[go: up one dir, main page]

JPH11273030A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH11273030A
JPH11273030A JP7399798A JP7399798A JPH11273030A JP H11273030 A JPH11273030 A JP H11273030A JP 7399798 A JP7399798 A JP 7399798A JP 7399798 A JP7399798 A JP 7399798A JP H11273030 A JPH11273030 A JP H11273030A
Authority
JP
Japan
Prior art keywords
permanent magnet
reproducing
film
film thickness
reproduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7399798A
Other languages
Japanese (ja)
Inventor
Keisuke Fukamachi
啓介 深町
Chiharu Mitsumata
千春 三俣
Osamu Shimoe
治 下江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7399798A priority Critical patent/JPH11273030A/en
Publication of JPH11273030A publication Critical patent/JPH11273030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the fluctuation in a reproduced output even though the width of a reproducing track and the reproducing gap are made narrower by setting the relationships among the reproducing track width, the reproducing gap film thickness, the residual magnetization film thickness product of a permanent magnet film and the saturated magnetization film thickness product of magnetically sensitive layer to specific regions. SOLUTION: The magneto-resistance effect type magnetic head is provided with the reproducing element having a magneto-resistance effect and the permanent magnet film which applies a longitudinal bias magnetic field to the element. Let the reproducing track width be TW (μm), the reproducing gap film thickness be GI (μm), the residual magnetization film thickness product of the permanent magnet film be Mrt (memu/ cm<2> ) and the saturated magnetization film thickness product of the magnetically sensitive layer be Mst (memu/cm<2> ). Then, the permanent magnet film and the magnetically sensitive layer are made to satisfy the relationships of equations I and II and the reproducing track width is set to <=1.5 μm and the reproducing gap length is set to <=0.2 μm. By having the structure, which satisfies the range above, the permanent magnet film applies a sufficient amount of magnetic flux to the magnetically sensitive layer even though the reproducing track width and the reproducing gap length are made narrower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハードディスク装
置、VTR等の磁気記録装置に用いられる磁気ヘッドに
関するもので、特に磁気ヘッドの再生素子を構成する永
久磁石膜、再生ギャップ、および再生トラック幅の構成
に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used in a magnetic recording apparatus such as a hard disk drive and a VTR, and more particularly to a permanent magnet film, a reproducing gap, and a reproducing track width which constitute a reproducing element of the magnetic head. Related to the configuration.

【0002】[0002]

【従来の技術】ハードディスク装置あるいはVTR等の
磁気記録装置の小形大容量化は急激な勢いで進展してい
る。このような動向に呼応して磁気ヘッドの高性能化が
進められ、電磁誘導方式である薄膜磁気ヘッドから、薄
膜の磁気抵抗効果現象を利用した異方性磁気抵抗効果ヘ
ッド(以下AMRヘッド)へ、更にはスピンバルブ型磁
気抵抗効果ヘッド(以下SVヘッド)と進化してきた。
従来のAMRヘッドは、例えば公知文献IEEE Tr
ans.Magn.Vol26(1990)pp168
9に述べられている。即ち、磁気記録媒体上の磁気信号
の再生を行う磁気抵抗効果型素子(以下MR素子)は、
非磁性材料からなる再生ギャップ膜を介して、MR素子
を磁気的に遮蔽するシールド磁性膜に挟み込まれた構造
となる。一方、磁気記録媒体に磁気信号を記録する磁極
には、誘導型磁気ヘッドを用いており、シールド磁性膜
上に積層された構造を持つ。
2. Description of the Related Art The miniaturization and large capacity of magnetic recording devices such as hard disk drives and VTRs are progressing at a rapid pace. In response to these trends, the performance of magnetic heads has been improved, and from electromagnetic induction type thin film magnetic heads to anisotropic magnetoresistive heads (hereinafter, AMR heads) utilizing thin film magnetoresistive effect phenomena. Further, it has evolved into a spin valve type magnetoresistive head (hereinafter referred to as SV head).
A conventional AMR head is disclosed in, for example, a known document IEEE Tr.
ans. Magn. Vol26 (1990) pp168
9 That is, a magnetoresistive element (hereinafter, MR element) for reproducing a magnetic signal on a magnetic recording medium is:
The structure is such that the MR element is sandwiched by a shield magnetic film that magnetically shields the MR element via a read gap film made of a nonmagnetic material. On the other hand, a magnetic pole for recording a magnetic signal on a magnetic recording medium uses an inductive magnetic head and has a structure laminated on a shield magnetic film.

【0003】磁気記録装置で面記録密度を増加させるた
めには、線記録密度とトラック密度の向上が不可欠であ
る。トラック密度を向上させるには、再生トラック幅を
減少させる必要がある。また、線記録密度を向上させる
には、記録ビットを狭小化するために記録ヘッドのギャ
ップ長を狭くしたり、記録ヘッドと記録媒体との浮上量
を低くくする等してより微細なビットを磁気記録媒体上
に書き込む事が必要になるが、再生出力の波形の干渉効
果によって高周波になるほど再生出力が減少する傾向を
示す。これを防ぐために再生素子をシールドで挟み込む
構造の磁気ヘッドが使われるようになった。ここで再生
素子とは、MR素子を含み、磁気ヘッドの再生動作に関
与する構造のことをいう。
In order to increase the areal recording density in a magnetic recording apparatus, it is essential to improve the linear recording density and the track density. In order to improve the track density, it is necessary to reduce the reproduction track width. In order to improve the linear recording density, the gap length of the recording head is reduced in order to narrow the recording bits, or the flying height between the recording head and the recording medium is reduced, so that finer bits are reduced. Although it is necessary to write data on the magnetic recording medium, the reproduced output tends to decrease as the frequency becomes higher due to the interference effect of the reproduced output waveform. To prevent this, a magnetic head having a structure in which a reproducing element is sandwiched between shields has come to be used. Here, the reproducing element refers to a structure including the MR element and involved in the reproducing operation of the magnetic head.

【0004】ところで、再生素子に用いられるMR素子
は、MR素子内に発生する磁壁や磁区構造の影響を受け
やすく、バルクハウゼンノイズの制御が必要である。制
御手段の一つとして例えばIEEE Trans.Ma
gn.Vol.32(1996)pp19に開示された
ように、MR素子に隣接させた永久磁石膜を用い、MR
素子にバイアス磁界を印加する方法がある。印加された
バイアス磁界はMR素子のトラック幅方向の端部に発生
する反磁界の影響を緩和し、MR素子内に磁区が発生す
ることを抑制することが出来る。
Incidentally, an MR element used as a reproducing element is easily affected by a domain wall or a magnetic domain structure generated in the MR element, and it is necessary to control Barkhausen noise. As one of the control means, for example, IEEE Trans. Ma
gn. Vol. 32 (1996) pp19, using a permanent magnet film adjacent to the MR element,
There is a method of applying a bias magnetic field to the element. The applied bias magnetic field can reduce the influence of the demagnetizing field generated at the end of the MR element in the track width direction, and can suppress generation of magnetic domains in the MR element.

【0005】例えば上記に開示された技術に関して具体
的な永久磁石の材料を規定した技術が、米国特許543
4826に開示されている。この技術では永久磁石膜を
構成する材料としてCoCrPt、CoCrTa、Co
CrTaPtおよびCoCrPtB等の材料で構成さ
れ、このような材料の特徴として500〜600Aの膜
厚の時の残留磁化と膜厚の積が2.38〜3.78(m
emu/cm2)になることが明らかにされている。
[0005] For example, with respect to the technology disclosed above, a technology defining specific materials for permanent magnets is disclosed in US Pat.
4826. In this technology, CoCrPt, CoCrTa, Co
It is made of a material such as CrTaPt and CoCrPtB. As a characteristic of such a material, the product of the residual magnetization and the film thickness at a film thickness of 500 to 600 A is 2.38 to 3.78 (m
emu / cm 2 ).

