JPH11220217A - Semiconductor optical device and method of manufacturing the same - Google Patents
Semiconductor optical device and method of manufacturing the sameInfo
- Publication number
- JPH11220217A JPH11220217A JP2292198A JP2292198A JPH11220217A JP H11220217 A JPH11220217 A JP H11220217A JP 2292198 A JP2292198 A JP 2292198A JP 2292198 A JP2292198 A JP 2292198A JP H11220217 A JPH11220217 A JP H11220217A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- optical device
- periods
- semiconductor optical
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 33
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000460 chlorine Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 6
- 150000004767 nitrides Chemical class 0.000 claims abstract description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 abstract description 10
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 9
- 238000003776 cleavage reaction Methods 0.000 abstract description 3
- 230000007017 scission Effects 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000007792 gaseous phase Substances 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 11
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光通信などに用いら
れる半導体レーザや集積化光素子,光モジュールおよび
その製造方法に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor laser, an integrated optical device, an optical module, and a method of manufacturing the same for use in optical communication and the like.
【0002】[0002]
【従来の技術】同一基板上に異なる機能の光素子を集積
化する方法には、マスク面積を変えることにより成長膜
厚の異なる層構造を1回で形成する選択成長法や、多層
成長後にエッチングを行い、再成長により異なる層構造
を形成する方法がある。前者の一例としては特開平1−3
21677 号等があり、後者の一例としては 第8回インジ
ウム フォスファイド アンド リレーテド マテリア
ルズ(Indium Phosphideand Related Materials)152−1
54頁 1996年がある。2. Description of the Related Art Methods for integrating optical elements having different functions on the same substrate include a selective growth method in which a layer structure having a different growth film thickness is formed by changing the mask area at one time, and an etching method after multi-layer growth. And a different layer structure is formed by regrowth. As an example of the former, JP-A No. 1-3
No. 21677, etc., and an example of the latter is the 8th Indium Phosphide and Related Materials 152-1
There are 54 pages in 1996.
【0003】前者の選択成長法はマスクの面積を大きく
することにより成長領域の膜厚を厚くする方法である
が、膜厚比としては2〜3倍が限界であり、これ以上の
膜厚比は困難である。さらに、導波路とレーザからなる
集積化光素子や高出力レーザの端面領域には、周期数の
低減が有効であるが、周期数の面内制御までは不可能で
あった。[0003] The former selective growth method is a method of increasing the film thickness of a growth region by enlarging the area of a mask. However, the film thickness ratio is limited to 2 to 3 times. It is difficult. Further, although reduction of the number of cycles is effective for an end face region of an integrated optical device including a waveguide and a laser or a high-power laser, it is impossible to control the number of cycles in-plane.
【0004】また、後者の場合には周期数の異なる層構
造も可能であるが、成長回数が増え、製造工程が複雑に
なる。さらに再成長界面に欠陥が発生しやすく信頼性が
劣化したり、急峻に組成が変わるため再成長界面での反
射が問題であった。[0004] In the latter case, a layer structure having a different number of periods is possible, but the number of times of growth is increased and the manufacturing process becomes complicated. Further, defects are likely to be generated at the regrowth interface, and the reliability deteriorates, and the composition changes rapidly, so that reflection at the regrowth interface is a problem.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は異なる
機能を有する素子の集積化において、井戸層膜厚だけで
なく、周期数や層構造の異なる素子を集積化することで
あり、レーザ,導波路,受光素子,変調器等の幅広い集
積化を実現することである。さらに、このような集積化
素子の信頼性を向上し、簡便な方法で高歩留まりに製造
することである。また、別の目的として単体の高出力の
半導体レーザにおいては、端面近傍の構造や組成を制御
し、出力の増大,信頼性の向上を図るものである。SUMMARY OF THE INVENTION It is an object of the present invention to integrate devices having different functions not only in the well layer thickness but also in the number of periods and the layer structure. The purpose is to realize a wide integration of waveguides, light receiving elements, modulators, and the like. Further, it is an object of the present invention to improve the reliability of such an integrated device and to manufacture the integrated device at a high yield by a simple method. Another object is to control the structure and composition near the end face of a single high-power semiconductor laser to increase the output and improve the reliability.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明では1回の選択成長法により、再成長界面を
出すことなく周期数や層構造の異なる成長領域を集積化
し、高信頼化と高歩留まり化を図った。周期数や層構造
の異なる素子の集積化にはマスクパターンを用い、マス
クパターンの面積により成長速度とエッチング速度を空
間的に制御し、所望の場所への選択的な成長を実現し
た。具体的には通常の選択成長時に塩素を含むエッチン
グガスを供給し、成長とエッチングの面内制御をマスク
パターンにより行った。In order to achieve the above object, the present invention integrates growth regions having different numbers of periods and layer structures by a single selective growth method without exposing a regrowth interface, thereby achieving high reliability. And high yield. A mask pattern was used to integrate elements having different periods and layer structures, and the growth rate and the etching rate were spatially controlled according to the area of the mask pattern to realize selective growth at a desired location. Specifically, an etching gas containing chlorine was supplied during normal selective growth, and in-plane control of growth and etching was performed by a mask pattern.
