板状芯材と遜色ないレベルの断熱性能を実現するものである。
特開2005−220954号公報 特開2006−29505号公報 特開2006−57213号公報
Moreover, the vacuum heat insulating material shown by patent document 3 uses the core material formed by processing the fiber assembly containing two types of polyester fibers from which melting | fusing point differs into a sheet form. Thereby, not only the environmental load is small, but it is easy to process into a sheet shape, and realizes a heat insulation performance at a level comparable to a conventional urethane foam plate-like core material.
Japanese Patent Laid-Open No. 2005-220954 JP 2006-29505 A JP 2006-57213 A

しかしながら、特許文献1〜3の真空断熱材は次のような課題を有している。すなわち、特許文献1の真空断熱材については、グラスウールを芯材としているため、ウレタン発泡時に上昇する温度に耐えられることは勿論、断熱性能も良好で機器の省エネルギーの一助となっているものの、真空断熱材を製造するまでの工程においては、ガラスを溶融して繊維化して得られるグラスウール製造工程や、高温で加圧プレスすることで得られる芯材の製造工程において、熱エネルギーの消費量が膨大となることから、総合的にコストパフォーマンス及び環境配慮性に課題がある。   However, the vacuum heat insulating materials of Patent Documents 1 to 3 have the following problems. In other words, since the vacuum heat insulating material of Patent Document 1 uses glass wool as a core material, it can withstand the temperature that rises during urethane foaming and of course has good heat insulating performance and contributes to energy saving of equipment. In the process up to manufacturing the heat insulating material, the consumption of heat energy is enormous in the glass wool manufacturing process obtained by melting and fiberizing glass and the core manufacturing process obtained by pressing at high temperature. As a result, there are overall issues regarding cost performance and environmental considerations.

ポリエステル繊維を芯材に用いた特許文献2の真空断熱材については、冷蔵庫等のウレタン発泡などで上昇する温度への耐熱性は有しており、芯材製造時のエネルギー消費量の面では特許文献1の発明よりも環境配慮はしているものの、ニードルパンチ法によってシート状加工を施しているため、ポリエステル繊維が部分的に束ねられることにより熱伝導しやすくなり、断熱性能面では特許文献1等のグラスウールを芯材とした真空断熱材に対して大幅に劣るものである。   The vacuum heat insulating material of Patent Document 2 using polyester fiber as the core material has heat resistance to the temperature that rises due to urethane foaming in refrigerators, etc., and is patented in terms of energy consumption during core material manufacture Although more environmentally conscious than the invention of Document 1, since the sheet-like processing is performed by the needle punch method, the polyester fibers are partly bundled so that heat conduction is facilitated. It is significantly inferior to a vacuum heat insulating material having glass wool as a core material.

また、特許文献3の真空断熱材についても、低融点繊維がバインダの役割を担うため、シート状に加工しやすい点はあるが、低融点繊維が潰れて繊維同士の接触が大きくなり熱伝導しやすく、断熱性能面で特許文献1等のグラスウールを芯材とした真空断熱材に対して大幅に劣るものである。以上説明したように、従来公知の真空断熱材は製造時のエネルギー消費量と断熱性能のバランスが悪く、一長一短を有していた。   In addition, in the vacuum heat insulating material of Patent Document 3, since the low melting point fiber plays a role of a binder, there is a point that it is easy to process into a sheet shape, but the low melting point fiber is crushed and contact between the fibers is increased, thereby conducting heat. It is easy, and is far inferior to the vacuum heat insulating material which made glass wool the core material of patent document 1 etc. in the heat insulation performance surface. As described above, conventionally known vacuum heat insulating materials have a bad balance between energy consumption during production and heat insulating performance, and have advantages and disadvantages.

本発明は、真空断熱材製造時のエネルギー消費量を抑制し、環境負荷が小さく、断熱性能面でも高いレベルを実現でき、一定の耐熱温度を確保した真空断熱材を提供することを目的とする。また、本発明は、少なくとも芯材の一部に樹脂系材料を繊維化したものを含んだ真空断熱材を提供するものである。   An object of the present invention is to provide a vacuum heat insulating material that suppresses energy consumption at the time of manufacturing a vacuum heat insulating material, has a small environmental load, can achieve a high level of heat insulating performance, and ensures a certain heat resistant temperature. . The present invention also provides a vacuum heat insulating material including at least a part of a core material obtained by fiberizing a resin material.

前記課題を解決するために、本発明は主として次のような構成を採用する。
繊維集合体からなる芯材と、ガスバリヤ性を有する外被材と、を備えた真空断熱材において、前記芯材は、その中央層に配置した樹脂繊維集合体と、前記樹脂繊維集合体の両側の表面層に配置した繊維集合体と、を有し、前記表面層の繊維集合体は、その軟化温度が前記中央層の樹脂繊維集合体の軟化温度よりも高い材料であり、前記表面層の繊維集合体がシンジオタクチック構造のポリスチレン樹脂であり、前記中央層の樹脂繊維集合体がアタクチック構造のポリスチレン樹脂である真空断熱材。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A vacuum heat insulating material comprising a core material made of a fiber assembly and a jacket material having a gas barrier property, wherein the core material is a resin fiber assembly disposed in a central layer thereof, and both sides of the resin fiber assembly A fiber aggregate disposed in the surface layer of the surface layer, and the fiber aggregate of the surface layer is a material whose softening temperature is higher than the softening temperature of the resin fiber aggregate of the central layer, A vacuum heat insulating material in which a fiber aggregate is a polystyrene resin having a syndiotactic structure, and a resin fiber aggregate in the central layer is a polystyrene resin having an atactic structure .

また、前記真空断熱材において、前記樹脂繊維集合体の両側の表面層に繊維集合体を配置することに代えて、前記樹脂繊維集合体の片側の表面層に前記シンジオタクチック構造のポリスチレン樹脂である繊維集合体を配置する真空断熱材。 Further, in the vacuum heat insulating material, instead of disposing the fiber aggregates on the surface layers on both sides of the resin fiber aggregate, the syndiotactic structure polystyrene resin is used on one surface layer of the resin fiber aggregate. Vacuum insulation material that arranges a certain fiber assembly .

また、前記真空断熱材が、外箱と内箱とによって形成される空間に発泡断熱材とともに設置される冷蔵庫。さらに、前記真空断熱材が、圧縮機、制御又は電源基板、放熱パイプを含む発熱部品と対向する空間に発泡断熱材とともに設置される冷蔵庫。 Moreover, the refrigerator with which the said vacuum heat insulating material is installed with the foam heat insulating material in the space formed by an outer box and an inner box. Furthermore, the refrigerator with which the said vacuum heat insulating material is installed with a foam heat insulating material in the space facing a heat-emitting component containing a compressor, a control or power supply board, and a heat radiating pipe .

本発明によれば、芯材の一部に樹脂繊維材料を採用することにより、真空断熱材及びその材料の製造工程で消費される電気・熱エネルギーを大幅に削減できる。また、従来、樹脂繊維材料を使用した真空断熱材は断熱性能でグラスウールのみを芯材としたものよりも劣っていたが、本発明によれば、グラスウールのみを芯材とした真空断熱材と同等の断熱性能を実現でき、一定の耐熱温度を確保できるものである。   According to the present invention, by adopting the resin fiber material as a part of the core material, it is possible to greatly reduce the electric / thermal energy consumed in the vacuum heat insulating material and the manufacturing process of the material. Conventionally, the vacuum heat insulating material using resin fiber material was inferior to the one using only glass wool as the core material in heat insulating performance, but according to the present invention, it is equivalent to the vacuum heat insulating material using only glass wool as the core material. Heat insulation performance can be realized, and a certain heat-resistant temperature can be secured.

さらに、樹脂材料としては、廃家電等から回収したリサイクル樹脂を使用できることから、リサイクル性の高い真空断熱材及び冷蔵庫を提供できるものである。   Furthermore, since the recycled resin collected from waste home appliances can be used as the resin material, it is possible to provide a highly recyclable vacuum heat insulating material and refrigerator.