【0006】また、永久磁石膜の磁気特性が磁気抵抗効
果型磁気ヘッドの特性に対して与える影響については、
特開平7−93714に開示された技術のように永久磁
石膜の保磁力の特性を向上させることでバルクハウゼン
ノイズや磁気ヘッドの再生出力のばらつきを低減できる
ことが分かっている。
The influence of the magnetic characteristics of the permanent magnet film on the characteristics of the magnetoresistive head is described below.
It has been found that by improving the coercive force characteristics of the permanent magnet film as in the technique disclosed in JP-A-7-93714, Barkhausen noise and variations in the reproduction output of the magnetic head can be reduced.

【0007】[0007]

【発明が解決しようとする課題】しかし、永久磁石膜が
発生するバイアス磁界は、再生素子の磁化回転を抑制し
て安定化させる技術であるため、トラック密度を向上さ
せるためにトラック幅を減少させると隣接した永久磁石
膜の間隔が小さくなり、バイアス磁界による磁化回転抑
制の効果が増加する傾向を示す。このため再生素子の感
度はいっそう低下し再生出力の低下が懸念される。ま
た、線記録密度を向上させるために、シールド間隔を小
さくすると、図4のように永久磁石膜からの磁束が上部
シールドおよび下部シールドに吸収され、実効的にMR
素子に縦バイアス磁界が印加されず再生出力の不安定性
が制御できない。従って、バルクハウゼンノイズのよう
な再生出力の不安定性を制御し、且つ再生出力が高い磁
気ヘッドを得るためには記録密度による再生トラック幅
および再生ギャップ長に対応した特性の永久磁石膜を用
いることが必要である。
However, since the bias magnetic field generated by the permanent magnet film is a technique for suppressing and stabilizing the magnetization rotation of the reproducing element, the track width is reduced to improve the track density. And the distance between the adjacent permanent magnet films becomes smaller, and the effect of suppressing the magnetization rotation by the bias magnetic field tends to increase. For this reason, the sensitivity of the reproducing element further decreases, and there is a concern that the reproducing output may decrease. Further, when the shield interval is reduced to improve the linear recording density, the magnetic flux from the permanent magnet film is absorbed by the upper shield and the lower shield as shown in FIG.
Since no longitudinal bias magnetic field is applied to the element, the instability of the reproduction output cannot be controlled. Therefore, in order to control the reproduction output instability such as Barkhausen noise and obtain a magnetic head having a high reproduction output, use a permanent magnet film having characteristics corresponding to the reproduction track width and the reproduction gap length depending on the recording density. is necessary.

【0008】[0008]

【課題を解決するための手段】本発明の磁気抵抗効果型
磁気ヘッドは、磁気抵抗効果を有する再生素子と前記再
生素子に縦バイアス磁界を印加する永久磁石膜を備える
磁気抵抗効果型磁気ヘッドにおいて、再生トラック幅を
Tw(μm)、再生ギャップ膜厚をGl(μm)、永久
磁石膜の残留磁化膜厚積をMrt(memu/c
2)、感磁層の飽和磁化膜厚積をMst(memu/
cm2)とした時の再生トラック幅、再生ギャップ膜
厚、永久磁石膜の残留磁化膜厚積、感磁層の飽和磁化膜
厚積との関係が、 Mrt/Mst<=0.0649Tw3/2/Gl+1.92 (1) Mrt/Mst>=0.0317Tw3/2/Gl+1.07 (2) によって規定される領域にあり、且つ再生トラック幅が
1.5μm以下、再生ギャップ長が0.2μm以下であ
ることを特徴とする。
According to the present invention, there is provided a magneto-resistance effect type magnetic head comprising a reproducing element having a magneto-resistance effect and a permanent magnet film for applying a longitudinal bias magnetic field to the reproducing element. The reproduction track width is Tw (μm), the reproduction gap film thickness is Gl (μm), and the residual magnetization film thickness product of the permanent magnet film is Mrt (memu / c).
m 2 ), and the product of the saturation magnetization thickness of the magnetosensitive layer is Mst (memu /
cm 2 ), the relationship between the reproduction track width, the reproduction gap film thickness, the product of the residual magnetization film thickness of the permanent magnet film, and the product of the saturation magnetization film thickness of the magnetosensitive layer is as follows: Mrt / Mst <= 0.0649 Tw 3 / 2 /Gl+1.92 (1) Mrt / Mst> = 0.0317Tw 3/2 /Gl+1.07 (2) The reproduction track width is 1.5 μm or less, and the reproduction gap length is 0. It is characterized by being 2 μm or less.

【0009】ここで、再生トラック幅は、トラック幅方
向における再生素子の寸法を表わす。また、再生ギャッ
プ長とは、再生素子の近傍における上部シールドと下部
シールドとの間隔の事を指す。ここで、上部シールドと
下部シールドは、再生ギャップ膜を介して再生素子を挟
むように配置される。また、再生ギャップ膜厚とは、ト
ラック幅方向に垂直な向きにおける再生ギャップ膜の厚
さの和の値、もしくは再生素子近傍における再生ギャッ
プ長から永久磁石膜の厚さを引いた値を表す。感磁層と
は磁気信号を検出する層の事であり、AMRヘッドの場
合はMR層を示し、SVヘッドの場合はフリー層のこと
を表す。
Here, the reproduction track width represents the size of the reproduction element in the track width direction. The reproduction gap length refers to the distance between the upper shield and the lower shield near the reproducing element. Here, the upper shield and the lower shield are arranged so as to sandwich the read element via the read gap film. The reproduction gap film thickness represents a value of the sum of the thicknesses of the reproduction gap films in a direction perpendicular to the track width direction or a value obtained by subtracting the thickness of the permanent magnet film from the reproduction gap length near the reproducing element. The magneto-sensitive layer is a layer for detecting a magnetic signal. In the case of an AMR head, it indicates an MR layer, and in the case of an SV head, it indicates a free layer.

【0010】本発明の磁気抵抗効果型磁気ヘッドでは、
前記永久磁石膜の残留磁化Mrと飽和磁化Msの比によ
って与えられる角形比S=Mr/Msが、0.6以上
1.0以下であることを特徴とする。
In the magnetoresistive head of the present invention,
The squareness ratio S = Mr / Ms given by the ratio between the residual magnetization Mr and the saturation magnetization Ms of the permanent magnet film is 0.6 or more and 1.0 or less.

【0011】また、本発明の磁気抵抗効果型磁気ヘッド
では、前記永久磁石膜がCoを主成分とする合金であ
り、前記合金に対する添加元素としてCr、Ta、P
t、Niの少なくとも何れか1種類以上を含む永久磁石
膜であることを特徴とする。
In the magnetoresistive head according to the present invention, the permanent magnet film is an alloy containing Co as a main component, and Cr, Ta, P
It is a permanent magnet film containing at least one of t and Ni.

【0012】また、本発明の磁気抵抗効果型磁気ヘッド
では、磁気抵抗効果を有する再生素子が非磁性金属のス
ペーサを介して積層された2つの軟磁性膜によって構成
されいることを特徴とする。
Further, in the magneto-resistance effect type magnetic head according to the present invention, the reproducing element having the magneto-resistance effect is constituted by two soft magnetic films laminated with a non-magnetic metal spacer interposed therebetween.