【0007】また、単体の半導体レーザにおいては端面
部のマスクパターン面積をレーザ部より低減し、端面領
域の成長速度をエッチング速度と同等かエッチング速度
以下にし、端面部における井戸層の成長を停止させた。In the case of a single semiconductor laser, the mask pattern area at the end face is reduced from that of the laser section, the growth rate of the end face area is made equal to or lower than the etching rate, and the growth of the well layer at the end face is stopped. Was.
【0008】以下、本発明の選択成長法について図4を
用いて説明する。図4は選択成長時の成長速度とマスク
幅の関係、またエッチング速度とマスク幅の関係であ
る。成長速度はマスク幅の増加に伴い大幅に増大するの
に対し、エッチング速度はわずかにしか増大しない。こ
のため、例えばレーザ部と導波路部の集積化において、
レーザ部のマスク幅を200μm、導波路部のマスク幅
を130μmとし、成長原料とエッチング原料を同時に
供給した場合、導波路部では成長とエッチングが平衡状
態になり、井戸層の成長はレーザ部のみとなる。Hereinafter, the selective growth method of the present invention will be described with reference to FIG. FIG. 4 shows the relationship between the growth rate and the mask width during the selective growth, and the relationship between the etching rate and the mask width. While the growth rate increases significantly with increasing mask width, the etching rate increases only slightly. For this reason, for example, in the integration of the laser unit and the waveguide unit,
When the mask width of the laser portion is 200 μm, the mask width of the waveguide portion is 130 μm, and the growth raw material and the etching raw material are supplied at the same time, the growth and etching in the waveguide portion are in an equilibrium state, and the well layer is grown only in the laser portion. Becomes
【0009】さらに、マスクの無い時の成長速度とエッ
チング速度は成長原料とエッチングガスの供給量に依存
するため、マスク面積,成長原料ガス,エッチングガス
の供給量を制御することにより、面内で周期数や積層構
造の異なる成長層を一括成長することができる。Further, since the growth rate and the etching rate when no mask is used depend on the growth material and the supply amount of the etching gas, the mask area, the growth material gas, and the supply amount of the etching gas are controlled to control the in-plane. Growth layers having different numbers of periods and stacked structures can be grown at once.
【0010】以上の知見に基づき、本発明者は次のプロ
セスを着想した。その基本的な特徴は、同一基板上に空
間的に周期数の異なる量子井戸構造を形成する方法とし
て、周期数の多い領域の近傍に酸化膜や窒化膜からなる
マスクを基板表面に有し、有機金属気相成長法による1
回の選択成長で同一基板上に周期数の異なる量子井戸構
造を形成し、前記選択成長時に塩素を含む原料ガスを添
加する工程にある。[0010] Based on the above findings, the present inventors have conceived the following process. The basic feature is that, as a method of forming a quantum well structure having a spatially different number of periods on the same substrate, a mask made of an oxide film or a nitride film is provided on the substrate surface in the vicinity of a region having a large number of periods, Metalorganic vapor phase epitaxy 1
There is a step of forming a quantum well structure having a different number of periods on the same substrate by one selective growth and adding a source gas containing chlorine during the selective growth.
【0011】このプロセスは、半導体光素子の製造に応
用すると特に効果的であり、また半導体集積化光素子の
製造、即ち上記光素子を集積化するプロセスにも適用で
きる。このプロセスに用いる上記マスクの面積は、上記
量子井戸構造の周期数に対応させて周期数の多い領域の
マスク面積が周期数の少ない領域のマスク面積より大き
くなるように設定するとよい。さらに、上記有機金属気
相成長法によるプロセスにおいて、塩素を含む原料とし
て、HCl,CH3Cl ,C2H5Clを用いるとよい。This process is particularly effective when applied to the manufacture of a semiconductor optical device, and can also be applied to the manufacture of a semiconductor integrated optical device, that is, a process of integrating the optical device. The area of the mask used in this process may be set so as to correspond to the number of periods of the quantum well structure so that the mask area of the region having a large number of periods is larger than the mask area of the region having a small number of periods. Further, in the process by the metalorganic chemical vapor deposition method, HCl, CH 3 Cl, and C 2 H 5 Cl may be used as a raw material containing chlorine.
【0012】以上のプロセス上の知見に基づき、本発明
者は次の半導体光素子の構造を提供する。その基本的な
構造は、同一基板上に空間的に周期数の異なる量子井戸
構造を有することを特徴とする半導体光素子にある。Based on the above process knowledge, the present inventors provide the following semiconductor optical device structure. The basic structure is a semiconductor optical device characterized by having quantum well structures having spatially different numbers of periods on the same substrate.