本発明の実施形態に係る真空断熱材における、構成例、使用例、適用例、及び比較例について、図面を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る真空断熱材の構成例を示す図である。図2は本実施形態に係る真空断熱材の使用例を示す図である。図3は本実施形態に係る真空断熱材を適用した冷蔵庫の正面図である。図4は本実施形態に係る真空断熱材を適用した冷蔵庫の断面図であり、図3のA−A線断面図である。図5は本実施形態に係る真空断熱材の構成を示す複数の実施例と比較例との対比を表す図である。   Configuration examples, usage examples, application examples, and comparative examples in the vacuum heat insulating material according to the embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a vacuum heat insulating material according to an embodiment of the present invention. FIG. 2 is a diagram showing a usage example of the vacuum heat insulating material according to the present embodiment. FIG. 3 is a front view of a refrigerator to which the vacuum heat insulating material according to the present embodiment is applied. FIG. 4 is a cross-sectional view of a refrigerator to which the vacuum heat insulating material according to the present embodiment is applied, and is a cross-sectional view taken along the line AA in FIG. FIG. 5 is a diagram showing a comparison between a plurality of examples showing the configuration of the vacuum heat insulating material according to the present embodiment and a comparative example.

図面において、1は冷蔵庫、2は冷蔵室、3aは製氷室、3bは上段冷凍室、4は下段冷凍室、5は野菜室、6aは冷蔵室扉、6bは冷蔵室扉、7aは製氷室扉、7bは上段冷凍室扉、8は下段冷凍室扉、9は野菜室扉、10は扉用ヒンジ、11はパッキン、12,14は断熱仕切り、13は仕切り部材、20は箱体、21は外箱、21aは天板、21bは後板、22は内箱、23は断熱材、27は送風機、28は冷却器、30は圧縮機、31は凝縮機、33は発泡ポリスチレン、40は凹部、41は電気部品、42はカバー、45は庫内灯、45aはケース、50は真空断熱材、51は芯材、51a,51bは繊維集合体、52cは樹脂繊維集合体、53は外被材、54は内袋、をそれぞれ表す。   In the drawings, 1 is a refrigerator, 2 is a refrigerator room, 3a is an ice making room, 3b is an upper freezer room, 4 is a lower freezer room, 5 is a vegetable room, 6a is a refrigerator room door, 6b is a refrigerator room door, and 7a is an ice making room. Door, 7b is an upper freezer compartment door, 8 is a lower freezer compartment door, 9 is a vegetable compartment door, 10 is a door hinge, 11 is a packing, 12 and 14 are heat insulating partitions, 13 is a partition member, 20 is a box, 21 Is an outer box, 21a is a top plate, 21b is a rear plate, 22 is an inner box, 23 is a heat insulating material, 27 is a blower, 28 is a cooler, 30 is a compressor, 31 is a condenser, 33 is expanded polystyrene, 40 is Recesses, 41, electrical parts, 42, cover, 45, interior lamp, 45a, case, 50, vacuum heat insulating material, 51, core material, 51a, 51b, fiber assembly, 52c, resin fiber assembly, 53 A workpiece and 54 represent inner bags, respectively.

「実施例1」
図1に示す真空断熱材50の構成を示す実施例1は、外被材53、内袋54、芯材51、吸着剤(図示なし)で構成されている。外被材53はガスバリヤ性を有するものであれば特に限定することはないが、実施例1では表面層、防湿層、ガスバリヤ層、熱溶着層の4層で構成されたラミネートフィルムとした。
"Example 1"
Example 1 which shows the structure of the vacuum heat insulating material 50 shown in FIG. 1 is comprised by the jacket material 53, the inner bag 54, the core material 51, and adsorption agent (not shown). The outer covering material 53 is not particularly limited as long as it has gas barrier properties, but in Example 1, a laminate film composed of four layers of a surface layer, a moisture-proof layer, a gas barrier layer, and a heat welding layer was used.

具体的には、表面層としては吸湿性が低いポリプロピレンフィルムを、防湿層としてポリエチレンテレフタレートフィルムにアルミ蒸着層を設け、ガスバリヤ層はエチレンビニルアルコール共重合体フィルムにアルミ蒸着層を設けて、防湿層のアルミ蒸着層と向かい合うように貼り合わせた。熱溶着層には汎用性の高い直鎖状低密度ポリエチレンフィルムを用いたが、特に限定するものではないので、高密度ポリエチレンやポリプロピレン、ポリブチレンテレフタレート等の熱溶着可能なフィルムであればよい。ここで、表面層には耐突き刺し強度に優れているポリアミドフィルムやポリエチレンテレフタレートフィルム等を用いても良い。   Specifically, a polypropylene film having low hygroscopicity is provided as a surface layer, an aluminum vapor deposition layer is provided on a polyethylene terephthalate film as a moisture barrier layer, and a gas barrier layer is provided on the ethylene vinyl alcohol copolymer film with an aluminum vapor deposition layer. It was pasted so as to face the aluminum vapor deposition layer. Although a highly versatile linear low-density polyethylene film is used for the heat-welding layer, it is not particularly limited, and any film that can be heat-welded such as high-density polyethylene, polypropylene, or polybutylene terephthalate may be used. Here, a polyamide film or a polyethylene terephthalate film having excellent puncture resistance may be used for the surface layer.

尚、外被材53のラミネート構成については、上述の特性を有していれば特に4層構成に限定するものではなく、5層、3層でも良い。各層は二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせられるが、接着剤や貼り合わせ方法については特にこれに限定するものではない。   The laminate structure of the jacket material 53 is not particularly limited to the four-layer structure as long as it has the above-described characteristics, and may be five layers or three layers. Each layer is bonded by a dry laminating method via a two-component curable urethane adhesive, but the adhesive and the bonding method are not particularly limited thereto.

内袋54については、実施例1では熱溶着可能なポリエチレンフィルムを、図示しない吸着剤については物理吸着タイプの合成ゼオライトを用いたが、いずれの材料もこれに限定するものではない。内袋54についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、図示しない吸着剤については水分やガスを吸着するものであれば細孔径の異なる合成ゼオライトやシリカゲル等の物理吸着タイプや、酸化カルシウム、塩化カルシウム、酸化ストロンチウム等の化学反応型吸着タイプ等を用いることができる。   For the inner bag 54, a heat-weldable polyethylene film was used in Example 1, and for the adsorbent (not shown), a physical adsorption type synthetic zeolite was used, but any material is not limited to this. The inner bag 54 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like, as long as it has low hygroscopicity and can be thermally welded and has little outgas, and an adsorbent (not shown) can adsorb moisture and gas. For example, a physical adsorption type such as synthetic zeolite or silica gel having a different pore diameter, or a chemical reaction type adsorption type such as calcium oxide, calcium chloride, or strontium oxide can be used.

芯材51については、シンジオタクチック構造のポリスチレン樹脂を繊維化した繊維集合体51a、無機繊維集合体であるバインダを含まないグラスウール51b、アタクチック構造のポリスチレン樹脂を繊維化した繊維集合体51cを適宜組み合わせて用いればよい。具体的に実施例1では、図5に示すように、シンジオタクチックポリスチレンの繊維集合体51aとアタクチックポリスチレンの繊維集合体51cを使用する。   For the core material 51, a fiber aggregate 51a obtained by fiberizing a polystyrene resin having a syndiotactic structure, a glass wool 51b that does not include a binder that is an inorganic fiber aggregate, and a fiber aggregate 51c that is formed by fiberizing an atactic polystyrene resin are appropriately used. What is necessary is just to use in combination. Specifically, in Example 1, as shown in FIG. 5, a fiber aggregate 51a of syndiotactic polystyrene and a fiber aggregate 51c of atactic polystyrene are used.

ここで、シンジオタクチック構造とは立体化学構造が炭素−炭素結合から形成される主鎖に対して側鎖であるフェニル基が交互に反対方向に位置する立体構造を有するもので、軟化温度としては110℃前後、融点が270℃前後である。また、アタクチック構造とは、通常一般的にポリスチレンと呼ばれるものはこの構造であり、立体化学構造が炭素−炭素結合から形成される主鎖に対して側鎖であるフェニル基が不規則(ランダム)に位置する立体構造を有するもので、軟化温度は一般的に80℃前後である。尚、ここで言う軟化温度は荷重たわみ温度を表す。   Here, the syndiotactic structure is a structure in which the stereochemical structure has a three-dimensional structure in which phenyl groups that are side chains are alternately located in opposite directions with respect to the main chain formed from carbon-carbon bonds. Has a melting point of about 110 ° C. and a melting point of about 270 ° C. In addition, an atactic structure is generally this structure that is generally called polystyrene, and the phenyl group that is a side chain with respect to the main chain formed from a carbon-carbon bond is irregular (random). The softening temperature is generally around 80 ° C. The softening temperature referred to here represents the deflection temperature under load.