【0013】[0013]

【発明の実施の形態】図1において、再生トラック幅T
w(μm)と再生ギャップ膜厚Gl(μm)により規定
するTw3/2/Glに対して、再生出力の不安定性を制
御するのに望ましい磁化比Mrt/Mstの範囲を示
す。ここで永久磁石膜の残留磁化膜厚積をMrt(me
mu/cm2)、感磁層の飽和磁化膜厚積をMst(m
emu/cm2)とする。本発明の磁気抵抗効果型磁気
ヘッドは、磁気抵抗効果を有する再生素子と前記再生素
子に縦バイアス磁界を印加する永久磁石膜を備え、永久
磁石膜と感磁層が図1中に示した(1)式および(2)
式、 Mrt/Mst<=0.0649Tw3/2/Gl+1.92 (1) Mrt/Mst>=0.0317Tw3/2/Gl+1.07 (2) を満たす構成であり、且つ再生トラック幅を1.5μm
以下、再生ギャップ長を0.2μm以下とする。上記の
範囲を満たす構成を用いることにより、再生トラック幅
および再生ギャップ長を狭くしても、永久磁石膜から十
分な磁束量を感磁層に印加できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG.
The range of the magnetization ratio Mrt / Mst desirable for controlling the instability of the reproduction output is shown with respect to Tw 3/2 / Gl defined by w (μm) and the reproduction gap film thickness Gl (μm). Here, the product of the residual magnetization thickness of the permanent magnet film is represented by Mrt (me
mu / cm 2 ) and the product of the saturation magnetization thickness of the free layer as Mst (m
emu / cm 2 ). The magneto-resistance effect type magnetic head of the present invention includes a reproducing element having a magneto-resistance effect and a permanent magnet film for applying a longitudinal bias magnetic field to the reproducing element, and the permanent magnet film and the magneto-sensitive layer are shown in FIG. 1) Equation and (2)
The following formula is satisfied: Mrt / Mst <= 0.0649 Tw 3/2 /Gl+1.92 (1) Mrt / Mst> = 0.0317Tw 3/2 /Gl+1.07 (2) 0.5 μm
Hereinafter, the reproduction gap length is set to 0.2 μm or less. By using a configuration that satisfies the above range, a sufficient amount of magnetic flux can be applied to the magnetosensitive layer from the permanent magnet film even when the reproduction track width and the reproduction gap length are reduced.

【0014】以下各図を用いて本発明の構成について順
を追って説明する。図2はAMRヘッドの再生素子部分
の断面図である。永久磁石膜はMR素子の両端に配置さ
れ、MR素子にバイアス磁界を印加してMR素子内に磁
区が発生することを抑制する。図2のようにMR素子の
両端にテーパーを付けその上に永久磁石膜を積層した構
造を一般的にアバッテド接合と呼ぶ。 MR膜1/スペ
ーサ2/SAL3と永久磁石層7のアバッテッド接合の
形成工程は、例えば図3に示す様なリフトオフ法で行わ
れる。ここで、SALとは近接軟磁性膜を表す。図3
(a)において、まずSAL3/スペーサ2/ MR膜
1の上に感光性レジスト9をコートした後、Si02
0をスパッタなどにより成膜する。次にSiO210の
余分な部分をエッチングで除去したあと、RIE(Re
active Ion Eching)などによりレジ
ストを選択的にエッチングし、図3(b)の様な形状を
形成する。その後イオンミリングでテーパー部を形成し
た後、下地膜6および永久磁石膜7、電極膜8を順次ス
パッタなどで成膜し(図3(c))、最後にレジスト9
とSiO210を有機溶剤などで除去し、アバッテド接
合が形成される(図3(d))。
Hereinafter, the configuration of the present invention will be described step by step with reference to the drawings. FIG. 2 is a sectional view of a reproducing element portion of the AMR head. Permanent magnet films are arranged at both ends of the MR element, and suppress generation of magnetic domains in the MR element by applying a bias magnetic field to the MR element. A structure in which both ends of the MR element are tapered and a permanent magnet film is laminated thereon as shown in FIG. 2 is generally called an abutted junction. The step of forming an abutted junction between the MR film 1 / spacer 2 / SAL 3 and the permanent magnet layer 7 is performed, for example, by a lift-off method as shown in FIG. Here, SAL indicates a proximity soft magnetic film. FIG.
In (a), first, a photosensitive resist 9 is coated on the SAL3 / spacer 2 / MR film 1, and then the SiO 2 1
0 is formed by sputtering or the like. Next, after an unnecessary portion of SiO 2 10 is removed by etching, RIE (Re
The resist is selectively etched by active ion etching or the like to form a shape as shown in FIG. Thereafter, a taper portion is formed by ion milling, and then a base film 6, a permanent magnet film 7, and an electrode film 8 are sequentially formed by sputtering or the like (FIG. 3C).
And SiO 2 10 are removed with an organic solvent or the like to form an abated junction (FIG. 3D).

【0015】このようにして形成した永久磁石膜膜の形
状は感光性レジスト9、Si0210の高さの影響を受
けるため、その膜厚はMR素子に近づくにつれて次第に
薄くなる。図4に先端が絞られた形状のときの永久磁石
膜の磁極および磁界の分布を模式的に示した。永久磁石
膜の着磁は図面向かって右側へTw方向(再生トラック
幅の向き)に行っている。先端が絞られると磁極が表面
に発生するためこの様な分布になる。磁区制御に寄与す
るバイアス磁界はMR素子近傍の磁極から発生する磁束
量で決まり、遠方の磁極からの磁束は上シールド及び下
シールドに吸収されるため磁区制御にはほとんど寄与し
ない。図5は、図4にてMR素子に与えられる磁束量φ
が磁極の表れる位置Xによって、どのように変化するか
を数値計算により求めた結果である。原点は感磁層のテ
ーパーの開始点をゼロとした。数値計算は2次元の有限
要素法により各メッシュに透磁率と磁極を与え、感磁層
を通過する磁束量を計算した。表1に数値計算で用いた
パラメータを示す。ここで、再生トラック幅は感磁層の
アバッテド接合面のx方向の中心位置で図4に示すよう
に定義した。また、MR膜、SAL、シールド膜の実効
透磁率は反磁界の影響も考慮して見積もった値である。
The shape of the permanent magnet film thus formed is affected by the height of the photosensitive resist 9 and SiO 2 10, so that the film thickness gradually decreases as approaching the MR element. FIG. 4 schematically shows the distribution of the magnetic poles and the magnetic field of the permanent magnet film when the tip is narrowed. The magnetization of the permanent magnet film is performed in the Tw direction (direction of the reproduction track width) to the right in the drawing. When the tip is narrowed, a magnetic pole is generated on the surface, and thus such a distribution is obtained. The bias magnetic field that contributes to the magnetic domain control is determined by the amount of magnetic flux generated from the magnetic pole near the MR element, and the magnetic flux from the distant magnetic pole is absorbed by the upper shield and the lower shield, so that it hardly contributes to the magnetic domain control. FIG. 5 shows the amount of magnetic flux φ applied to the MR element in FIG.
Is a result obtained by numerical calculation as to how it changes depending on the position X where the magnetic pole appears. The origin is set to zero at the start point of the taper of the free layer. In the numerical calculation, the permeability and the magnetic pole were given to each mesh by a two-dimensional finite element method, and the amount of magnetic flux passing through the magnetosensitive layer was calculated. Table 1 shows the parameters used in the numerical calculations. Here, the reproduction track width was defined as shown in FIG. 4 at the center position in the x direction of the abutted joint surface of the magnetosensitive layer. The effective magnetic permeability of the MR film, SAL, and shield film is a value estimated in consideration of the influence of the demagnetizing field.

【0016】[0016]

【表1】再生トラック幅は1.0μmとした。 Table 1 The reproduction track width was 1.0 μm.