【0013】空間的に周期数の異なる量子井戸構造につ
いては、後述の各実施例において具体的に述べるが、一
例として表現すれば、量子井戸構造を構成する少なくと
も2種類の層(互いに禁制帯幅が異なる)の積層の繰り
返し数が異なることを指す。通常量子井戸構造を構成す
る2種類の層は、量子井戸層とこれより禁制帯幅の大き
い障壁層と呼ばれるが、その間に禁制帯幅が量子井戸層
より大きくかつ障壁層より小さいスペーサ層が挿入され
ることもある。The quantum well structure having a spatially different number of periods will be specifically described in each of the embodiments described later. However, if it is expressed as an example, at least two types of layers (a band gap between each other) constituting the quantum well structure will be described. Are different). Usually, the two types of layers constituting the quantum well structure are called a quantum well layer and a barrier layer having a larger forbidden band width, and a spacer layer having a larger forbidden band width and smaller than the barrier layer is inserted between them. It may be done.
【0014】量子井戸層と障壁層からなる量子井戸構造
の多くは、その周期数をNとしたとき、一方の層数が
N、他方が(N+1)となって、その構造に含まれる一
方の層のいずれもが他方の層に挟まれる関係を持つよう
に構成される(このとき、一方が量子井戸層の場合も、
障壁層の場合もある)。上述の半導体光素子に作り込ま
れた量子井戸構造は、その周期数の変化する遷移領域に
おいて、周期数の減少方向に伴い井戸層膜厚を連続的に
減少させて構成するとよい。また、当該量子井戸構造の
周期数の少ない領域は、上記半導体光素子の光導波路や
端面近傍に設けてもよい。In many quantum well structures composed of a quantum well layer and a barrier layer, when the number of periods is N, one of the layers has N and the other has (N + 1). Each of the layers is configured to have a relationship of being sandwiched between the other layers (at this time, even if one of the layers is a quantum well layer,
It may be a barrier layer). The quantum well structure formed in the above-described semiconductor optical device may be configured such that the thickness of the well layer is continuously reduced in the transition region in which the number of periods changes in the direction in which the number of periods decreases. The region of the quantum well structure having a small number of periods may be provided near the optical waveguide or the end face of the semiconductor optical device.
【0015】以上、本発明が提供する半導体光素子は、
これを集積化して半導体集積化光素子を構成してもよ
く、更にこの半導体集積化光素子を導波路とレーザ、も
しくは導波路と受光器、あるいはレーザ,導波路,受光
器とともに同一基板上に形成し、光モジュール(光信号
の送信用,受信用、又は送受信併用)を構成してもよ
い。As described above, the semiconductor optical device provided by the present invention comprises:
These may be integrated to form a semiconductor integrated optical device. Further, the semiconductor integrated optical device may be formed on a same substrate together with a waveguide and a laser, or a waveguide and a photodetector, or a laser, a waveguide and a photodetector. The optical module may be formed to constitute an optical module (for transmitting, receiving, or transmitting and receiving optical signals).
【0016】[0016]
【発明の実施の形態】(実施例1)図1は本発明を加入
者系のビーム拡大レーザに適用した実施例であり、図1
(a)は素子断面図、図1(b)は活性層の断面図、図
1(c)は選択成長用マスクを示している。(Embodiment 1) FIG. 1 shows an embodiment in which the present invention is applied to a subscriber beam expanding laser.
1A is a sectional view of the device, FIG. 1B is a sectional view of an active layer, and FIG. 1C is a mask for selective growth.
【0017】まず、n−InP基板1、もしくはn−I
nPバッファ層2(キャリア濃度:1×1018cm-3,厚
さ:300nm)の上に選択成長用のSiO2 マスク3
をデポし、活性層4(レーザ部の周期数:7,ビーム拡
大部の周期数:1)を有機金属気相成長法により選択的
に成長した。この時、選択成長用マスク3はビーム拡大
部5(マスクの幅×長さ:50μm×200μm)とレ
ーザ部6(マスクの幅×長さ:200μm×500μ
m)でマスク幅がことなり、周期数の多いレーザ部のマ
スク幅を大きくしている。First, the n-InP substrate 1 or n-I
SiO 2 mask 3 for selective growth on nP buffer layer 2 (carrier concentration: 1 × 10 18 cm −3 , thickness: 300 nm)
And the active layer 4 (the number of cycles of the laser section: 7, the number of cycles of the beam expanding section: 1) was selectively grown by metal organic chemical vapor deposition. At this time, the selective growth mask 3 includes a beam expanding portion 5 (mask width × length: 50 μm × 200 μm) and a laser portion 6 (mask width × length: 200 μm × 500 μm).
In (m), the mask width is different, and the mask width of the laser unit having a large number of periods is increased.
【0018】また、活性層4はn−InGaAsPガイ
ド層7(キャリア濃度:1×1018cm-3,厚さ:100
nm,波長1050nm),障壁層8(厚さ:10n
m,波長1100nm),井戸層9(レーザ部の厚さ:
6nm,ビーム拡大部の厚さ:2nm,波長1370n
m,歪量:0.8%)、CH3Cl添加の井戸層10(レ
ーザ部の厚さ:6nm,波長1370nm,歪量:0.