繊維集合体51aはシンジオタクチック構造のポリスチレン樹脂を290℃で溶融してメルトブローン法で平均10μmになるよう繊維化したものであり、繊維集合体51cについてはアタクチック構造のポリスチレン樹脂を270℃で溶融して同様にメルトブローン法で平均10μmに繊維化したものである。ポリスチレン樹脂についてはバージン材料を使用できることは勿論であるが、アタクチック構造のポリスチレン樹脂については、廃家電品やその他使用済製品から回収されたリサイクル材料についても使用することができる。   The fiber assembly 51a is obtained by melting a polystyrene resin having a syndiotactic structure at 290 ° C. to obtain an average fiber thickness of 10 μm by a melt blown method. For the fiber assembly 51c, the polystyrene resin having an atactic structure is melted at 270 ° C. In the same manner, the fiber is averaged to 10 μm by the melt blown method. Of course, a virgin material can be used for the polystyrene resin, but a polystyrene resin having an atactic structure can also be used for a recycled material recovered from waste home appliances and other used products.

リサイクル材料について、好ましくは粗粉砕後に選別、洗浄したものをペレット状或いは5mm以下程度に細かく粉砕したものが良いが、特にこれに限定するものではない。シンジオタクチック構造のポリスチレン樹脂についてはこれに限定せず、アイソタクチック構造のポリスチレンでも使用できる。尚、グラスウール51bについては平均繊維径4μmのものを使用した。実施例1では、図1(a)の構成となるように繊維集合体51aで繊維集合体51cを挟んで使用、その使用割合を4:6とした(図5に示す実施例1を参照)。   The recycled material is preferably one that has been selected and washed after coarse pulverization, and is preferably in the form of pellets or finely pulverized to about 5 mm or less, but is not particularly limited thereto. The polystyrene resin having a syndiotactic structure is not limited to this, and an isotactic polystyrene can also be used. In addition, about the glass wool 51b, the thing with an average fiber diameter of 4 micrometers was used. In Example 1, the fiber assembly 51a is used with the fiber assembly 51c sandwiched so as to have the configuration of FIG. 1A, and the usage ratio is 4: 6 (see Example 1 shown in FIG. 5). .

これらの材料構成で、芯材51を70〜90℃で十分乾燥し、内袋54で覆った後、一端圧縮して密封状態とし、これを外被材53に挿入後、内袋の密封を解除して、真空包装機にセットした。その後、大気圧から真空度2.2Paまで一気に減圧して、真空度2.2Pa以下で一定時間保持後、外被材53を封止した。尚、内袋の密封解除方法は、カッターや鋏み等で行うものであるが、特に指定するものでは無い。これにより得られた真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で1.9〜2.1(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、10〜11(mW/m・K)という値となった。10年相当経過後もグラスウールや硬質ウレタンフォーム等よりも断熱性能が良い結果が得られた。   With these material configurations, the core material 51 is sufficiently dried at 70 to 90 ° C. and covered with the inner bag 54, and then compressed into a sealed state, inserted into the outer jacket material 53, and then the inner bag is sealed. Released and set in a vacuum packaging machine. Thereafter, the pressure was reduced from atmospheric pressure to a vacuum degree of 2.2 Pa at once, and after holding for a certain period of time at a vacuum degree of 2.2 Pa or less, the jacket material 53 was sealed. In addition, although the sealing release method of an inner bag is performed with a cutter, a squeeze, etc., it does not specify in particular. The heat conductivity of the vacuum heat insulating material thus obtained was measured with a heat conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd., and the initial value was good at 1.9 to 2.1 (mW / m · K). A good value was obtained. As a result of verifying the thermal conductivity after a lapse of 10 years in an atmosphere at 70 ° C., a value of 10 to 11 (mW / m · K) was obtained. Even after 10 years, the results showed better heat insulation performance than glass wool or rigid urethane foam.

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を検証した。硬質ウレタンフォーム23は充填時に自身の反応熱により70〜100℃の範囲で温度上昇するため、汎用的なポリスチレン樹脂の耐熱温度を超えてしまうことがある。このため、硬質ウレタンフォーム23の充填時に真空断熱材50が変形したり、繊維同士の融着等の発生によって断熱性能が悪化することが考えられる。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is pasted on a steel plate outer box 21 as shown in FIG. 2, and a hard urethane foam 23 is filled between the inner box 22 of the refrigerator and a vacuum heat insulating material. 50 thermal insulation performance effects were verified. Since the rigid urethane foam 23 rises in the range of 70 to 100 ° C. due to its own reaction heat when filled, it may exceed the heat resistance temperature of general-purpose polystyrene resin. For this reason, it is possible that the vacuum heat insulating material 50 deform | transforms at the time of filling of the rigid urethane foam 23, or heat insulation performance deteriorates by generation | occurrence | production of the fusion | fusion etc. of fibers.

本実施例1の真空断熱材50においては、硬質ウレタンフォーム23の充填によって真空断熱材50の表面温度が一時的に約98℃まで上昇したが、芯材51を構成する繊維集合体51a,51cが変形することは無かった。また、発泡後に真空断熱材50を取り出して熱伝導率を測定したところ、初期性能と同じ値を示したことから、発泡熱の影響が無いことを確認した。   In the vacuum heat insulating material 50 of the first embodiment, the surface temperature of the vacuum heat insulating material 50 temporarily increased to about 98 ° C. by filling the hard urethane foam 23, but the fiber assemblies 51 a and 51 c constituting the core material 51. There was no deformation. Moreover, when the vacuum heat insulating material 50 was taken out after foaming and the thermal conductivity was measured, it showed the same value as the initial performance, so it was confirmed that there was no influence of foaming heat.

また、以上の説明は、図1の(a)に示す構造を基に説明したが、真空断熱材50の構造として、図1(b)に示すように、樹脂繊維集合体51cの片側、すなわちウレタンフォーム23側の表面層に繊維集合体51a又は51bを配置する構成例としてしてもよい。この真空断熱材50を図2に示す使用例と同様にすることで、樹脂繊維集合体51cは繊維集合体51aを介在させることなく外被材53を通して鋼板外箱21に取り付けられることになる。   Moreover, although the above description was demonstrated based on the structure shown to (a) of FIG. 1, as shown in FIG.1 (b) as a structure of the vacuum heat insulating material 50, ie, the one side of the resin fiber aggregate 51c, ie, A configuration example in which the fiber aggregate 51a or 51b is arranged on the surface layer on the urethane foam 23 side may be employed. By making this vacuum heat insulating material 50 the same as the use example shown in FIG. 2, the resin fiber aggregate 51c is attached to the steel plate outer box 21 through the jacket material 53 without interposing the fiber aggregate 51a.

「実施例2」
図1に示す真空断熱材50の構成を示す実施例2においては、実施例1の芯材51の繊維集合体51aを、バインダを含んでいない平均繊維径4μmのグラスウールとした繊維集合体51bとした以外は全て実施例1と同じとし、図1(a)の構成となるように繊維集合体51bで繊維集合体51cを挟んで使用、その使用割合を5:5とした(図5の「実施例2」を参照)。
"Example 2"
In Example 2 which shows the structure of the vacuum heat insulating material 50 shown in FIG. 1, the fiber assembly 51b which made the fiber assembly 51a of the core material 51 of Example 1 into glass wool with an average fiber diameter of 4 micrometers which does not contain a binder, Except for the above, it is the same as Example 1, and is used with the fiber aggregate 51c sandwiched between the fiber aggregates 51b so as to have the configuration of FIG. See Example 2).

これらの材料構成で、芯材51のうち繊維集合体51cを70〜90℃で十分乾燥し、繊維集合体51bについては180〜230℃で十分乾燥を行った。これらの繊維集合体51b,51cは積層して内袋54で覆った後、一端圧縮して密封状態とし、これを外被材53に挿入後、内袋54の密封を解除して、真空包装機にセットした。内袋54の密封を解除する理由は内袋54の内部を減圧するためである。   With these material configurations, the fiber assembly 51c of the core material 51 was sufficiently dried at 70 to 90 ° C., and the fiber assembly 51b was sufficiently dried at 180 to 230 ° C. These fiber aggregates 51b and 51c are laminated and covered with an inner bag 54, and then compressed into a sealed state, inserted into the jacket material 53, the inner bag 54 is then unsealed, and vacuum packaged. Set in the machine. The reason for releasing the sealing of the inner bag 54 is to depressurize the inside of the inner bag 54.