【0017】図5に示すように、永久磁石から感磁層に
印加される磁束量は磁極の位置がアバッテッド接合面か
ら遠ざかるに従い減少する。特にXが50nmより大き
くなると感磁層に印加される磁束量が急激に減少してい
る。これは、シールド側に磁束が吸収されたためと考え
られる。参考としてシールドが無いと仮定した場合の磁
束量の変化も図5に併記した。このように、シールドが
ある場合実効的に縦バイアスを感磁層に印加できるのは
MR素子近傍の永久磁石のみであるため、以下の説明で
は図4の示すように、永久磁石の膜厚をテーパー部分か
ら50nmの位置(X=50nm)での膜厚と定義す
る。また、再生ギャップ膜厚Glは図に示すようにテー
パーの開始点(X=0nm)を横切る垂線に対しての上
下シールドの間隔GsからX=50nmの位置での永久
磁石の膜厚TPMを差し引いた値で以下のように定義す
る。 Gl=Gs−TPM
As shown in FIG. 5, the amount of magnetic flux applied from the permanent magnet to the magneto-sensitive layer decreases as the position of the magnetic pole moves away from the abutted joint surface. In particular, when X becomes larger than 50 nm, the amount of magnetic flux applied to the magneto-sensitive layer sharply decreases. This is probably because the magnetic flux was absorbed by the shield side. For reference, FIG. 5 also shows changes in the amount of magnetic flux when there is no shield. As described above, since only the permanent magnet near the MR element can effectively apply the longitudinal bias to the magnetosensitive layer when the shield is provided, in the following description, as shown in FIG. It is defined as the film thickness at a position 50 nm (X = 50 nm) from the tapered portion. Further, the film thickness T PM permanent magnet at the position of the reproduction gap thickness Gl is X = 50 nm from the interval Gs of the upper and lower shield with respect to the perpendicular line across the starting point of the taper (X = 0 nm) as shown in FIG. It is defined as follows with the subtracted value. Gl = Gs-T PM

【0018】トラック幅が減少すると隣接した永久磁石
の間隔が小さくなり、縦バイアスの効果が増加し再生出
力が低下する。線記録密度を向上させるために、シール
ド間隔Gsを小さくすると、上部および下部シールドに
永久磁石からの磁束が吸収され、実効的に感磁層に縦バ
イアス磁界が印加されず再生出力の不安定性が制御でき
ない。このことから永久磁石膜のMrtには再生不安定
性を制御するために必要な下限の値と、再生出力を確保
できる上限の値が存在する事がわかる。また、永久磁石
のMrtが一定でも感磁層の膜厚が増えると感磁層の単
位断面積当たりの磁束量は減少するため、縦バイアスを
制御するには感磁層のMstに対する永久磁石のMrt
の比率(Mrt/Mst)が適切な指標となる。以降の
説明ではMrt/Mstを磁化比と呼ぶことにする。
When the track width decreases, the distance between adjacent permanent magnets decreases, the effect of the vertical bias increases, and the reproduction output decreases. When the shield interval Gs is reduced in order to improve the linear recording density, the magnetic flux from the permanent magnet is absorbed by the upper and lower shields, so that the longitudinal bias magnetic field is not effectively applied to the magneto-sensitive layer and the reproduction output becomes unstable. I can't control it. This indicates that the Mrt of the permanent magnet film has a lower limit necessary for controlling the reproduction instability and an upper limit which can ensure the reproduction output. Further, even when the Mrt of the permanent magnet is constant, the amount of magnetic flux per unit sectional area of the magnetosensitive layer decreases as the film thickness of the magnetosensitive layer increases. Mrt
(Mrt / Mst) is an appropriate index. In the following description, Mrt / Mst will be referred to as a magnetization ratio.

【0019】ハードディスクドライブ装置では0、1の
符号を記録再生するために、媒体に記録される磁化の反
転を用いている。媒体内の磁化の反転にともなう磁界変
化は磁気抵抗型磁気ヘッドによる再生で0、1の符号に
変換されるが、例えば符号配列が{0000}のように
0が連続する場合は磁化の反転周期が長く、反対に{1
111}のように1が連続する場合は磁化の反転周期が
短くなる。現在ハードディスク装置に用いられている符
号再生では最低周波数と最高周波数の比が1:5ないし
1:6の関係になるが、再生波形の干渉効果によって高
周波になるほど再生出力が減少する傾向を示す。この
時、最高周波数に対する再生出力と最低周波数に対する
再生出力の強度比は25〜35%程度になる。一方ハー
ドディスク装置で誤り無く符号再生するにはヘッドから
の再生出力が0.1mV程度必要であることから、低周
波域での再生出力は最低0.3〜0.4mVあることが
望ましい。よって本発明では低周波域の再生出力を0.
4mV以上確保出来るよう磁化比を設定することにし
た。
In the hard disk drive, inversion of magnetization recorded on a medium is used for recording and reproducing codes of 0 and 1. The change in the magnetic field due to the reversal of the magnetization in the medium is converted into the codes of 0 and 1 by reproduction by the magnetoresistive magnetic head. For example, when the code arrangement is continuous such as {0000}, the magnetization reversal cycle is Is long and conversely $ 1
When 1 is continuous as in 111 °, the cycle of magnetization reversal becomes short. In code reproduction currently used in hard disk devices, the ratio of the lowest frequency to the highest frequency has a relationship of 1: 5 to 1: 6, but the reproduction output tends to decrease as the frequency increases due to the interference effect of the reproduction waveform. At this time, the intensity ratio between the reproduced output for the highest frequency and the reproduced output for the lowest frequency is about 25 to 35%. On the other hand, the reproduction output from the head is required to be about 0.1 mV in order to reproduce the code without error in the hard disk device. Therefore, the reproduction output in the low frequency range is preferably at least 0.3 to 0.4 mV. Therefore, in the present invention, the reproduction output in the low frequency range is set to 0.
The magnetization ratio was set so that 4 mV or more could be secured.

【0020】表2に示す材質、形状で、永久磁石の磁化
比を0.5〜3.2の間でMRヘッドを作製し、再生波
形のヒステリシスと再生出力の関係を調べた。再生出力
はデプス加工後のMRヘッドをサスペンションに組み立
てた後に記録媒体上に浮上させ、低周波で測定した。ま
たヒステリシスは±150Oeの外部磁界を与えた時の
抵抗変化曲線を測定し、図6のような磁界の増加時と減
少時の経路に囲まれる面積で定義した。図6の様なヒス
テリシスが生ずるヘッドでは、記録再生動作の度に再生
出力が変動するためドライブのエラレートが劣化する。
図7は磁化比と再生出力の関係である。磁化比が増加す
るに従い再生出力は減少することがわかった。再生出力
は前述の様に低周波で0.4mV以上必要であるので、
この結果から0.4mV以上の再生出力を得るには、磁
化比2.3以下でなければならない事がわかる。図8は
磁化比とヒステリシスの関係である。一般に再生素子に
現れるヒステリシスは再生出力のばらつきの原因とな
り、ディスクドライブ装置のノイズ源となることが分か
っている。従ってヒステリシスはできるだけ小さい方が
望ましい。図8より磁化比が1.5以下では急激にヒス
テリシスが増加するため、ヒステリシスを抑制するには
磁化比1.5以上が必要となる。図7、図8より再生出
力とヒステリシスの両方を満たす磁化比の値は1.5≦
磁化比≦2.3で表される。
Using the materials and shapes shown in Table 2, an MR head was manufactured with a permanent magnet having a magnetization ratio of 0.5 to 3.2, and the relationship between the hysteresis of the reproduced waveform and the reproduced output was examined. The reproduction output was measured at a low frequency by assembling the MR head after depth processing into a suspension and then flying above the recording medium. The hysteresis was measured by measuring a resistance change curve when an external magnetic field of ± 150 Oe was applied, and was defined as an area surrounded by a path when the magnetic field increased and when the magnetic field decreased as shown in FIG. In the head in which the hysteresis as shown in FIG. 6 occurs, the reproduction output fluctuates every time the recording / reproducing operation is performed, so that the drive error rate deteriorates.
FIG. 7 shows the relationship between the magnetization ratio and the reproduction output. It was found that the reproduction output decreased as the magnetization ratio increased. Since the reproduction output needs to be 0.4 mV or more at a low frequency as described above,
From this result, it is understood that in order to obtain a reproduction output of 0.4 mV or more, the magnetization ratio must be 2.3 or less. FIG. 8 shows the relationship between the magnetization ratio and the hysteresis. It has been known that hysteresis generally appearing in a reproducing element causes a variation in reproduced output and becomes a noise source of a disk drive device. Therefore, it is desirable that the hysteresis is as small as possible. As shown in FIG. 8, when the magnetization ratio is 1.5 or less, the hysteresis increases rapidly. Therefore, to suppress the hysteresis, the magnetization ratio of 1.5 or more is required. 7 and 8, the value of the magnetization ratio satisfying both the reproduction output and the hysteresis is 1.5 ≦
It is represented by a magnetization ratio ≦ 2.3.