8% ,障壁層のエッチング量1nm),アンドープガイ
ド層11(厚さ:50nm,波長1050nm)から構
成されている。The active layer 4 is composed of an n-InGaAsP guide layer 7 (carrier concentration: 1 × 10 18 cm −3 , thickness: 100).
nm, wavelength 1050 nm), barrier layer 8 (thickness: 10 n)
m, wavelength 1100 nm), well layer 9 (thickness of laser part:
6 nm, thickness of beam expanding portion: 2 nm, wavelength 1370 n
m, strain: 0.8%), CH 3 Cl-added well layer 10 (laser thickness: 6 nm, wavelength: 1370 nm, strain: 0.8)
8%, the etching amount of the barrier layer is 1 nm), and the undoped guide layer 11 (thickness: 50 nm, wavelength: 1050 nm).
【0019】次に、選択成長用のSiO2 マスク3を除
去し、p−InPクラッド層12(キャリア濃度:3×
1017cm-3,厚さ:300nm),p−InPクラッド
層13(キャリア濃度:1×1018cm-3,厚さ:300
0nm),p−InGaAsキャップ層14(キャリア
濃度:2×1019cm-3,厚さ:300nm)を順次成長
し、p型キャップ層15,n型キャップ層16を蒸着
し、レーザ部,ビーム拡大部で劈開を行い、素子化を図
った。Next, the SiO 2 mask 3 for selective growth is removed, and the p-InP cladding layer 12 (carrier concentration: 3 ×
10 17 cm −3 , thickness: 300 nm), p-InP clad layer 13 (carrier concentration: 1 × 10 18 cm −3 , thickness: 300)
0 nm), a p-InGaAs cap layer 14 (carrier concentration: 2 × 10 19 cm −3 , thickness: 300 nm) is sequentially grown, a p-type cap layer 15 and an n-type cap layer 16 are deposited, and a laser section and a beam are formed. Cleavage was performed at the enlarged portion to make a device.
【0020】以下、本実施例の効果を説明する。従来の
選択成長法ではビーム拡大部にも7周期分の井戸層が形
成されるため、ビーム拡大部での光の閉じ込めが強く、
レーザの出射角度は16度と大きく、ファイバーとの結
合損が大きかった。一方、ビーム拡大部を1周期にした
本実施例ではレーザの出射角度を9度にまで低減でき、
ファイバーとの結合損を40%改善できた。Hereinafter, the effect of this embodiment will be described. In the conventional selective growth method, a well layer for seven periods is also formed in the beam expanding portion, so that light confinement in the beam expanding portion is strong,
The emission angle of the laser was as large as 16 degrees, and the coupling loss with the fiber was large. On the other hand, in this embodiment in which the beam expanding portion is set to one cycle, the emission angle of the laser can be reduced to 9 degrees,
The coupling loss with the fiber was improved by 40%.
【0021】また、従来方法ではレーザの出射角度を狭
窄化するために周期数を低減する必要があったが、この
場合レーザ特性が急激に劣化する。例えば、周期数を4
に低減した場合、出射角度は13度になるが、高温(8
5℃)での閾電流値は4割程増加する。一方、本実施例
ではビーム拡大部とレーザ部の周期数を独立に制御でき
るため、レーザ特性を損なうことなく出射角度を低減で
きる。Further, in the conventional method, it is necessary to reduce the number of periods in order to narrow the emission angle of the laser, but in this case, the laser characteristics are rapidly deteriorated. For example, if the number of cycles is 4
, The output angle becomes 13 degrees, but the high temperature (8
(5 ° C.) increases by about 40%. On the other hand, in this embodiment, since the number of periods of the beam expanding section and the laser section can be controlled independently, the emission angle can be reduced without impairing the laser characteristics.
【0022】また、別の従来方法である再成長を用いる
場合には、活性層をエッチング除去し、再成長するため
信頼性に問題があった。また、成長回数が増えるため歩
留まりが悪くなっていた。一方、本実施例では活性層の
エッチング,再成長を行わないことから、素子の寿命を
5割延ばし、歩留まりを2割増加することができた。ま
た、再成長界面での反射についても、本実施例では図1
(b)に示すように膜厚が徐々に薄くなるため、反射も
発生しなかった。In the case of using another conventional method of regrowth, there is a problem in reliability because the active layer is removed by etching and regrown. Also, the yield has been poor due to the increase in the number of times of growth. On the other hand, in this embodiment, since the active layer is not etched and regrown, the life of the device can be extended by 50% and the yield can be increased by 20%. In this embodiment, the reflection at the regrowth interface is also shown in FIG.
As shown in (b), since the film thickness was gradually reduced, no reflection occurred.