その後、大気圧から真空度2.2Paまで一気に減圧して、真空度2.2Pa以下で一定時間保持した後、外被材53を封止した。尚、内袋54の密封解除方法は、カッターや鋏み等で行うものであるが、特に指定するものでは無い。これにより得られた真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で1.8〜2.0(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、9〜10(mW/m・K)という値となった。10年相当経過後もグラスウールや硬質ウレタンフォーム等よりも断熱性能が良い結果が得られた。   Thereafter, the pressure was reduced from atmospheric pressure to a vacuum degree of 2.2 Pa at a stroke, and the vacuum was maintained at a pressure of 2.2 Pa or less for a certain period of time. In addition, although the sealing release method of the inner bag 54 is performed by a cutter, a squeeze or the like, it is not particularly specified. The heat conductivity of the vacuum heat insulating material thus obtained was measured with a heat conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd., which was good at 1.8 to 2.0 (mW / m · K) as an initial value. A good value was obtained. As a result of verifying the thermal conductivity after a lapse of 10 years in an atmosphere of 70 ° C., a value of 9 to 10 (mW / m · K) was obtained. Even after 10 years, the results showed better heat insulation performance than glass wool or rigid urethane foam.

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼り付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を実施例1と同様に検証した。本実施例2の真空断熱材50においては、硬質ウレタンフォーム23充填によって真空断熱材50の表面温度が一時的に約97℃まで上昇したが、芯材51を構成する繊維集合体51b,51cは変形することは無かった。また、発泡後に真空断熱材50を取り出して熱伝導率を測定したところ、初期性能と同じ値を示したことから、発泡熱の影響が無いことを確認した。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is attached to an outer box 21 made of a steel plate as shown in FIG. 2, and a rigid urethane foam 23 is filled between the inner box 22 of the refrigerator and vacuum insulation is performed. The heat insulation performance influence of the material 50 was verified in the same manner as in Example 1. In the vacuum heat insulating material 50 of the present Example 2, the surface temperature of the vacuum heat insulating material 50 temporarily increased to about 97 ° C. by filling the rigid urethane foam 23, but the fiber assemblies 51 b and 51 c constituting the core material 51 are There was no deformation. Moreover, when the vacuum heat insulating material 50 was taken out after foaming and the thermal conductivity was measured, it showed the same value as the initial performance, so it was confirmed that there was no influence of foaming heat.

「実施例3」
真空断熱材50の構成を示す実施例3においては、実施例2において繊維集合体51bと繊維集合体51cの使用割合を3:7とした以外は同じである(図5に示す「実施例3」を参照)。
"Example 3"
In Example 3 which shows the structure of the vacuum heat insulating material 50, it is the same except having set the usage ratio of the fiber assembly 51b and the fiber assembly 51c to 3: 7 in Example 2 ("Example 3 shown in FIG. 5"). ).

実施例3で得られた真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で1.9〜2.2(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、11〜12(mW/m・K)という値となった。10年相当経過後もグラスウールや硬質ウレタンフォーム等よりも断熱性能が良い結果が得られた。   When the thermal conductivity of the vacuum heat insulating material obtained in Example 3 was measured with Eihiro Seiki's thermal conductivity measuring device Auto λHC-074, the initial value was 1.9 to 2.2 (mW / m · K). Good values were obtained. As a result of verifying the thermal conductivity after a lapse of 10 years in a 70 ° C. atmosphere, a value of 11 to 12 (mW / m · K) was obtained. Even after 10 years, the results showed better heat insulation performance than glass wool or rigid urethane foam.

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼り付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を実施例1と同様に検証した。本実施例2の真空断熱材50においては、硬質ウレタンフォーム23充填によって真空断熱材50の表面温度が一時的に約97℃まで上昇したが、芯材51を構成する繊維集合体51b,51cは変形することは無かった。また、発泡後に真空断熱材50を取り出して熱伝導率を測定したところ、初期性能と同じ値を示したことから、発泡熱の影響が無いことを確認した。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is attached to an outer box 21 made of a steel plate as shown in FIG. 2, and a rigid urethane foam 23 is filled between the inner box 22 of the refrigerator and vacuum insulation is performed. The heat insulation performance influence of the material 50 was verified in the same manner as in Example 1. In the vacuum heat insulating material 50 of the present Example 2, the surface temperature of the vacuum heat insulating material 50 temporarily increased to about 97 ° C. by filling the rigid urethane foam 23, but the fiber assemblies 51 b and 51 c constituting the core material 51 are There was no deformation. Moreover, when the vacuum heat insulating material 50 was taken out after foaming and the thermal conductivity was measured, it showed the same value as the initial performance, so it was confirmed that there was no influence of foaming heat.

「実施例4」
実施例4においては、実施例2において繊維集合体51bと繊維集合体51cの使用割合を2:8とした以外は同じである(図5に示す「実施例4」を参照)。
Example 4
Example 4 is the same as Example 2 except that the use ratio of the fiber assembly 51b and the fiber assembly 51c is 2: 8 (see “Example 4” shown in FIG. 5).

実施例4で得られた真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で2.0〜2.4(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、12〜13(mW/m・K)という値となった。10年相当経過後もグラスウールや硬質ウレタンフォーム等よりも断熱性能が良い結果が得られた。   When the thermal conductivity of the vacuum heat insulating material obtained in Example 4 was measured with a thermal conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd., the initial value was 2.0 to 2.4 (mW / m · K). Good values were obtained. As a result of verifying the thermal conductivity after an elapse of 10 years in an atmosphere at 70 ° C., a value of 12 to 13 (mW / m · K) was obtained. Even after 10 years, the results showed better heat insulation performance than glass wool or rigid urethane foam.

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼り付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を実施例1と同様に検証した。本実施例2の真空断熱材50においては、硬質ウレタンフォーム23充填によって真空断熱材50の表面温度が一時的に約97℃まで上昇したが、芯材51を構成する繊維集合体51b,51cは変形することは無かった。また、発泡後に真空断熱材50を取り出して熱伝導率を測定したところ、初期性能と同じ値を示したことから、発泡熱の影響が無いことを確認した。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is attached to an outer box 21 made of a steel plate as shown in FIG. 2, and a rigid urethane foam 23 is filled between the inner box 22 of the refrigerator and vacuum insulation is performed. The heat insulation performance influence of the material 50 was verified in the same manner as in Example 1. In the vacuum heat insulating material 50 of the present Example 2, the surface temperature of the vacuum heat insulating material 50 temporarily increased to about 97 ° C. by filling the rigid urethane foam 23, but the fiber assemblies 51 b and 51 c constituting the core material 51 are There was no deformation. Moreover, when the vacuum heat insulating material 50 was taken out after foaming and the thermal conductivity was measured, it showed the same value as the initial performance, so it was confirmed that there was no influence of foaming heat.

「比較例1」
本実施形態に係る真空断熱材の実施例と対比するための比較例1(図5の「比較例1」を参照)では、実施例1において、繊維集合体51aと繊維集合体51cの使用割合を0:10とした。つまり、アタクチックポリスチレン樹脂である繊維集合体51cのみとした以外は全て実施例1と同じとした(実施例1のシンジオタクチックポリスチレンの繊維集合体51aを使用しない例である)。
"Comparative Example 1"
In Comparative Example 1 (see “Comparative Example 1” in FIG. 5) for comparison with the example of the vacuum heat insulating material according to the present embodiment, the use ratio of the fiber assembly 51 a and the fiber assembly 51 c in Example 1. Was set to 0:10. That is, all was the same as Example 1 except that only the fiber assembly 51c which is an atactic polystyrene resin was used (this is an example in which the fiber assembly 51a of the syndiotactic polystyrene of Example 1 is not used).

比較例1で得られた真空断熱材50の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で2.0〜2.4(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、12〜13(mW/m・K)という値となった。10年相当経過後もグラスウールや硬質ウレタンフォーム等よりも断熱性能が良い結果が得られた。   When the thermal conductivity of the vacuum heat insulating material 50 obtained in Comparative Example 1 was measured with a thermal conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd., the initial value was 2.0 to 2.4 (mW / m · K ) And good values were obtained. As a result of verifying the thermal conductivity after an elapse of 10 years in an atmosphere at 70 ° C., a value of 12 to 13 (mW / m · K) was obtained. Even after 10 years, the results showed better heat insulation performance than glass wool or rigid urethane foam.

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼り付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を実施例1と同様に検証した。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is attached to an outer box 21 made of a steel plate as shown in FIG. 2, and a rigid urethane foam 23 is filled between the inner box 22 of the refrigerator and vacuum insulation is performed. The heat insulation performance influence of the material 50 was verified in the same manner as in Example 1.