【0021】[0021]

【表2】 試作したMRヘッドの形状、材料特性 再生トラック幅 1.4μm 再生ギャップ膜厚Gl 0.15μm MR高さ 0.8μm Table 2 Shape and material properties of the prototype MR head Reproduction track width 1.4 μm Reproduction gap film thickness Gl 0.15 μm MR height 0.8 μm

【0022】本発明では数値計算で実際のヘッドの再生
ギャップ膜厚Gl、再生トラック幅Twと永久磁石膜の
Mrt、感磁層のMstの関係を規定するため、数値計
算と実際のヘッドとの特性との対応を取る必要がある。
図9は表2のパラメータで数値計算を行ったときの永久
磁石から感磁層に付与される磁束量を計算した結果であ
る。磁化比の増加に比例して磁束量φも増加することが
わかる。図7、図8から1.5<磁化比<2.3の範囲
が望ましく、これに対応する磁束量φは 7.7<φ<11.8 (3) の範囲に相当する。従って以降の計算では(3)式の磁
束量を基準にして、Tw、Glを変更した時の磁化比の
下限と上限を規定する。
In the present invention, the relationship between the reproducing gap film thickness Gl of the actual head, the reproducing track width Tw, the Mrt of the permanent magnet film, and the Mst of the magneto-sensitive layer is defined by numerical calculation. It is necessary to deal with characteristics.
FIG. 9 shows the result of calculating the amount of magnetic flux applied to the magneto-sensitive layer from the permanent magnet when performing a numerical calculation using the parameters in Table 2. It can be seen that the amount of magnetic flux φ increases in proportion to the increase in the magnetization ratio. 7 and 8, it is desirable that the range of 1.5 <magnetization ratio <2.3 is satisfied, and the corresponding magnetic flux amount φ corresponds to the range of 7.7 <φ <11.8 (3). Therefore, in the subsequent calculations, the lower and upper limits of the magnetization ratio when Tw and Gl are changed are defined based on the magnetic flux amount of the equation (3).

【0023】また、本発明は上に記載の何れかの磁気ヘ
ッドであって、前記磁気的バイアスを印加するための手
段である永久磁石膜の残留磁化Mrと飽和磁化Msの比
によって与えられる角形比S=Mr/Msが、0.7以
上1.0以下であることを特徴とする磁気抵抗効果型磁
気ヘッドである。
According to the present invention, there is provided any one of the magnetic heads described above, wherein the rectangular shape given by the ratio of the residual magnetization Mr and the saturation magnetization Ms of the permanent magnet film as the means for applying the magnetic bias. The magnetoresistive head is characterized in that the ratio S = Mr / Ms is 0.7 or more and 1.0 or less.

【0024】図10に浮上面から見た磁気抵抗型磁気ヘ
ッドの形状を示す。7は永久磁石膜、11は磁気抵抗効
果素子、8は再生素子に通電するための電極、15は記
録磁極である。再生素子は12の下部シールド膜および
13の上部シールド膜によって磁気的にシールドされて
いる。例えば薄膜材料として磁気抵抗効果型ヘッドに用
いられる永久磁石材料の飽和磁化Msは450〜800
(emu/cm3)程度になる。この時、角形比Sが1
であれば、1(memu/cm2)のMrtを得るため
に必要な膜厚は120〜220(A)である。これに対
して角形比Sが0.1の場合では1(memu/c
2)のMrtを得るために必要な膜厚は1200〜2
200(A)にも達し、再生素子の再生トラック両側が
厚くなってしまう。この再生素子周辺の形状は記録磁極
の形状にも影響を及ぼすことになる。再生素子周辺の形
状効果を緩和するためには、記録磁極を形成する前に磁
極を配置する面の平坦化を行うかあるいは再生素子形状
を平坦に保つことが必要である。しかし、平坦化の作業
は磁気ヘッドの製造工数を増加させ、コストの増加につ
ながるという短所を有する。これに対して再生素子の形
状そのものを平坦に保つ技術は余分な工程を経ることな
く、且つ永久磁石膜を薄くすることで膜形成の時間も短
縮することが可能であり磁気抵抗効果型ヘッドの生産性
を向上させることが出来る。
FIG. 10 shows the shape of the magnetoresistive magnetic head viewed from the air bearing surface. Reference numeral 7 denotes a permanent magnet film, 11 denotes a magnetoresistive element, 8 denotes an electrode for supplying a current to the reproducing element, and 15 denotes a recording magnetic pole. The reproducing element is magnetically shielded by 12 lower shield films and 13 upper shield films. For example, the saturation magnetization Ms of a permanent magnet material used for a magnetoresistive head as a thin film material is 450 to 800.
(Emu / cm 3 ). At this time, the squareness ratio S is 1
Then, the film thickness required to obtain Mrt of 1 (memu / cm 2 ) is 120 to 220 (A). On the other hand, when the squareness ratio S is 0.1, 1 (memu / c
The required film thickness for obtaining Mrt of m 2 ) is 1200 to 2
It reaches 200 (A), and both sides of the reproduction track of the reproduction element become thick. The shape around the reproducing element also affects the shape of the recording magnetic pole. In order to alleviate the shape effect around the reproducing element, it is necessary to flatten the surface on which the magnetic poles are arranged before forming the recording magnetic pole, or to keep the reproducing element shape flat. However, the flattening operation has disadvantages in that the number of man-hours for manufacturing the magnetic head increases and the cost increases. On the other hand, the technique for keeping the shape of the reproducing element itself flat is not required to perform an extra step, and the time required for forming the film can be shortened by thinning the permanent magnet film. Productivity can be improved.