【0023】なお、本実施例ではビーム拡大部の周期数
を2としたが、他の周期数でも作成可能であり、例えば
2の場合には出射角度を10度に、0の場合には8度に
まで低減できた。また、CH3Cl 添加時のビーム拡大
部のエッチング量は1nmとしたが、エッチング量が大
きすぎる場合(例えば、数100nm以上)には表面モ
ホロジーが劣化するが、数10nmや0nm(エッチン
グと成長が平衡)なら他の値でもよい。In the present embodiment, the number of periods of the beam expanding section is set to 2. However, other numbers of periods can be used. For example, the output angle is set to 10 degrees for 2 and 8 for 0. It could be reduced to the degree. Further, the etching amount of the beam expanding portion at the time of adding CH 3 Cl is set to 1 nm. If the etching amount is too large (for example, several hundred nm or more), the surface morphology is deteriorated. If it is balanced), other values may be used.
【0024】(実施例2)図2は本発明を高出力半導体
レーザに適用した実施例の素子断面図と酸化膜のマスク
図である。有機金属気相成長法により、まずn−GaA
s基板17上にn−GaAsバッファ層18(キャリア
濃度:1×1018cm-3,厚さ:300nm),n−In
GaPクラッド層19(キャリア濃度:1×1018c
m-3,厚さ:2000nm,GaAsに格子整合)を成長し
た後、図2(b)の選択成長用SiO2 酸化膜20(共
振器長:400μm,活性層の領域長21:350μ
m,端面の領域長22:25μm,マスクの幅×長さ:
50×350μm)をデポし、n−InGaAsPガイ
ド層23(キャリア濃度:1×1018cm-3,厚さ:50
nm,GaAsに格子整合,波長:800nm),Ga
As障壁層23(厚さ:10nm),CH3Cl添加の
InGaAs井戸層25(レーザ部の厚さ:6nm,波
長980nm,歪量:1.0% ,端面のエッチング量1
nm,レーザ部の周期数:2,端面領域の周期数:
0),InGaAsPガイド層26(厚さ:50nm,
GaAsに格子整合,波長:800nm)を成長した
後、選択用マスクをエッチング除去し、p−InGaP
クラッド層27(キャリア濃度:8×1017cm-3,厚
さ:2000nm,GaAsに格子整合),p−GaA
s28(キャリア濃度:1×1019cm-3,厚さ:200
nm)を順次成長した後、p側電極29,n側電極30
の蒸着,劈開により、素子化を図った。(Embodiment 2) FIG. 2 is a sectional view of a device and a mask diagram of an oxide film in an embodiment in which the present invention is applied to a high-power semiconductor laser. First, n-GaAs is formed by metal organic chemical vapor deposition.
n-GaAs buffer layer 18 (carrier concentration: 1 × 10 18 cm −3 , thickness: 300 nm) on s substrate 17, n-In
GaP cladding layer 19 (carrier concentration: 1 × 10 18 c
After growth of m −3 , thickness: 2000 nm, lattice matching with GaAs), the selective growth SiO 2 oxide film 20 (resonator length: 400 μm, active layer region length 21: 350 μm) shown in FIG.
m, end surface area length 22: 25 μm, mask width × length:
50 × 350 μm) is deposited, and the n-InGaAsP guide layer 23 (carrier concentration: 1 × 10 18 cm −3 , thickness: 50)
nm, lattice matching to GaAs, wavelength: 800 nm), Ga
As barrier layer 23 (thickness: 10 nm), InGaAs well layer 25 doped with CH 3 Cl (laser thickness: 6 nm, wavelength: 980 nm, distortion: 1.0%, end face etching amount: 1)
nm, number of cycles of laser section: 2, number of cycles of end face region:
0), InGaAsP guide layer 26 (thickness: 50 nm,
After growing lattice matching on GaAs (wavelength: 800 nm), the selection mask is removed by etching, and p-InGaP is removed.
Clad layer 27 (carrier concentration: 8 × 10 17 cm −3 , thickness: 2000 nm, lattice-matched to GaAs), p-GaAs
s28 (carrier concentration: 1 × 10 19 cm −3 , thickness: 200)
nm), the p-side electrode 29 and the n-side electrode 30 are sequentially grown.
A device was formed by vapor deposition and cleavage.
【0025】以下、本発明の効果を説明する。従来の不
純物拡散による端面透明化技術では、不純物による欠陥
の発生やInGaAs井戸層における光吸収が問題であ
った。一方、本発明ではInGaAs層の成長はなく、
拡散等もないことから最大光出力を約40%増加でき、
信頼性も3割延ばすことが可能となった。なお、本発明
では端面付近にマスクを設けなかったが、面積の小さい
マスクで成長速度がエッチング速度を超えなければマス
クを設けてもよい。Hereinafter, the effects of the present invention will be described. In the conventional technique for making the end face transparent by impurity diffusion, there have been problems of generation of defects due to impurities and light absorption in the InGaAs well layer. On the other hand, in the present invention, there is no growth of the InGaAs layer.