本比較例1の真空断熱材50においては、硬質ウレタンフォーム23充填によって真空断熱材50の表面温度が一時的に約97℃まで上昇し、芯材51を構成する繊維集合体51cが軟化して反りが発生した。真空断熱材50を取り出して熱伝導率を測定したところ、初期性能に対して約30%悪化しているのを確認した。尚、真空断熱材50に熱がかからない場合は良好な断熱性能を維持していた。   In the vacuum heat insulating material 50 of the comparative example 1, the surface temperature of the vacuum heat insulating material 50 temporarily rises to about 97 ° C. by filling the rigid urethane foam 23, and the fiber aggregate 51 c constituting the core material 51 is softened. Warpage occurred. When the vacuum heat insulating material 50 was taken out and the thermal conductivity was measured, it was confirmed that the initial performance was deteriorated by about 30%. In addition, when the heat was not applied to the vacuum heat insulating material 50, good heat insulating performance was maintained.

「比較例2」
比較例2では、実施例2において、繊維集合体51bと繊維集合体51cの使用割合を10:0とした(図5の「比較例2」を参照)。ここで用いた繊維集合体51bはグラスウールを450〜500℃で加熱プレスして、一定の厚みになるように成形したものとした以外は全て実施例2と同じとした。
"Comparative Example 2"
In Comparative Example 2, the use ratio of the fiber assembly 51b and the fiber assembly 51c in Example 2 was set to 10: 0 (see “Comparative Example 2” in FIG. 5). The fiber assembly 51b used here was the same as Example 2 except that glass wool was heated and pressed at 450 to 500 ° C. and formed to have a constant thickness.

比較例2で得られた真空断熱材50の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、初期値で1.6〜1.9(mW/m・K)と良好な値が得られた。これを70℃雰囲気下での10年相当経過後の熱伝導率を検証した結果、7〜10(mW/m・K)という値であった。   When the thermal conductivity of the vacuum heat insulating material 50 obtained in Comparative Example 2 was measured with a thermal conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd., the initial value was 1.6 to 1.9 (mW / m · K ) And good values were obtained. As a result of verifying the thermal conductivity after a lapse of 10 years in an atmosphere at 70 ° C., the value was 7 to 10 (mW / m · K).

また、冷蔵庫への使用を想定し、図2に示すような鋼板製の外箱21に真空断熱材50を貼り付け、冷蔵庫の内箱22との間に硬質ウレタンフォーム23を充填して真空断熱材50の断熱性能影響を実施例1と同様に検証した。   In addition, assuming use in a refrigerator, a vacuum heat insulating material 50 is attached to an outer box 21 made of a steel plate as shown in FIG. 2, and a rigid urethane foam 23 is filled between the inner box 22 of the refrigerator and vacuum insulation is performed. The heat insulation performance influence of the material 50 was verified in the same manner as in Example 1.

本比較例2の真空断熱材50においては、硬質ウレタンフォーム23充填によって真空断熱材50の表面温度が一時的に約98℃まで上昇し、芯材51を構成する繊維集合体51bは変形することは無かった。また、発泡後に真空断熱材50を取り出して熱伝導率を測定したところ、初期性能と同じ値を示したことから、発泡熱の影響が無いことを確認した。しかし、繊維集合体51bを加熱プレスすること、及びグラスウールの製造段階での熱エネルギー消費量が大きい構成である。   In the vacuum heat insulating material 50 of the comparative example 2, the surface temperature of the vacuum heat insulating material 50 temporarily rises to about 98 ° C. by filling the rigid urethane foam 23, and the fiber aggregate 51b constituting the core material 51 is deformed. There was no. Moreover, when the vacuum heat insulating material 50 was taken out after foaming and the thermal conductivity was measured, it showed the same value as the initial performance, so it was confirmed that there was no influence of foaming heat. However, this is a configuration in which the fiber assembly 51b is heated and pressed and the amount of heat energy consumed in the glass wool production stage is large.

図5において、以上説明した実施例1〜4と比較例1,2とについて、芯材の使用割合と、真空断熱材の熱伝導率と、ウレタン発泡時の変形と、製造時エネルギー消費と、の数値又は性状を表している。これらの数値や性状は上述したとおりであり、図5では上述した内容を取り纏めて記載し説明している。   In FIG. 5, for Examples 1 to 4 and Comparative Examples 1 and 2 described above, the use ratio of the core material, the thermal conductivity of the vacuum heat insulating material, the deformation during urethane foaming, the energy consumption during production, Represents the numerical value or property. These numerical values and properties are as described above, and FIG. 5 collectively describes and describes the above-described contents.

「適用例」
次に、本発明の実施形態に係る真空断熱材を、冷蔵庫に適用した適用例について説明する。図3は上述した本実施例を適用した冷蔵庫の正面図であり、図4は図3のA−A断面図を示している。
Application example
Next, an application example in which the vacuum heat insulating material according to the embodiment of the present invention is applied to a refrigerator will be described. FIG. 3 is a front view of a refrigerator to which the above-described embodiment is applied, and FIG. 4 is a cross-sectional view taken along line AA in FIG.

図3に示す冷蔵庫1は、図4に示すように、上から冷蔵室2、貯氷室3(と切替え室)、冷凍室4、野菜室5を有している。図3の符号は、上記各室の前面開口部を閉塞する扉であり、上からヒンジ10等を中心に回動する冷蔵室扉6a,6b、冷蔵室扉6a,6b以外は全て引き出し式の扉であり、貯氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を配置する。これらの引き出し式扉6〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6〜9には冷蔵庫本体1とを密閉するためのパッキン11を備え、各扉6〜9の室内側外周縁に取り付けられている。   As shown in FIG. 4, the refrigerator 1 shown in FIG. 3 includes a refrigerator room 2, an ice storage room 3 (and a switching room), a freezer room 4, and a vegetable room 5 from the top. The code | symbol of FIG. 3 is a door which obstruct | occludes the front-surface opening part of each said chamber, All are drawer type except refrigeration room doors 6a and 6b and refrigeration room doors 6a and 6b which rotate centering on the hinge 10 grade | etc., From the top. The ice storage room door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are arranged. When these drawer-type doors 6 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door 6-9 is provided with a packing 11 for sealing the refrigerator main body 1, and is attached to the indoor side outer periphery of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(ウレタンフォーム)、真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁で、これまたスチロフォーム、或いは発泡断熱材(ウレタンフォーム)、真空断熱材等で作られている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。   Moreover, the partition heat insulation wall 12 is arrange | positioned in order to carry out the partition heat insulation between the refrigerator compartment 2, the ice-making room 3a, and the upper stage freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material or a combination of a plurality of heat insulating materials such as a styrofoam, a foam heat insulating material (urethane foam), and a vacuum heat insulating material. Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, and this is also a styrofoam or foam heat insulation. Made of materials (urethane foam), vacuum insulation, etc. Basically, partition heat insulation walls are installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing.

尚、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引出しによる開閉及び扉の分割数等、特に限定するものではない。   In the box 20, storage compartments for the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 are formed from above, respectively. The invention is not particularly limited to this. The refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of doors divided. is not.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21側または前記内箱22側のいずれかに真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed on either the outer box 21 side or the inner box 22 side, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as hard urethane foam.

また、冷蔵庫の冷蔵室2、冷凍室3a,4、野菜室5等の各室を所定の温度に冷却するために冷凍室3a,4の背側には冷却器28が備えられており、この冷却器28と圧縮機30と凝縮機30a、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   In addition, a refrigerator 28 is provided on the back side of the freezer compartments 3a and 4 in order to cool each room such as the refrigerator compartment 2, the freezer compartments 3a and 4 and the vegetable compartment 5 to a predetermined temperature. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 30a, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ断熱仕切り12,14を配置し、発泡ポリスチレン33と真空断熱材50で構成されている。この断熱仕切り12,14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50に限定するものではない。   Insulation partitions 12 and 14 are arranged as heat insulating materials for partitioning the refrigerator refrigerating chamber 2, ice making chamber 3a and upper freezing chamber 3b, freezing chamber 4 and vegetable chamber 5, respectively. It is configured. The heat insulating partitions 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50.

また、内箱22の天面の一部に、断熱材23側に突き出したケース45aを有する庫内灯45を配置し、冷蔵庫の扉を開けたときの庫内を明るく、見えやすくしたものである。庫内灯45については、電球、蛍光灯、キセノンランプ等、特に限定するものではない。庫内灯45の配置により、ケース45aと外箱21との間の断熱材23の厚さが薄くなってしまうため、真空断熱材50を配置して断熱性能を確保している。この庫内灯45については特に図示位置に配置することを規定したものではない。   In addition, an interior lamp 45 having a case 45a protruding toward the heat insulating material 23 is arranged on a part of the top surface of the inner box 22 so that the interior when the refrigerator door is opened is bright and easy to see. is there. The interior lamp 45 is not particularly limited, such as a light bulb, a fluorescent lamp, or a xenon lamp. Since the thickness of the heat insulating material 23 between the case 45a and the outer box 21 becomes thin due to the arrangement of the interior lamp 45, the vacuum heat insulating material 50 is arranged to ensure the heat insulating performance. It is not specified that the interior lamp 45 is arranged in the illustrated position.