【0025】本発明で許容される永久磁石膜は(1)、
(2)式よりMst、Glの値により決定されるが、G
lが減少するに伴いMrtが非常に大きくなる。例えば
磁化比5でMst=1(emu/cm3)の場合、永久
磁石は5.0(emu/cm3)のMrtが必要とな
り、450(emu/cm3)の飽和磁化を持つ永久磁
石材料を用いた場合、永久磁石膜の膜厚は以下の関係で
与えられる。 (永久磁石膜厚)=5.0(memu/cm2)/Ms(emu/cm3) =5.0(memu/cm2)/(450(emu/cm3)×S) よって永久磁石膜の最小膜厚は角形比S=1の時に得ら
れて、1111(A)になる。角形比Sが小さくなるに
従って永久磁石膜の膜厚は大きくなり角形比0.7で1
587(A)、角形比0.5で2222(A)に達す
る。磁気抵抗型ヘッドの素子膜厚は500〜600
(A)程度であり、これに信号検出用の電極を加えた素
子部の段差は角形比0.7の時に2000(A)程度に
なる。これは記録ギャップ長の50%に達する歪みを記
録磁極に発生させるが、50%以上の形状歪みはO/W
および再生波長の特性を著しく劣化させるため、永久磁
石膜の角形比は0.7以上であることが望ましい。
The permanent magnet film acceptable in the present invention is (1)
(2) is determined by the values of Mst and Gl.
Mrt becomes very large as l decreases. For example, when Mst = 1 (emu / cm 3 ) at a magnetization ratio of 5, a permanent magnet requires Mrt of 5.0 (emu / cm 3 ), and a permanent magnet material having a saturation magnetization of 450 (emu / cm 3 ) Is used, the thickness of the permanent magnet film is given by the following relationship. (Permanent magnet film thickness) = 5.0 (memu / cm 2 ) / Ms (emu / cm 3 ) = 5.0 (memu / cm 2 ) / (450 (emu / cm 3 ) × S) Is obtained when the squareness ratio S = 1 and becomes 1111 (A). As the squareness ratio S decreases, the thickness of the permanent magnet film increases, and the squareness ratio becomes 0.7 at 0.7.
587 (A) and reaches 2222 (A) at a squareness ratio of 0.5. The element thickness of the magnetoresistive head is 500 to 600.
(A), and the level difference of the element portion to which the electrode for signal detection is added becomes about 2000 (A) when the squareness ratio is 0.7. This causes a distortion of the recording magnetic pole to reach 50% of the recording gap length.
In addition, the squareness ratio of the permanent magnet film is desirably 0.7 or more in order to significantly deteriorate the characteristics of the reproduction wavelength.

【0026】また本発明は、上に記載された磁気ヘッド
であって、前記永久磁石膜がCoを主成分とする合金で
あり、前記合金に対する添加元素としてCr、Ta、P
t、Niの少なくとも何れか1種類以上を含む永久磁石
膜であることを特徴とする磁気抵抗効果型磁気ヘッドで
ある。
The present invention also provides the magnetic head described above, wherein the permanent magnet film is an alloy containing Co as a main component, and Cr, Ta, P
A magnetoresistance effect type magnetic head characterized by being a permanent magnet film containing at least one of t and Ni.

【0027】磁気抵抗効果型ヘッドでバイアス磁界を発
生する永久磁石膜のMrtを制御し、良好な再生特性を
得るためには薄膜の状態で優れた磁気特性を示す永久磁
石材料を得る必要がある。Coを主成分とする合金の永
久磁石膜では膜厚が100〜1000(A)の範囲で保
磁力Hc=1000Oe以上、角形比S=0.7以上を
確保することが可能である。
In order to control the Mrt of a permanent magnet film that generates a bias magnetic field with a magnetoresistive head and obtain good reproduction characteristics, it is necessary to obtain a permanent magnet material exhibiting excellent magnetic characteristics in a thin film state. . In the case of a permanent magnet film of an alloy containing Co as a main component, a coercive force Hc of 1000 Oe or more and a squareness ratio S of 0.7 or more can be ensured in a thickness range of 100 to 1000 (A).

【0028】また本発明は、上に記載された磁気ヘッド
であって、磁気抵抗効果を有する再生素子が非磁性金属
のスペーサを介して積層された2つの軟磁性膜によって
構成されていることを特徴とする磁気抵抗効果型磁気ヘ
ッドである。
According to the present invention, there is provided the magnetic head described above, wherein the reproducing element having a magnetoresistive effect is constituted by two soft magnetic films stacked via a nonmagnetic metal spacer. This is a characteristic magnetoresistive head.

【0029】本発明において、非磁性金属のスペーサと
してはCu、Ta等の材料を用いいることが可能であ
る。積層された軟磁性膜としては、NiFe、Co、N
iFeCo、CoFe等を用いることが可能であり、f
ccの結晶構造を持つことによって良好な軟磁気特性を
得ることが出来る。
In the present invention, a material such as Cu or Ta can be used as the nonmagnetic metal spacer. NiFe, Co, N
iFeCo, CoFe or the like can be used, and f
By having a crystal structure of cc, good soft magnetic characteristics can be obtained.

【0030】[0030]

【実施例】表2のパラメータを用いて磁化比を1.0〜
5.0で変化させたときの、永久磁石膜からMR膜に印
加される磁束量φの再生ギャップ膜厚Glの依存性を計
算した。結果を図11に示す。図11のようにGlが減
少するに従い感磁層に印加される磁束量φが急激に減少
することがわかる。例えば、Glが0.09μmのとき
の磁束量と設定磁化比の関係を図12に示すと、磁化比
と磁束量はほぼ比例関係にある事がわかる。従って、
(3)式の磁束量の規定より磁化比の上限、下限を規定
すると1.96<磁化比<2.66となる。図13
(a)、図13(b)、図13(c)に再生トラック幅
Twがそれぞれ1.4μm、0.95μm、0.5μm
の場合の、再生ギャップ長Glに対する磁化比の上限、
下限を示す。ここで縦軸は磁束量から逆算した磁化比の
値、横軸は1/Glの値とした。再生ギャップ長Glが
減少するに従い、シールドに吸収される磁束が増加する
ため磁化比は増加させなくてはならない事がわかる。逆
に再生トラック幅Twが狭い場合には、磁化比を低く設
定する事で、高出力でしかも出力ばらつきの少ないヘッ
ドが作製可能になる事がわかる。図13(a)、図13
(b)、図13(c)について磁化比と1/Glの値を
一次近似した係数を求め、Tw、Glの関数として最小
磁化比、最大磁化比を算出する必要があるが、この場合
のTw3/2/Glでフィッティングするのが適切であっ
た。図14は横軸をTw3/2/Gl、縦軸を磁化比とし
て図13(a)、図13(b)、図13(c)を再プロ
ットしたものである。図14よりTwを1.4μm、
0.95μm、0.5μmと変えた場合もほとんど同一
の傾向になるため磁化比をGl、Twの関数として以下
の式で規定する事ができる。 Mrt/Mst<=0.0599Tw3/2/Gl+1.
86 Mrt/Mst>=0.0362Tw3/2/Gl+1.
12 この範囲で磁化比を設定すれば、再生出力が高くしかも
変動の少ない安定したMRヘッドが作製可能となる。
[Embodiment] The magnetization ratio is set to 1.0 to
The dependence of the amount of magnetic flux φ applied from the permanent magnet film to the MR film on the reproduction gap film thickness Gl when changed at 5.0 was calculated. The results are shown in FIG. As shown in FIG. 11, it can be seen that the amount of magnetic flux φ applied to the magneto-sensitive layer sharply decreases as Gl decreases. For example, FIG. 12 shows the relationship between the magnetic flux amount and the set magnetization ratio when Gl is 0.09 μm, and it is understood that the magnetization ratio and the magnetic flux amount are almost proportional. Therefore,
When the upper limit and the lower limit of the magnetization ratio are defined based on the definition of the amount of magnetic flux in Expression (3), 1.96 <magnetization ratio <2.66. FIG.
(A), FIG. 13 (b) and FIG. 13 (c) show that the reproduction track width Tw is 1.4 μm, 0.95 μm and 0.5 μm, respectively.
The upper limit of the magnetization ratio with respect to the read gap length Gl,
Indicates the lower limit. Here, the vertical axis is the value of the magnetization ratio calculated backward from the magnetic flux amount, and the horizontal axis is the value of 1 / Gl. It can be seen that as the read gap length Gl decreases, the magnetic flux absorbed by the shield increases, so that the magnetization ratio must be increased. Conversely, when the reproduction track width Tw is narrow, it can be seen that by setting the magnetization ratio low, it is possible to manufacture a head with high output and little output variation. FIG. 13 (a), FIG.
13 (c), it is necessary to obtain a coefficient obtained by first-order approximation of the magnetization ratio and the value of 1 / Gl with respect to FIG. 13 (c), and calculate the minimum magnetization ratio and the maximum magnetization ratio as a function of Tw and Gl. Fitting with Tw 3/2 / Gl was appropriate. FIG. 14 is a plot of FIG. 13 (a), FIG. 13 (b), and FIG. 13 (c) with Tw 3/2 / Gl on the horizontal axis and the magnetization ratio on the vertical axis. From FIG. 14, Tw is 1.4 μm,
When the values are changed to 0.95 μm and 0.5 μm, almost the same tendency is obtained. Therefore, the magnetization ratio can be defined by the following equation as a function of Gl and Tw. Mrt / Mst <= 0.0599 Tw 3/2 / Gl + 1.
86 Mrt / Mst> = 0.0362 Tw 3/2 / Gl + 1.
12 If the magnetization ratio is set within this range, a stable MR head with a high reproduction output and little fluctuation can be manufactured.