Since there is no diffusion etc., the maximum light output can be increased by about 40%,
Reliability can be extended by 30%. Although a mask is not provided near the end face in the present invention, a mask having a small area may be provided as long as the growth rate does not exceed the etching rate.
【0026】(実施例3)図3(a),(b)は本発明
を送受信用光モジュールに適用した時の概念図とレーザ
と導波路間の断面図の一例である。まず、実施例1と同
様の作成方法により上側ガイド層11まで積層した後、
酸化膜を除去し、レーザ部であるp−InP12,1
3,p−InGaAsキャップ層14を形成した。この
時のマスク面積は、 受光部>レーザ部>導波路部 とし、受光部の発光波長を最も長くした。(Embodiment 3) FIGS. 3A and 3B are a conceptual diagram when the present invention is applied to a transmitting / receiving optical module and an example of a cross-sectional view between a laser and a waveguide. First, after stacking up to the upper guide layer 11 by the same manufacturing method as in Example 1,
The oxide film is removed, and the p-InP12, 1
3, a p-InGaAs cap layer 14 was formed. The mask area at this time was: light receiving section> laser section> waveguide section, and the emission wavelength of the light receiving section was maximized.
【0027】また、井戸層の組成としては受光部の組成
波長を長くするためInGaAs層30(波長1670
nm,InPに格子整合)を用い、レーザ部の発光波長
を1550、もしくは1300nmにした。レーザ部,
受光部の周期数は6とし、導波路部は井戸層による損失
をなくすため周期数を0とし、下側,上側ガイド層7,
11のみとした。次に導波路部のp−InP,p−In
GaAsのみを選択エッチングにより上側ガイド層11
までエッチングし、レーザ部と受光部にマスクをし、F
eドープInPあるいはアンドープInP層31を選択
成長し、電極15,16をレーザ部のみ、受光部のみに
選択的に蒸着し、素子化を図った。The well layer has a composition of InGaAs layer 30 (wavelength 1670) in order to lengthen the composition wavelength of the light receiving portion.
nm, lattice matching with InP), and the emission wavelength of the laser portion was set to 1550 or 1300 nm. Laser part,
The number of periods of the light receiving unit is 6, the number of periods of the waveguide unit is 0 in order to eliminate loss due to the well layer, and the lower and upper guide layers 7,
11 only. Next, the p-InP and p-In
Upper guide layer 11 by selective etching of only GaAs
Etching, mask the laser and light receiving parts,
The e-doped InP or undoped InP layer 31 was selectively grown, and the electrodes 15 and 16 were selectively deposited only on the laser portion and only on the light receiving portion, thereby achieving an element.
【0028】従来、導波路とレーザ,導波路と受光部、
および導波路,レーザ,受光部の各素子間はレンズを用
いて結合していたため、小型化が困難であり、位置合わ
せに時間がかかっていた。一方、本発明では一括選択成
長により、約1/5のサイズに縮小でき、位置合わせの
時間を約1/3に短縮できた。Conventionally, a waveguide and a laser, a waveguide and a light receiving section,
In addition, since the respective elements of the waveguide, the laser, and the light receiving unit are coupled by using a lens, it is difficult to reduce the size, and it takes time for positioning. On the other hand, according to the present invention, the size can be reduced to about 1/5 by the collective selective growth, and the alignment time can be reduced to about 1/3.
【0029】なお、本実施例では井戸層の組成をInG
aAsとし、受光部の波長を1670nmにしたが、レーザよ
り長波長側にあれば受光可能であり、レーザ部が130
0nmの時にはInGaAsPを用い1350nm以上、
望ましくは1400nm以上であれば、InGaAsP
井戸層でもよい。また、周期数についても本実施例では
レーザ部,受光部を6としたが、1から15なら他の値
でもよい。さらに、作成方法において、エッチング後に
FeあるいはアンドープInP層31を成長したが、酸
化膜によりp−InP,InGaAs層12,13,1
4のみを選択成長してもよい。In this embodiment, the composition of the well layer is InG
aAs, and the wavelength of the light receiving portion was set to 1670 nm. However, if the wavelength is longer than the laser, light can be received.
At 0 nm, use InGaAsP for 1350 nm or more,
Preferably, if it is 1400 nm or more, InGaAsP
It may be a well layer. In this embodiment, the number of cycles is set to 6 for the laser section and the light receiving section. Further, in the manufacturing method, the Fe or undoped InP layer 31 was grown after etching, but the p-InP, InGaAs layers 12, 13, 1 were formed by an oxide film.
Only 4 may be selectively grown.
【0030】上記実施例1,2,3において、塩素を含
む原料ガスにCH3Cl を用いたが、他の塩素を含む原
料としてはC2H5Cl,HCl,AsCl4,PCl4等
があり、全て使用可能であるが、有機金属と中間生成物
を作る原料もあり、GaAs成長時にはCH3Cl ,C
2H5Cl,HClなどが望ましく、InP成長時にはC
H3Cl ,C2H5Cl等が望ましい。また、本実施例の
選択成長用マスクには酸化膜としてSiO2 を用いた
が、窒化膜SiNでもよい。In the above Examples 1, 2 and 3, CH 3 Cl was used as the source gas containing chlorine, but other sources containing chlorine include C 2 H 5 Cl, HCl, AsCl 4 , PCl 4 and the like. Yes, all can be used, but there is also a raw material for producing an organic metal and an intermediate product. When growing GaAs, CH 3 Cl, C
2 H 5 Cl, HCl, etc. are desirable at the time of InP growth C
H 3 Cl, C 2 H 5 Cl and the like are desirable. Further, although SiO 2 is used as the oxide film for the selective growth mask of this embodiment, a nitride film SiN may be used.
【0031】[0031]
【発明の効果】本発明により、レーザ部の井戸数を保存
しながらビーム拡大部や端面領域の井戸数を低減するこ
とができ、信頼性が高く、出射角の狭い集積化レーザや
高出力の半導体を提供することができる。According to the present invention, it is possible to reduce the number of wells in the beam expanding portion and the end face region while preserving the number of wells in the laser portion. A semiconductor can be provided.
【図1】本発明の実施例1の(a)素子の断面図,
(b)活性層の断面図、(c)用いたマスクの平面図。FIG. 1 is a sectional view of an element (a) of Example 1 of the present invention,
(B) Sectional view of the active layer, (c) plan view of the mask used.
【図2】本発明の実施例2の(a)素子の断面図,
(b)用いたマスクの平面図。FIG. 2 is a sectional view of an element (a) according to a second embodiment of the present invention,
(B) A plan view of the mask used.
【図3】本発明の実施例3の(a)送受信用光モジュー
ルの概念図、(b)素子構造の断面図。3A is a conceptual diagram of an optical module for transmission and reception according to a third embodiment of the present invention, and FIG.
【図4】本発明の原理を示すマスク幅と成長速度および
エッチング速度の関係を示すグラフ。FIG. 4 is a graph showing a relationship between a mask width, a growth rate, and an etching rate according to the principle of the present invention.
1…n−InP基板、2…n−InPバッファ層、3…
選択成長用酸化膜、4…活性層、5…導波路部の長さ、
6…レーザ部の長さ、7…n側ガイド層、8…障壁層、
9…量子井戸層、10…Cl系原料添加時の量子井戸
層、11…アンドープガイド層、12…p−InP層、
13…p−InP層、14…p−InGaAsキャップ層、1
5…p側電極、16…n側電極、17…n−GaAs基
板、18…n−GaAsバッファ層、19…n−InG
aPクラッド層、20…選択成長用酸化膜、21…端面
領域の長さ、22…レーザ部の長さ、23…下側ガイド
層、24…障壁層、25…量子井戸層、26…上側ガイ
ド層、27…p−InGaPクラッド層、28…p−G
aAsキャップ層、29…p側電極、30…n側電極、
31…FeもしくはアンドープInP層。1 ... n-InP substrate, 2 ... n-InP buffer layer, 3 ...
Oxide film for selective growth, 4 ... active layer, 5 ... length of waveguide section,
6: length of laser portion, 7: n-side guide layer, 8: barrier layer,
9 Quantum well layer, 10 Quantum well layer when Cl-based material is added, 11 Undoped guide layer, 12 p-InP layer,
13 ... p-InP layer, 14 ... p-InGaAs cap layer, 1
5 ... p-side electrode, 16 ... n-side electrode, 17 ... n-GaAs substrate, 18 ... n-GaAs buffer layer, 19 ... n-InG
aP cladding layer, 20: oxide film for selective growth, 21: length of end face region, 22: length of laser portion, 23: lower guide layer, 24: barrier layer, 25: quantum well layer, 26: upper guide Layer, 27 ... p-InGaP cladding layer, 28 ... p-G
aAs cap layer, 29 ... p-side electrode, 30 ... n-side electrode,
31 ... Fe or undoped InP layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 雅博 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大家 彰 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Masahiro Aoki 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Central Research Laboratory
Claims (7)
井戸構造を有することを特徴とする半導体光素子。1. A semiconductor optical device having quantum well structures having spatially different numbers of periods on the same substrate.
において、周期数の多い領域の近傍に酸化膜や窒化膜か
らなるマスクを基板表面に有し、有機金属気相成長法に
よる1回の選択成長で同一基板上に周期数の異なる量子
井戸構造を形成し、前記選択成長時に塩素を含む原料ガ
スを添加することを特徴とする半導体光素子の製造方
法。2. A method of forming a quantum well structure according to claim 1, wherein a mask made of an oxide film or a nitride film is provided on a substrate surface in the vicinity of a region having a large number of periods, and wherein the mask is formed by metal organic chemical vapor deposition. A method for manufacturing a semiconductor optical device, comprising: forming quantum well structures having different numbers of periods on the same substrate in a single selective growth; and adding a source gas containing chlorine during the selective growth.
の多い領域のマスク面積が周期数の少ない領域のマスク
面積より大きいことを特徴とする半導体光素子の製造方
法。3. The method of manufacturing a semiconductor optical device according to claim 2, wherein a mask area of a region having a large number of periods is larger than a mask area of a region having a small number of periods.
変化する遷移領域において、周期数の減少方向に伴い井
戸層膜厚が連続的に減少することを特徴とする半導体光
素子。4. A semiconductor optical device according to claim 1, wherein in a transition region in which the number of periods of the semiconductor optical device changes, the thickness of the well layer continuously decreases as the number of periods decreases.
周期数の少ない領域が光導波路や端面近傍であることを
特徴とする半導体光素子。5. The semiconductor optical device according to claim 4, wherein
A semiconductor optical device wherein a region having a small number of periods is near an optical waveguide or an end face.
ける塩素を含む原料として、HCl,CH3Cl ,C2
H5Clの少なくとも一者を用いることを特徴とする半
導体光素子の製造方法。6. A raw material containing chlorine in the metalorganic vapor phase epitaxy according to claim 2, wherein HCl, CH 3 Cl, C 2
The method of manufacturing a semiconductor optical device, which comprises using at least one party of H 5 Cl.
導波路とレーザ、もしくは導波路と受光器、あるいはレ
ーザ,導波路,受光器が同一基板上に形成されているこ
とを特徴とする半導体集積化光素子。7. The semiconductor optical device according to claim 5, wherein
A semiconductor integrated optical device, wherein a waveguide and a laser, a waveguide and a light receiver, or a laser, a waveguide, and a light receiver are formed on the same substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2292198A JPH11220217A (en) | 1998-02-04 | 1998-02-04 | Semiconductor optical device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2292198A JPH11220217A (en) | 1998-02-04 | 1998-02-04 | Semiconductor optical device and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11220217A true JPH11220217A (en) | 1999-08-10 |
Family
ID=12096119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2292198A Pending JPH11220217A (en) | 1998-02-04 | 1998-02-04 | Semiconductor optical device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11220217A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014202619A1 (en) * | 2013-06-21 | 2014-12-24 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser and method for the production thereof |
JP2015053457A (en) * | 2013-09-09 | 2015-03-19 | 日本電信電話株式会社 | Method for manufacturing optical semiconductor device |
-
1998
- 1998-02-04 JP JP2292198A patent/JPH11220217A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014202619A1 (en) * | 2013-06-21 | 2014-12-24 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser and method for the production thereof |
US9812844B2 (en) | 2013-06-21 | 2017-11-07 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser and method for the production thereof |
DE102013211851B4 (en) | 2013-06-21 | 2018-12-27 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser and method for its production |
JP2015053457A (en) * | 2013-09-09 | 2015-03-19 | 日本電信電話株式会社 | Method for manufacturing optical semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5926493A (en) | Optical semiconductor device with diffraction grating structure | |
JP3104789B2 (en) | Semiconductor optical device and method of manufacturing the same | |
EP0896406B1 (en) | Semiconductor laser device, optical communication system using the same, and method for producing compound semiconductor | |
EP0846967B1 (en) | Optical semiconductor device and method of fabricating the same | |
US5260959A (en) | Narrow beam divergence laser diode | |
US6472691B2 (en) | Distributed feedback semiconductor laser device | |
US6625187B1 (en) | Semiconductor optical device and method of manufacturing the same | |
JPH10145003A (en) | Semiconductor laser and optical communication system using the semiconductor laser | |
JPH05226789A (en) | Product including distortion layer quantum well laser | |
US5446753A (en) | Current block type semiconductor laser | |
JP2882335B2 (en) | Optical semiconductor device and method for manufacturing the same | |
EP0528439B1 (en) | Semiconductor laser | |
JP2000277867A (en) | Semiconductor laser device | |
JPH11220217A (en) | Semiconductor optical device and method of manufacturing the same | |
JP4345673B2 (en) | Semiconductor laser | |
JPH08292336A (en) | Production of optical semiconductor integrated circuit | |
JP2674382B2 (en) | Semiconductor laser | |
Lammert et al. | Dual-channel strained-layer in GaAs-GaAs-AlGaAs WDM source with integrated coupler by selective-area MOCVD | |
JPH09298337A (en) | Semiconductor distributed Bragg reflector and surface emitting semiconductor laser using the same | |
JP2019102581A (en) | Optical semiconductor integrated device, method for manufacturing the same, and optical communication system | |
JP2914203B2 (en) | Heterojunction semiconductor device | |
JP3046454B2 (en) | Quantum well semiconductor light emitting device | |
JP3627899B2 (en) | Surface emitting semiconductor laser, optical communication module and parallel information processing apparatus using the same | |
JP2003304035A (en) | Semiconductor optical element | |
JP2546381B2 (en) | Distributed feedback semiconductor laser and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070206 |