さらに、図4には不図示であるが、箱体20の天面側にある外箱21下面には放熱パイプが取り付けられている。そうすると、上述した庫内灯ケース45aによる占有スペースと天面側外箱21下面に設置される放熱パイプによる占有スペース及び熱放出影響とを考慮して、ケース45aと外箱21天面側との間に真空断熱材を配置して断熱性能を確保する。   Further, although not shown in FIG. 4, a heat radiating pipe is attached to the lower surface of the outer box 21 on the top surface side of the box 20. Then, in consideration of the occupation space by the interior lamp case 45a described above, the occupation space by the heat radiating pipe installed on the lower surface of the top surface side outer box 21 and the heat release effect, the case 45a and the top surface side of the outer case 21 Vacuum insulation is placed between them to ensure heat insulation performance.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23側の面に真空断熱材50を配置して断熱性能を確保、強化している。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the vacuum heat insulating material 50 is arrange | positioned in the surface at the side of the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened.

図4に示す適用例では、真空断熱材50を前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50とした。尚、カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。   In the application example shown in FIG. 4, the vacuum heat insulating material 50 is a single vacuum heat insulating material 50 formed in a substantially Z shape so as to straddle the case 45 a of the interior lamp 45 and the electrical component 41. The cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50を配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50 is arranged.

本適用例における真空断熱材50については、先に述べた実施例2の真空断熱材50を用いた。本適用例では、上述した不図示の放熱パイプや電気部品41を配置した凹部40等の高温部側とウレタン断熱側に繊維集合体51bが配置されるようにして、熱影響を受けないようにした。   As the vacuum heat insulating material 50 in this application example, the vacuum heat insulating material 50 of Example 2 described above was used. In this application example, the fiber assembly 51b is arranged on the high-temperature part side such as the concave part 40 in which the above-described heat-dissipating pipe and the electrical component 41 are arranged and the urethane heat insulating side so as not to be affected by heat. did.

配置部位については特にこれに限定するものではなく、圧縮機30や凝縮機31から発生する熱が庫内に侵入するのを抑制するため、圧縮機30や凝縮機31の内箱22側への投影面に真空断熱材50を配置することもできる。真空断熱材50の被覆面積を大きくするため、内箱21の底面から圧縮機30と冷却器28の間まで一体に成形した立体形状にすることも可能である。尚、圧縮機30と冷却器28の間に位置する真空断熱材50の形状については図示しないドレンパイプを逃げるための切欠きを設けたものとした。切欠きの有無、或いはその形状については特に限定するものではない。   The arrangement portion is not particularly limited to this, and in order to suppress the heat generated from the compressor 30 and the condenser 31 from entering the inside of the warehouse, the compressor 30 and the condenser 31 toward the inner box 22 side. A vacuum heat insulating material 50 can also be disposed on the projection surface. In order to increase the covering area of the vacuum heat insulating material 50, it is possible to form a three-dimensional shape integrally formed from the bottom surface of the inner box 21 to between the compressor 30 and the cooler 28. In addition, about the shape of the vacuum heat insulating material 50 located between the compressor 30 and the cooler 28, the notch for escaping the drain pipe which is not shown in figure was provided. The presence or absence of a notch or its shape is not particularly limited.

本適用例における真空断熱材50は、芯材51の厚みを10mm、繊維集合体51bと51cを組み合わせた芯材51の密度を約250(kg/m)に設定したものを使用した。天面部の真空断熱材50の配置により、電気部品41及び放熱パイプによる庫内への熱侵入を低減でき、更には放熱パイプの放熱特性を向上でき、また、底面の真空断熱材50の配置により、圧縮機30及び凝縮機31から発生する熱の庫内への侵入を抑制できるため、壁厚を増やすことなく断熱性能を改善することができた。 As the vacuum heat insulating material 50 in this application example, a material in which the thickness of the core material 51 is set to 10 mm and the density of the core material 51 combining the fiber aggregates 51b and 51c is set to about 250 (kg / m 3 ) is used. By arranging the vacuum heat insulating material 50 on the top surface portion, it is possible to reduce the heat intrusion into the cabinet by the electric component 41 and the heat radiating pipe, further improve the heat radiation characteristics of the heat radiating pipe, and by arranging the vacuum heat insulating material 50 on the bottom surface. Since the heat generated from the compressor 30 and the condenser 31 can be prevented from entering the cabinet, the heat insulation performance can be improved without increasing the wall thickness.

本発明の概要について取り纏めると、従来、グラスウール等の無機繊維をバインダや加熱プレスにより成形した芯材を用いた真空断熱材は、断熱性能面では優れており、機器の省エネルギーに貢献しているが、真空断熱材及びこれを構成する材料の製造工程において消費されるエネルギーが膨大であり、製造面においては環境配慮性が不足しているという課題があった。一方、芯材をポリエステル繊維化した真空断熱材においては、上記課題はある程度解決できるが、断熱性能面で大幅に劣っており、断熱性能と環境配慮の両面を併せ持つ真空断熱材の開発が課題となっていた。   Summarizing the outline of the present invention, conventionally, a vacuum heat insulating material using a core material obtained by molding inorganic fibers such as glass wool by a binder or a heat press is excellent in heat insulating performance and contributes to energy saving of equipment. However, the energy consumed in the manufacturing process of the vacuum heat insulating material and the material constituting the vacuum heat insulating material is enormous, and there is a problem that environmental considerations are insufficient in terms of manufacturing. On the other hand, in the vacuum heat insulating material in which the core material is made of polyester fiber, the above problems can be solved to some extent, but the heat insulating performance is greatly inferior, and the development of a vacuum heat insulating material having both heat insulating performance and environmental considerations is an issue. It was.

この課題を解決すべく、本発明では、断熱性能を改善するために、曲げ弾性率の大きいポリスチレン樹脂を繊維化した芯材を採用することで、製造時のエネルギー消費量を抑制し、断熱性能が良好である真空断熱材を提供できる。また、ポリスチレン樹脂は耐熱温度が低いことから、ウレタン発泡時の熱影響を受けないように軟化温度の異なる(高い)繊維材料を組み合わせることで断熱性能と環境配慮性を併せ持つ真空断熱材とすることができるものである。     In order to solve this problem, in the present invention, in order to improve the heat insulation performance, by adopting a core material obtained by fiberizing a polystyrene resin having a large flexural modulus, the energy consumption during production is suppressed, and the heat insulation performance is reduced. It is possible to provide a vacuum heat insulating material that is good. In addition, since polystyrene resin has a low heat-resistant temperature, it should be a vacuum heat-insulating material that has both heat insulation performance and environmental consideration by combining (high) fiber materials with different softening temperatures so as not to be affected by heat during urethane foaming. It is something that can be done.

そこで、本発明の実施形態に係る真空断熱材は、次のような具体的な構成を備えて機能ないし作用を奏するものであることを特徴としている。すなわち、少なくとも繊維集合体からなる芯材と、ガスバリヤ性を有する外被材とで構成される真空断熱材において、前記芯材の片側或いは両側の表面層に配置した繊維集合体の軟化温度が、表面層以外の部分に配置した樹脂繊維集合体の軟化温度よりも高いことを特徴とする。芯材の一部に樹脂繊維集合体を使用することで、従来のグラスウールを加熱プレス成形したものに対して総合的に製造時の消費エネルギーを減らすことができる。また、前記繊維集合体がシンジオタクチック構造のポリスチレン樹脂、前記樹脂繊維集合体がアタクチック構造のポリスチレン樹脂であることを特徴とするものである。   Then, the vacuum heat insulating material which concerns on embodiment of this invention is equipped with the following specific structures, and there exists a function thru | or effect | action, It is characterized by the above-mentioned. That is, in a vacuum heat insulating material composed of at least a core material composed of a fiber assembly and a jacket material having gas barrier properties, the softening temperature of the fiber assembly disposed on the surface layer on one side or both sides of the core material, It is characterized by being higher than the softening temperature of the resin fiber assembly disposed in a portion other than the surface layer. By using the resin fiber aggregate as a part of the core material, it is possible to comprehensively reduce energy consumption at the time of production compared to conventional glass wool heat-press molded. Further, the fiber aggregate is a syndiotactic polystyrene resin, and the resin fiber aggregate is an atactic polystyrene resin.