【0031】実際のヘッドではそれぞれの膜厚、透磁率
が異なる場合があり、永久磁石からのMR膜に印加され
る磁束量に差が生じる。そこで磁束量が小さく計算され
る(磁化比を大きくしないと同じ磁束量が得られない)
方の数値を表3に、逆に磁束量が大きく計算される(磁
化比が少なくても同じ磁束量が得られる)方の数値を表
4に示した。以下の計算では表3、表4の数値を用いて
二つの計算を行った。
In an actual head, the film thickness and the magnetic permeability may differ from each other, and a difference occurs in the amount of magnetic flux applied to the MR film from the permanent magnet. Therefore, the amount of magnetic flux is calculated small (the same amount of magnetic flux cannot be obtained unless the magnetization ratio is increased)
Table 3 shows the numerical value of the other, and Table 4 shows the numerical value of the case where the magnetic flux amount is calculated to be large (the same magnetic flux amount can be obtained even if the magnetization ratio is small). In the following calculations, two calculations were performed using the numerical values in Tables 3 and 4.

【0032】[0032]

【表3】計算パラメータ(磁化比を高く見積もる場合) [Table 3] Calculation parameters (when the magnetization ratio is highly estimated)

【0033】[0033]

【表4】計算パラメータ(磁化比を低く見積もる場合) [Table 4] Calculation parameters (when underestimating the magnetization ratio)

【0034】図1に計算結果を示す。縦軸は磁化比、横
軸はTw3/2/Glでプロットしている。磁化比を高く
見積もった場合(表3の数値を用いた場合)は、(3)
式で規定される磁化比の上限、下限は以下の式で表せ
る。 Mrt/Mst<=0.0649Tw3/2/Gl+1.92(1) Mrt/Mst>=0.0411Tw3/2/Gl+1.
18 同様に磁化比を低く見積もった場合(表4の数値を用い
た場合)は、(3)式で規定される磁化比の上限、下限
は以下の式で表せる。 Mrt/Mst<=0.0540Tw3/2/Gl+1.81 Mrt/Mst>=0.0317Tw3/2/Gl+1.07(2) 図1より実際のヘッドで膜厚、透磁率などが異なった場
合でも、(1)、(2)式で限定される範囲の磁化比を
設定すれば、(3)式を満たす磁束量を感磁層に印加で
きるため再生出力が高くしかも変動の少ない安定したM
Rヘッドが作製可能となる。
FIG. 1 shows the calculation results. The ordinate plots the magnetization ratio, and the abscissa plots Tw 3/2 / Gl. When the magnetization ratio is highly estimated (when the numerical values in Table 3 are used), (3)
The upper and lower limits of the magnetization ratio defined by the equation can be expressed by the following equation. Mrt / Mst <= 0.0649Tw 3/2 /Gl+1.92(1 ) Mrt / Mst> = 0.0411Tw 3/2 / Gl + 1.
18 Similarly, when the magnetization ratio is estimated lower (when the numerical values in Table 4 are used), the upper and lower limits of the magnetization ratio defined by the expression (3) can be expressed by the following expressions. Mrt / Mst <= 0.0540Tw 3/2 /Gl+1.81 Mrt / Mst> = 0.0317Tw 3/2 /Gl+1.07 ( 2 ) FIG. 1 shows a case where the film thickness, the magnetic permeability, etc. are different in the actual head. However, by setting the magnetization ratio within the range defined by the equations (1) and (2), the amount of magnetic flux satisfying the equation (3) can be applied to the magneto-sensitive layer, so that the reproduction output is high and the M
An R head can be manufactured.

【0035】[0035]

【発明の効果】本発明の磁気抵抗効果ヘッドを用いるこ
とにより、再生トラック幅、再生ギャップが狭くなって
も再生出力および再生出力の変動が少ない良好な再生特
性を得ることが出来る。
By using the magnetoresistive head of the present invention, it is possible to obtain good reproduction characteristics with little fluctuation in reproduction output and reproduction output even when the reproduction track width and reproduction gap become narrow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で規定する再生トラック幅、再生ギャッ
プ膜厚、磁化比の範囲を示す図。
FIG. 1 is a diagram showing ranges of a read track width, a read gap film thickness, and a magnetization ratio defined in the present invention.

【図2】再生素子の断面図。FIG. 2 is a cross-sectional view of a reproducing element.

【図3】アバッテド接合の形成工程の概略図。FIG. 3 is a schematic view of a step of forming an abutted junction.

【図4】再生素子部分における永久磁石膜の磁極分布の
模式図。
FIG. 4 is a schematic diagram of a magnetic pole distribution of a permanent magnet film in a reproducing element portion.

【図5】感磁層に印加される磁束量のシールドによる減
少を示す図。
FIG. 5 is a diagram showing a reduction in the amount of magnetic flux applied to a magneto-sensitive layer by a shield.

【図6】MRヘッドの再生出力に見られるヒステリシス
の定義を表す図。
FIG. 6 is a diagram showing a definition of hysteresis seen in a reproduction output of an MR head.

【図7】磁化比と再生出力の関係を示す図。FIG. 7 is a diagram showing a relationship between a magnetization ratio and a reproduction output.

【図8】磁化比とヒステリシスの関係を示す図。FIG. 8 is a diagram showing a relationship between a magnetization ratio and hysteresis.

【図9】磁化比と感磁層に印加される磁束量の関係を示
す図。
FIG. 9 is a diagram showing the relationship between the magnetization ratio and the amount of magnetic flux applied to the magneto-sensitive layer.

【図10】MRヘッドの概略図。FIG. 10 is a schematic diagram of an MR head.

【図11】感磁層に印加される磁束量の再生ギャップ膜
厚依存性を説明する図。
FIG. 11 is a view for explaining the dependence of the amount of magnetic flux applied to the magneto-sensitive layer on the thickness of the reproducing gap.

【図12】Gl=0.09μmにおける磁化比と磁束量
の関係を示す図。
FIG. 12 is a diagram showing the relationship between the magnetization ratio and the amount of magnetic flux at Gl = 0.09 μm.

【図13】再生ギャップ膜厚と磁化比の規定範囲を示す
図。
FIG. 13 is a view showing a specified range of a reproducing gap film thickness and a magnetization ratio.

【図14】再生トラック幅、再生ギャップ膜厚と磁化比
の規定範囲を示す図。
FIG. 14 is a diagram showing a specified range of a read track width, a read gap film thickness, and a magnetization ratio.

【符号の説明】[Explanation of symbols]

1 MR膜、2 スペーサ、3 SAL、4 上部ギャ
ップ膜、5 下部ギャップ膜、6 下地膜、7 永久磁
石膜、8 電極膜、9 感光性レジスト、10 SiO
2、11 磁気抵抗効果素子、12 下部シールド、1
3 上部シールド、14 シールド間隔、15 上部磁
極、16 記録コイル。
Reference Signs List 1 MR film, 2 spacer, 3 SAL, 4 upper gap film, 5 lower gap film, 6 base film, 7 permanent magnet film, 8 electrode film, 9 photosensitive resist, 10 SiO
2 , 11 magnetoresistive element, 12 lower shield, 1
3 upper shield, 14 shield spacing, 15 upper magnetic pole, 16 recording coil.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果を有する再生素子と前記再
生素子に縦バイアス磁界を印加する永久磁石膜を備える
磁気抵抗効果型磁気ヘッドにおいて、再生トラック幅を
Tw(μm)、再生ギャップ膜厚をGl(μm)、永久
磁石膜の残留磁化膜厚積をMrt(memu/c
2)、感磁層の飽和磁化膜厚積をMst(memu/
cm2)とした時の再生トラック幅、再生ギャップ膜
厚、永久磁石膜の残留磁化膜厚積、感磁層の飽和磁化膜
厚積との関係が、 Mrt/Mst<=0.0649Tw3/2/Gl+1.92 (1) Mrt/Mst>=0.0317Tw3/2/Gl+1.07 (2) によって規定される領域にあり、且つ再生トラック幅が
1.5μm以下、再生ギャップ長が0.2μm以下であ
ることを特徴とする磁気抵抗効果型磁気ヘッド。
In a magnetoresistive head having a reproducing element having a magnetoresistive effect and a permanent magnet film for applying a longitudinal bias magnetic field to the reproducing element, the reproducing track width is Tw (μm) and the reproducing gap film thickness is Gl (μm) and the product of the residual magnetization film thickness of the permanent magnet film is Mrt (memu / c
m 2 ), and the product of the saturation magnetization thickness of the magnetosensitive layer is Mst (memu /
cm 2 ), the relationship between the reproduction track width, the reproduction gap film thickness, the product of the residual magnetization film thickness of the permanent magnet film, and the product of the saturation magnetization film thickness of the magnetosensitive layer is as follows: Mrt / Mst <= 0.0649 Tw 3 / 2 /Gl+1.92 (1) Mrt / Mst> = 0.0317Tw 3/2 /Gl+1.07 (2) The reproduction track width is 1.5 μm or less, and the reproduction gap length is 0. A magnetoresistive head having a thickness of 2 μm or less.
【請求項2】 請求項1に記載の磁気抵抗効果型磁気ヘ
ッドであって、前記永久磁石膜の残留磁化Mrと飽和磁
化Msの比によって与えられる角形比S=Mr/Ms
が、0.6以上1.0以下であることを特徴とする磁気
抵抗効果型磁気ヘッド。
2. The magnetoresistance effect type magnetic head according to claim 1, wherein a squareness ratio S = Mr / Ms given by a ratio between a residual magnetization Mr and a saturation magnetization Ms of the permanent magnet film.
Is 0.6 or more and 1.0 or less.
【請求項3】 請求項2に記載された磁気抵抗効果型磁
気ヘッドであって、前記永久磁石膜がCoを主成分とす
る合金であり、前記合金に対する添加元素としてCr、
Ta、Pt、Niの少なくとも何れか1種類以上を含む
永久磁石膜であることを特徴とする磁気抵抗効果型磁気
ヘッド。
3. The magneto-resistance effect type magnetic head according to claim 2, wherein the permanent magnet film is an alloy containing Co as a main component, and Cr, as an additive element to the alloy.
A magnetoresistive head comprising a permanent magnet film containing at least one of Ta, Pt, and Ni.
【請求項4】 請求項3に記載の磁気抵抗効果型磁気ヘ
ッドであって、磁気抵抗効果を有する再生素子が非磁性
金属のスペーサを介して積層された2つの軟磁性膜によ
って構成されることを特徴とする磁気抵抗効果型磁気ヘ
ッド。
4. The magneto-resistance effect type magnetic head according to claim 3, wherein the reproducing element having a magneto-resistance effect is constituted by two soft magnetic films laminated via a non-magnetic metal spacer. A magnetoresistance effect type magnetic head characterized by the following.
JP7399798A 1998-03-23 1998-03-23 Magneto-resistance effect type magnetic head Pending JPH11273030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7399798A JPH11273030A (en) 1998-03-23 1998-03-23 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7399798A JPH11273030A (en) 1998-03-23 1998-03-23 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPH11273030A true JPH11273030A (en) 1999-10-08

Family

ID=13534290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7399798A Pending JPH11273030A (en) 1998-03-23 1998-03-23 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPH11273030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206175B2 (en) 2003-03-07 2007-04-17 Hitachi Global Storage Technologies Japan, Ltd. Magnetoresistive head having defined relationships between the tract width and magnetization film thickness product to permit no hysteresis in the transfer curve
JP2010277621A (en) * 2009-05-26 2010-12-09 Hitachi Global Storage Technologies Netherlands Bv Magnetoresistive head and magnetic recording / reproducing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206175B2 (en) 2003-03-07 2007-04-17 Hitachi Global Storage Technologies Japan, Ltd. Magnetoresistive head having defined relationships between the tract width and magnetization film thickness product to permit no hysteresis in the transfer curve
JP2010277621A (en) * 2009-05-26 2010-12-09 Hitachi Global Storage Technologies Netherlands Bv Magnetoresistive head and magnetic recording / reproducing apparatus

Similar Documents

Publication Publication Date Title
JP3086731B2 (en) Magnetoresistive magnetic head
JP2001291214A (en) Magnetoresistive sensor, magnetic head and magnetic recording / reproducing apparatus using the same
JP2009259354A (en) Magnetic head and manufacturing method thereof
JPH0473201B2 (en)
JP2849354B2 (en) Magnetic transducer and thin-film magnetic head
Shelledy et al. Magnetoresistive heads for magnetic tape and disk recording
JP2003132508A (en) Magnetoresistive head
JPH05135332A (en) Magnetoresistive reproducing head and magnetic recording apparatus using the same
JPH11273030A (en) Magneto-resistance effect type magnetic head
JPH09274712A (en) Magnetic head
JP3839607B2 (en) Method for adjusting magnetoresistive head
JPH08203032A (en) Magnetoresistive effect reproducing head
JP2001250205A (en) Thin film magnetic head and method of manufacturing the same
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JP2001084531A (en) Magnetoresistive thin-film magnetic head
JPH07169024A (en) Magneto-resistance effect type head and recording/ reproducing apparatus employing the same
JPH07326023A (en) Magnetic head and magnetic storage device using the same
JPS61196418A (en) Thin film magnetic head
JP2003208706A (en) Magnetic head
JPH06187614A (en) Magnetic head and magnetic storage device using the same
JPH1011718A (en) Magnetoresistive head
JPH06282802A (en) Magnetic recorder-reproducer
JPH0760498B2 (en) Magnetoresistive head
JP2002367123A (en) Magnetic head
JP2002183916A (en) Magnetoresistive magnetic head

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Effective date: 20040223

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Effective date: 20060125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A02