また、前記繊維集合体として無機系材料、前記樹脂繊維集合体をポリスチレン樹脂としたことを特徴とする。無機系材料としては、ガラス繊維、セラミック繊維、グラスウール、ロックウール等であるが、特にこれらに限定するものではないが、断熱性能面からバインダを含まないグラスウールを用いるのが好ましい。樹脂繊維集合体としてのポリスチレン樹脂については繊維化できるものであれば特に限定しないが、廃家電品等から回収したリサイクル材等も使用することができる。   Further, the fiber aggregate is an inorganic material, and the resin fiber aggregate is a polystyrene resin. Examples of the inorganic material include glass fiber, ceramic fiber, glass wool, rock wool, and the like. However, the material is not particularly limited, but it is preferable to use glass wool containing no binder from the viewpoint of heat insulation performance. The polystyrene resin as the resin fiber aggregate is not particularly limited as long as it can be fiberized, and recycled materials recovered from waste home appliances and the like can also be used.

また、外箱と内箱とによって形成される空間に発泡断熱材と真空断熱材を配置し、圧縮機、制御基板及び放熱パイプ等の発熱部品を備えた冷蔵庫において、前記真空断熱材は少なくとも軟化温度が異なる繊維集合体を積層したものを、ガスバリヤ性を有する外被材で覆い、その内部を減圧して封止したものとし、前記芯材は軟化温度の高い方を発泡断熱材との接触側や発熱部品側になるように配置したことを特徴とする。軟化温度の異なる繊維集合体としては、同じ種類で構造違いの樹脂繊維集合体の組み合わせや、無機繊維集合体と樹脂繊維集合体の組み合わせ等、特に材料を限定するものではないが、断熱性能の面からグラスウールとポリスチレン繊維集合体の組み合わせが好ましい。   Further, in the refrigerator provided with the heat insulating parts such as the compressor, the control board and the heat radiating pipe in the space formed by the outer box and the inner box, the foam heat insulating material and the vacuum heat insulating material are at least softened. Laminated fiber assemblies with different temperatures are covered with a jacket material having gas barrier properties, and the inside thereof is sealed under reduced pressure, and the core material has a higher softening temperature in contact with the foam insulation. It arrange | positions so that it may become the side and heat-emitting component side. The fiber aggregates having different softening temperatures are not particularly limited in material, such as a combination of resin fiber aggregates of the same type and different structure, or a combination of inorganic fiber aggregates and resin fiber aggregates. From the surface, a combination of glass wool and polystyrene fiber aggregate is preferred.

また、本発明の実施例2,3,4を統合すると、真空断熱材の芯材が、バインダ成分を含まない平均繊維径2〜6μmのガラス繊維集合体で、平均繊維径1〜30μmのポリスチレン樹脂繊維集合体をサンドイッチ構造とし、芯材に占めるポリスチレン繊維の割合が50〜80%であることを特徴とするものである。断熱性能面を考慮した場合、グラスウールの使用割合が多い方が良いが、製造にかかるエネルギー抑制の観点からはポリスチレン繊維の使用割合が多い方が良く、用途や使用部位に応じて使用割合を調整することが好ましい。   Moreover, when Examples 2, 3, and 4 of the present invention are integrated, the core material of the vacuum heat insulating material is a glass fiber aggregate having an average fiber diameter of 2 to 6 μm and containing no binder component, and polystyrene having an average fiber diameter of 1 to 30 μm The resin fiber assembly has a sandwich structure, and the proportion of polystyrene fibers in the core material is 50 to 80%. Considering the heat insulation performance, it is better to use a higher percentage of glass wool, but from the viewpoint of controlling energy consumption, it is better to use a higher percentage of polystyrene fiber, and adjust the usage ratio according to the application and use site. It is preferable to do.

また、少なくとも樹脂材料を溶融して繊維化する繊維化工程、繊維化したものを積層する積層工程(図1に示す樹脂繊維集合体51cを中央層として形成し、その両側に繊維集合体51b,51cを表面層として形成する積層行程)、積層したものを製品サイズに切断する切断工程とからなる芯材製造工程と、前記芯材中や表面に付着した水分やガス成分を離脱させる芯材乾燥工程と、乾燥した芯材を袋状の外被材に投入する袋詰め工程と、外被材内部を減圧状態として封止する真空パック工程と、を有することを特徴とする。   Further, at least a fiberizing step for melting and fiberizing the resin material, a laminating step for laminating the fiberized materials (the resin fiber aggregate 51c shown in FIG. 1 is formed as a central layer, and the fiber aggregates 51b, A stacking process in which 51c is formed as a surface layer), a core material manufacturing process comprising a cutting process for cutting the stacked product into a product size, and a core material drying process for removing moisture and gas components adhering to and in the core material And a bag packing step of charging the dried core material into a bag-shaped outer covering material, and a vacuum packing step of sealing the inner portion of the outer covering material in a reduced pressure state.

このように、本発明の実施形態に係る真空断熱材については、従来、耐熱温度が問題で冷蔵庫等のウレタン発泡断熱材内及び高温になる部分への配置が共に困難だったポリスチレン樹脂を繊維化して、軟化温度の高い材料と組み合わせることで、ポリスチレン樹脂の軟化温度を超えた温度帯でも使用できる真空断熱材を可能とし、また、製造工程におけるエネルギー消費量を抑制した環境配慮型の真空断熱材を提供することができる。また、本実施形態に使用するポリスチレン樹脂については、リサイクル材の使用も可能であるため、原材料の製造工程においても省エネルギー化できるだけでなく、省資源化にも大きく貢献でき、環境負荷を大幅に軽減できるものである。   Thus, for the vacuum heat insulating material according to the embodiment of the present invention, conventionally, the polystyrene resin which has been difficult to arrange in the urethane foam heat insulating material such as the refrigerator and the high temperature part due to the heat resistant temperature is made into a fiber. In combination with a material with a high softening temperature, it enables vacuum insulation that can be used even in a temperature range that exceeds the softening temperature of polystyrene resin, and it also reduces the amount of energy consumed in the manufacturing process. Can be provided. In addition, the polystyrene resin used in this embodiment can be made from recycled materials, so it not only saves energy in the raw material manufacturing process, but also contributes significantly to saving resources, greatly reducing the environmental burden. It can be done.

本実施形態に係る真空断熱材については、冷蔵庫以外にも高温槽、恒温槽等、冷熱機器全般、その他、冷暖房効率の向上が期待できる住宅・建物、自動車や電車等の車両分野等にも広く応用展開することができる。また、本実施形態に係る真空断熱材を適用した冷蔵庫については、製品のライフサイクルにおける省エネルギーだけでなく、製品の製造段階から省エネルギー化できる真空断熱材を用いることにより環境負荷の軽減を実現できるものである。   About the vacuum heat insulating material according to the present embodiment, in addition to the refrigerator, it is also widely used in high temperature baths, constant temperature baths, etc., in general cooling equipment, in addition to housing / buildings that can be expected to improve air conditioning efficiency, vehicle fields such as automobiles and trains, etc. Can be applied. In addition, for refrigerators to which the vacuum heat insulating material according to the present embodiment is applied, not only energy saving in the product life cycle but also reduction in environmental load can be realized by using a vacuum heat insulating material that can save energy from the manufacturing stage of the product. It is.

本発明の実施形態に係る真空断熱材の構成例を示す図である。It is a figure which shows the structural example of the vacuum heat insulating material which concerns on embodiment of this invention. 本実施形態に係る真空断熱材の使用例を示す図である。It is a figure which shows the usage example of the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材を適用した冷蔵庫の正面図である。It is a front view of the refrigerator which applied the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材を適用した冷蔵庫の断面図であり、図3のA−A線断面図である。It is sectional drawing of the refrigerator to which the vacuum heat insulating material which concerns on this embodiment is applied, and is AA sectional view taken on the line of FIG. 本実施形態に係る真空断熱材の構成を示す複数の実施例と比較例との対比を表す図である。It is a figure showing the contrast with the some Example and comparative example which show the structure of the vacuum heat insulating material which concerns on this embodiment.

符号の説明Explanation of symbols

1 冷蔵庫
2 冷蔵室
3a 製氷室
3b 上段冷凍室
4 下段冷凍室
5 野菜室
6a 冷蔵室扉
6b 冷蔵室扉
7a 製氷室扉
7b 上段冷凍室扉
8 下段冷凍室扉
9 野菜室扉
10 扉用ヒンジ
11 パッキン
12,14 断熱仕切り
13 仕切り部材
20 箱体
21 外箱
21a 天板
21b 後板
22 内箱
23 断熱材
27 送風機
28 冷却器
30 圧縮機
31 凝縮機
33 発泡ポリスチレン
40 凹部
41 電気部品
42 カバー
45 庫内灯
45a ケース
50 真空断熱材
51 芯材
51a,51b 繊維集合体
52c 樹脂繊維集合体
53 外被材
54 内袋
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerating room 3a Ice making room 3b Upper freezing room 4 Lower freezing room 5 Vegetable room 6a Refrigerating room door 6b Refrigerating room door 7a Ice making room door 7b Upper freezing room door 8 Lower freezing room door 9 Vegetable room door 10 Door hinge 11 Packing 12, 14 Heat insulation partition 13 Partition member 20 Box body 21 Outer box 21a Top plate 21b Rear plate 22 Inner box 23 Heat insulating material 27 Blower 28 Cooler 30 Compressor 31 Condenser 33 Expanded polystyrene 40 Recess 41 Electrical component 42 Cover 45 Storage Internal light 45a Case 50 Vacuum heat insulating material 51 Core material 51a, 51b Fiber assembly 52c Resin fiber assembly 53 Outer material 54 Inner bag

Claims (5)

繊維集合体からなる芯材と、ガスバリヤ性を有する外被材と、を備えた真空断熱材において、
前記芯材は、その中央層に配置した樹脂繊維集合体と、前記樹脂繊維集合体の両側の表面層に配置した繊維集合体と、を有し、
前記表面層の繊維集合体は、その軟化温度が前記中央層の樹脂繊維集合体の軟化温度よりも高い材料であり、
前記表面層の繊維集合体がシンジオタクチック構造のポリスチレン樹脂であり、前記中央層の樹脂繊維集合体がアタクチック構造のポリスチレン樹脂である
ことを特徴とする真空断熱材。
In a vacuum heat insulating material comprising a core material made of a fiber assembly and a jacket material having gas barrier properties,
The core material has a resin fiber assembly disposed in a central layer thereof, and a fiber assembly disposed in a surface layer on both sides of the resin fiber assembly,
The fiber aggregate of the surface layer is a material whose softening temperature is higher than the softening temperature of the resin fiber aggregate of the central layer,
The vacuum heat insulating material, wherein the fiber aggregate of the surface layer is a polystyrene resin having a syndiotactic structure, and the resin fiber aggregate of the central layer is a polystyrene resin having an atactic structure.
請求項1において、
前記樹脂繊維集合体の両側の表面層に繊維集合体を配置することに代えて、前記樹脂繊維集合体の片側の表面層に前記シンジオタクチック構造のポリスチレン樹脂である繊維集合体を配置する
ことを特徴とする真空断熱材。
In claim 1,
Instead of disposing fiber aggregates on the surface layers on both sides of the resin fiber aggregate , disposing a fiber aggregate that is a polystyrene resin having the syndiotactic structure on one surface layer of the resin fiber aggregate. Vacuum insulation material characterized by
請求項1に記載の真空断熱材が、外箱と内箱とによって形成される空間に発泡断熱材とともに設置されることを特徴とする冷蔵庫。   A vacuum heat insulating material according to claim 1 is installed in a space formed by an outer box and an inner box together with a foam heat insulating material. 請求項1に記載の真空断熱材が、圧縮機、制御又は電源基板、放熱パイプを含む発熱部品と対向する空間に発泡断熱材とともに設置されることを特徴とする冷蔵庫。   A vacuum heat insulating material according to claim 1 is installed together with a foam heat insulating material in a space facing a heat generating component including a compressor, a control or power supply board, and a heat radiating pipe. 請求項2に記載の真空断熱材が、外箱と内箱とによって形成される空間に発泡断熱材とともに設置され、前記片側の表面層に配置した前記シンジオタクチック構造のポリスチレン樹脂である繊維集合体が前記発泡断熱材と当接するように設置される
ことを特徴とする冷蔵庫。
The fiber assembly which is the polystyrene resin of the said syndiotactic structure which the vacuum heat insulating material of Claim 2 was installed with the foam heat insulating material in the space formed by an outer box and an inner box, and arrange | positioned in the surface layer of the said one side A refrigerator, wherein the body is installed so as to abut against the foamed heat insulating material.
JP2008226005A 2008-09-03 2008-09-03 Vacuum heat insulating material and refrigerator using the same Expired - Fee Related JP4778996B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008226005A JP4778996B2 (en) 2008-09-03 2008-09-03 Vacuum heat insulating material and refrigerator using the same
CN2009100042605A CN101666415B (en) 2008-09-03 2009-02-18 Vacuum insulation materials, refrigerators and water heaters
KR1020090013189A KR101087395B1 (en) 2008-09-03 2009-02-18 Vacuum insulator, refrigerator using vacuum insulator and hot water supply equipment using vacuum insulator and method of manufacturing vacuum insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226005A JP4778996B2 (en) 2008-09-03 2008-09-03 Vacuum heat insulating material and refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2010060044A JP2010060044A (en) 2010-03-18
JP4778996B2 true JP4778996B2 (en) 2011-09-21

Family

ID=41803148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226005A Expired - Fee Related JP4778996B2 (en) 2008-09-03 2008-09-03 Vacuum heat insulating material and refrigerator using the same

Country Status (3)

Country Link
JP (1) JP4778996B2 (en)
KR (1) KR101087395B1 (en)
CN (1) CN101666415B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060176A1 (en) * 2010-10-26 2012-04-26 Ensinger Gmbh Insulating web
JP5414751B2 (en) * 2011-07-19 2014-02-12 日立アプライアンス株式会社 refrigerator
JP6121802B2 (en) 2012-10-12 2017-04-26 東芝ライフスタイル株式会社 refrigerator
US20180238605A1 (en) * 2015-03-10 2018-08-23 Kabushiki Kaisha Toshiba Vacuum heat insulation panel, core material, refrigerator, manufacturing method of vacuum heat insulation panel, and recycling method of refrigerator
JP6301412B2 (en) 2016-08-30 2018-03-28 レノボ・シンガポール・プライベート・リミテッド Haptic actuator, electronic device, and method for generating haptic feedback
WO2019117397A1 (en) * 2017-12-13 2019-06-20 유신단열 주식회사 Envelope for insulation and manufacturing method therefor
CN113074509B (en) * 2020-01-06 2024-07-12 青岛海尔电冰箱有限公司 Vacuum heat insulator and refrigerator
GB2601545A (en) * 2020-12-04 2022-06-08 Knauf Insulation Mineral wool insulation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796580A (en) * 1993-09-29 1995-04-11 Sanyo Electric Co Ltd Vacuum heat-insulating material
JP2000314497A (en) * 1999-04-30 2000-11-14 Toagosei Co Ltd Resin-coated steel pipe, and adhesive composition for the resin-coated steel pipe
RU2194915C2 (en) * 2000-12-07 2002-12-20 Воробьев Валерий Николаевич Flexible heat-insulating material (versions)
JP3493009B2 (en) * 2001-06-28 2004-02-03 松下冷機株式会社 refrigerator
JP2003130285A (en) * 2001-10-29 2003-05-08 Sekisui Chem Co Ltd Heat insulating tube and method of manufacturing the tube
CN2769660Y (en) * 2005-02-03 2006-04-05 宝钢集团上海五钢有限公司 Adhesive thermal insulating cotton
CA2535503C (en) * 2006-02-07 2014-12-16 Shawcor Ltd. Heat shrinkable laminated covering

Also Published As

Publication number Publication date
JP2010060044A (en) 2010-03-18
CN101666415B (en) 2013-05-15
KR20100027938A (en) 2010-03-11
KR101087395B1 (en) 2011-11-25
CN101666415A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
KR101368009B1 (en) Vacuum heat insulation material and apparatus using the same
WO2003076855A1 (en) Refrigerator
JP2001165557A (en) Refrigerator
JP2005345025A (en) Refrigerator, vacuum heat insulating material, and its manufacturing method
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2011153721A (en) Refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2012026583A (en) Refrigerator
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2015055368A (en) Vacuum heat insulating material and refrigerator using the same
JP2019113078A (en) Vacuum heat insulation material and refrigerator disposed with the same
JP2013002485A (en) Vacuum thermal insulation material, and refrigerator using the same
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP5380313B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2004011706A (en) Vacuum heat insulating material, and equipment using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4778996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees