JPH11220205A - Semiconductor laser element and manufacture thereof - Google Patents
Semiconductor laser element and manufacture thereofInfo
- Publication number
- JPH11220205A JPH11220205A JP10018778A JP1877898A JPH11220205A JP H11220205 A JPH11220205 A JP H11220205A JP 10018778 A JP10018778 A JP 10018778A JP 1877898 A JP1877898 A JP 1877898A JP H11220205 A JPH11220205 A JP H11220205A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- electrode
- layer
- conductive
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は化合物半導体材料を
用いた半導体レーザに係わり、特に静電破壊に対する保
護機能を備えた半導体レーザ素子に関する。The present invention relates to a semiconductor laser using a compound semiconductor material, and more particularly to a semiconductor laser device having a protection function against electrostatic breakdown.
【0002】[0002]
【従来の技術】半導体レーザはコンパクトディスクなど
の光記憶装置や光ファイバー通信などの光通信技術の基
幹デバイスとして開発、応用されてきた。また今日では
光記憶装置の高密度化を目ざし、より短波長のレーザが
嘱望されている。たとえばDVDなどに用いられる赤色
半導体レーザやさらに短波長の青色半導体レーザであ
る。2. Description of the Related Art Semiconductor lasers have been developed and applied as optical storage devices such as compact disks and as basic devices for optical communication technologies such as optical fiber communication. In addition, a laser having a shorter wavelength has been demanded for the purpose of increasing the density of an optical storage device. For example, a red semiconductor laser used for a DVD or the like or a blue semiconductor laser having a shorter wavelength is used.
【0003】しかし、半導体レーザはたとえば赤外半導
体レーザでも静電耐圧が70V程度と他の半導体デバイ
スの中では低く、さらに短波長の赤色半導体レーザでは
40V程度と低くなり、取り扱いが困難になったり、信
頼性の低下を招いたりしている。また、このことが装置
に組み込まれた時に装置全体の寿命やコストに影響を及
ぼし、信頼性の低下、コストの上昇を招いていた。However, a semiconductor laser, for example, has an electrostatic breakdown voltage of about 70 V even in an infrared semiconductor laser, which is low among other semiconductor devices, and a red semiconductor laser having a short wavelength becomes as low as about 40 V, which makes handling difficult. , Which leads to a decrease in reliability. In addition, when this is incorporated into the device, it affects the life and cost of the entire device, resulting in lower reliability and higher cost.
【0004】このために半導体レーザの静電耐圧を上げ
るために次に示すような対策が取られてきた。For this reason, the following measures have been taken to increase the electrostatic withstand voltage of the semiconductor laser.
【0005】たとえば、特開平6−97574号公報や
特開昭59−141281号公報に見られるように半導
体レーザと並列にRC回路やダイオードなどを外部に作
成したり、半導体レーザ素子の内部に半導体レーザと並
列になるようにダイオードなどを作りこむことによっ
て、サージ電圧が外部から印加されたときに応答を遅く
したり、バイパス回路に電流が流れるようにして、半導
体レーザに過電圧による過電流が流れることによる静電
破壊を抑制した。For example, as disclosed in JP-A-6-97574 and JP-A-59-141281, an RC circuit or a diode is externally formed in parallel with a semiconductor laser, or a semiconductor laser is incorporated in a semiconductor laser device. By making a diode etc. in parallel with the laser, the response is slowed when a surge voltage is applied from the outside, or the current flows through the bypass circuit, and the overcurrent due to the overvoltage flows through the semiconductor laser Electrostatic destruction due to the above.
【0006】[0006]
【発明が解決しようとする課題】このような対策によっ
て半導体レーザの静電耐圧は向上したが、対策が複雑で
あったり、部品点数が増えたりすることによって工数の
増大、コストの上昇を招いていた。Although the countermeasure improves the electrostatic withstand voltage of the semiconductor laser, the countermeasure is complicated and the number of parts is increased, resulting in an increase in man-hour and cost. Was.
【0007】本発明はこのような問題を解決するために
なされたもので、半導体レーザ素子の静電耐圧を向上さ
せることを目的としている。The present invention has been made to solve such a problem, and has as its object to improve the electrostatic withstand voltage of a semiconductor laser device.
【0008】[0008]
【課題を解決するための手段】この発明(請求項1)に
係る半導体レーザ素子は、第1導電型基板上に、少なく
とも第1導電型クラッド層、活性層、第2導電型クラッ
ド層が積層され、前記第1導電型基板下方に第1電極
が、前記第2導電型クラッド層上方に第2電極が形成さ
れると共に、レーザ光出射両端面に誘電体保護膜が形成
された半導体レーザ素子であって、前記誘電体保護膜の
少なくとも一方の一部を覆い、前記第1電極と電気的に
接続された第1導電層を有してなることによって、上記
の目的を達成する。In a semiconductor laser device according to the present invention (claim 1), at least a first conductivity type clad layer, an active layer, and a second conductivity type clad layer are laminated on a first conductivity type substrate. A semiconductor laser element in which a first electrode is formed below the first conductivity type substrate, a second electrode is formed above the second conductivity type cladding layer, and a dielectric protection film is formed on both end faces of the laser beam emission The above object is achieved by having a first conductive layer that covers at least a part of the dielectric protection film and is electrically connected to the first electrode.
【0009】レーザ光出射両端面の誘電体保護膜に対
し、その一端面にのみ延伸する第1導電層を形成すると
半導体レーザ素子に並列する1つのコンデンサが形成さ
れ、両端面に延伸する第1導電層を形成すると半導体レ
ーザ素子に並列する2つのコンデンサが形成される。When a first conductive layer extending only on one end face of the dielectric protective film on both end faces of the laser beam is formed, one capacitor is formed in parallel with the semiconductor laser element, and the first conductive layer extending on both end faces is formed. When the conductive layer is formed, two capacitors are formed in parallel with the semiconductor laser device.
【0010】この発明(請求項2)に係る半導体レーザ
素子は、前記誘電体保護膜の少なくとも一方の一部を覆
い、前記第2電極と電気的に接続された第2導電層を有
してなることによって上記の目的を達成する。A semiconductor laser device according to the present invention (claim 2) has a second conductive layer that covers at least a part of the dielectric protection film and is electrically connected to the second electrode. The above object is achieved by becoming.
【0011】第2導電層を形成することにより、コンデ
ンサの電極間の距離が短くなり、より有効にコンデンサ
が作用する。By forming the second conductive layer, the distance between the electrodes of the capacitor is shortened, and the capacitor works more effectively.
【0012】この発明(請求項3)に係る半導体レーザ
素子は、第1導電型基板上に、少なくとも第1導電型ク
ラッド層、活性層、第2導電型クラッド層が積層され、
前記第1導電型基板下方に第1電極が、前記第2導電型
クラッド層上方に第2電極が形成されると共に、レーザ
光出射端面に誘電体保護膜が形成された半導体レーザ素
子であって、前記半導体レーザ素子側面の少なくとも一
方に誘電体膜を形成してなると共に、前記第1導電層は
当該誘電体膜に接触してなることによって、上記の目的
を達成する。In the semiconductor laser device according to the present invention (claim 3), at least a first conductivity type clad layer, an active layer, and a second conductivity type clad layer are laminated on a first conductivity type substrate.
A semiconductor laser device in which a first electrode is formed below the first conductivity type substrate, a second electrode is formed above the second conductivity type cladding layer, and a dielectric protection film is formed on a laser light emitting end face. The above object is achieved by forming a dielectric film on at least one of the side surfaces of the semiconductor laser element and making the first conductive layer in contact with the dielectric film.
【0013】半導体レーザ素子の側面に誘電体膜を形成
し、この誘電体膜に第1導電体層を延伸して形成するこ
とにより、一つの半導体レーザ素子に対し、最大4つの
コンデンサを並列に作り込むことが可能となる。A dielectric film is formed on a side surface of the semiconductor laser device, and a first conductive layer is formed on the dielectric film by extending the dielectric film. Thus, a maximum of four capacitors can be connected in parallel to one semiconductor laser device. It is possible to make it.
【0014】この発明(請求項4)に係る半導体レーザ
素子は、前記第1導電層が、レーザ出射光に対して不透
明であってレーザ出射光領域に形成されていないか又は
レーザ出射光に対して透明であることによって上記の目
的を達成する。[0014] In the semiconductor laser device according to the present invention (claim 4), the first conductive layer is opaque to laser emission light and is not formed in the laser emission light area, or the first conductive layer is not formed in the laser emission light area. The above purpose is achieved by being transparent.
【0015】この発明(請求項5)に係る半導体レーザ
素子は、前記第2導電層が、レーザ出射光に対して不透
明であってレーザ出射光領域に形成されていないか又は
レーザ出射光に対して透明であることによって上記の目
的を達成する。[0015] In the semiconductor laser device according to the present invention (claim 5), the second conductive layer is opaque to laser emission light and is not formed in the laser emission light region, or the second conductive layer is not formed in the laser emission light region. The above purpose is achieved by being transparent.
【0016】前記レーザ出射光に対して透明な導電層と
しては、酸化スズ又は酸化インジウム系の透明導電膜が
好ましい。The conductive layer transparent to the laser emission light is preferably a tin oxide or indium oxide-based transparent conductive film.
【0017】前記第1導電層及び/又は第2導電層は、
レーザ出射光の妨げにならず、また、第1導電層が第2
電極と、あるいは第2導電層が第1電極と短絡するので
なければ、コンデンサとしての作用を有効に得るため
に、どのような形態で形成されていてもよい。The first conductive layer and / or the second conductive layer may include:
The first conductive layer does not interfere with the laser emission light,
As long as the electrode or the second conductive layer is not short-circuited with the first electrode, the electrode may be formed in any form in order to effectively obtain a function as a capacitor.
【0018】この発明(請求項6)に係る半導体レーザ
素子の製造方法は、請求項1乃至5のいずれかの半導体
レーザ素子を製造する方法であって、第1導電型基板上
に、少なくとも第1導電型クラッド層、活性層、第2導
電型クラッド層が積層され、前記第1導電型基板下方に
第1電極が、前記第2導電型クラッド層上方に第2電極
が形成されると共に、レーザ光出射両端面に誘電体保護
膜が形成された後、第1導電層を形成する際、少なくと
も第2電極を覆うマスクを形成する工程と、第1導電層
を形成する膜を被着させる工程と、前記マスクを除去す
る工程と、を少なくとも備えてなることによって、上記
の目的を達成する。A method of manufacturing a semiconductor laser device according to the present invention (claim 6) is a method of manufacturing a semiconductor laser device according to any one of claims 1 to 5, wherein at least a first conductive type substrate is provided on the first conductivity type substrate. A first conductivity type clad layer, an active layer, and a second conductivity type clad layer are laminated, a first electrode is formed below the first conductivity type substrate, and a second electrode is formed above the second conductivity type clad layer; A step of forming a mask covering at least the second electrode when forming the first conductive layer after the dielectric protection films are formed on both end faces of the laser beam emission, and applying a film for forming the first conductive layer. The above object is achieved by including at least a step and a step of removing the mask.
【0019】前記マスクとしてはフォトレジストが好ま
しく、当該フォトレジストを石英ガラス上にスピンコー
ター等で塗布し、その上に、ウエハから劈開して得た半
導体レーザ素子バー又は半導体レーザ素子バーをダイシ
ングして得た半導体レーザ素子チップを載置することに
よって、フォトレジストがその表面張力により半導体レ
ーザ素子端面や側面にはい上がる。このはい上がり量を
調整することによって所望の位置までマスクを形成する
ことが可能になる。The mask is preferably a photoresist. The photoresist is coated on quartz glass using a spin coater or the like, and a semiconductor laser device bar or a semiconductor laser device bar obtained by cleavage from a wafer is diced thereon. By mounting the obtained semiconductor laser element chip, the photoresist rises to the end face or side face of the semiconductor laser element due to the surface tension. By adjusting the rising amount, the mask can be formed to a desired position.
【0020】図43に示すように、フォトレジストの厚
さと半導体レーザ素子バーの端面部を覆うフォトレジス
トの石英ガラスとの距離との関係から、フォトレジスト
の厚さを決定する。フォトレジストの厚さはスピンコー
ターの回転数や時間によって決定される。このフォトレ
ジストの上に、半導体レーザバーやチップを載置し、そ
の後、プリベークを行ってフォトレジストを硬化させ
る。As shown in FIG. 43, the thickness of the photoresist is determined from the relationship between the thickness of the photoresist and the distance of the photoresist covering the end face of the semiconductor laser element bar from the quartz glass. The thickness of the photoresist is determined by the rotation speed and time of the spin coater. A semiconductor laser bar or a chip is placed on the photoresist, and then the photoresist is hardened by performing a pre-bake.
【0021】前記マスクを形成した後、蒸着あるいはス
パッタ法等によって第1導電層を形成する膜を被着さ
せ、マスクを除去することによって、所望の領域にのみ
第1導電層が残るものである。After the mask is formed, a film for forming the first conductive layer is deposited by vapor deposition or sputtering, and the first conductive layer is left only in a desired region by removing the mask. .
【0022】また、第2導電層を形成する場合において
も、前述の工程によってマスクを形成し、成膜し、リフ
トオフする工程を取ることが好ましい。In the case of forming the second conductive layer, it is preferable to take steps of forming a mask, forming a film, and lifting off the mask by the above-described steps.
【0023】前記誘電体保護膜に延伸された第1導電層
がヒートシンクとダイボンドする側の電極と導通をもた
せても、また、前記第1導電層がヒートシンクとダイボ
ンドする側の反対側の電極と導通をもたせものであって
もよい。The first conductive layer extended on the dielectric protective film may be electrically connected to the electrode on the side where the first conductive layer is die-bonded to the heat sink, or the first conductive layer may be connected to the electrode on the side opposite to the side where the first conductive layer is die-bonded to the heat sink. It may have conductivity.
【0024】同様に、前記誘電体保護膜に延伸された第
2導電層がヒートシンクとダイボンドする側の電極と導
通をもたせても、また、前記第2導電層がヒートシンク
とダイボンドする側の反対側の電極と導通をもたせもの
であってもよい。Similarly, even if the second conductive layer extended to the dielectric protective film is made conductive with the electrode on the side that is die-bonded to the heat sink, the second conductive layer is also opposite to the side that is die-bonded to the heat sink. The electrodes may be electrically connected to the electrodes.
【0025】誘電体保護膜はBi系、LiNbO系、P
bTiO系、PZLT系などの強誘電体膜で形成するこ
とが好ましい。The dielectric protection film is made of Bi-based, LiNbO-based, P
It is preferable to use a ferroelectric film of bTiO, PZLT or the like.
【0026】さらにレーザの出射端面以外で電極が形成
されていない面上を誘電体膜で覆い、さらにその誘電体
膜の上側の光出射部分以外に第1導電型または第2導電
型の電極のどちらか一方のみと導通のある導電層で覆
う。Further, a surface on which no electrode is formed other than the laser emission end surface is covered with a dielectric film, and a first conductivity type or second conductivity type electrode is formed on a portion other than the light emission portion above the dielectric film. It is covered with a conductive layer which is conductive to only one of them.
【0027】また誘電体保護膜に延伸される導電層が、
ダイボンドされる側の電極をほぼ一様に覆うことが好ま
しい。Further, the conductive layer extended on the dielectric protection film is
It is preferable to cover the electrode on the side to be die-bonded almost uniformly.
【0028】また誘電体膜の上側に形成される導電層を
形成するときにレジスト膜などの表面張力を利用して第
1導電型および第2導電型の電極が短絡しないように半
導体レーザ素子の側面部にマスク膜を作成し、この上か
ら導電膜を蒸着、スパッタなどで形成し、その後にマス
ク膜およびマスク膜上の導電膜を取り除くことによって
製造する。When forming a conductive layer formed on the dielectric film, the surface tension of a resist film or the like is used to prevent a short circuit between the first conductivity type and the second conductivity type electrodes. A mask film is formed on the side surface, a conductive film is formed on the mask film by vapor deposition, sputtering, or the like, and then the mask film and the conductive film on the mask film are removed.
【0029】以下、本発明の作用を記載する。Hereinafter, the operation of the present invention will be described.
【0030】半導体レーザ素子の光出射面のへき開面上
を誘電体保護膜で覆い、さらにその誘電体保護膜の上側
の光出射部分以外に第1導電型または第2導電型の電極
のどちらか一方のみと導通のある導電層で覆うことによ
って電極/誘電体膜/電極をコンデンサとして有効に働
かせる。たとえば、誘電体保護膜の上側の光出射部分以
外に第1導電型または第2導電型の電極のどちらか一方
のみと導通のある導電層で覆わない従来の半導体レーザ
素子でも、電極/誘電体膜/電極構造が半導体レーザ素
子と並列に存在するが、電極間の距離が大きいので、コ
ンデンサとして有効に働かない。The cleaved surface of the light emitting surface of the semiconductor laser device is covered with a dielectric protection film, and the electrode of either the first conductivity type or the second conductivity type other than the light emission portion on the upper side of the dielectric protection film. By covering the electrode / dielectric film / electrode effectively with a capacitor by covering it with a conductive layer that is conductive only to one side. For example, even in a conventional semiconductor laser device that is not covered with a conductive layer that is conductive only to either the first conductivity type or the second conductivity type electrode other than the light emitting portion on the upper side of the dielectric protection film, the electrode / dielectric Although the film / electrode structure exists in parallel with the semiconductor laser element, it does not work effectively as a capacitor because the distance between the electrodes is large.
【0031】また第1導電層、又は第2導電層がヒート
シンクとダイボンドする側の電極と導通をもたせること
によって端面部の放熱性が向上し、素子の端面破壊レベ
ルが向上し、信頼性が向上した。Further, the first conductive layer or the second conductive layer is electrically connected to the electrode on the side where the heat sink is die-bonded, so that the heat radiation property of the end face is improved, the level of end face destruction of the element is improved, and the reliability is improved. did.
【0032】また第1導電層、又は第2導電層がヒート
シンクとダイボンドする側の反対側の電極と導通をもた
せることによって、例えば、温度特性をよくするために
活性層とヒートシンクを近くした構造の半導体レーザ素
子では、端面部のほとんどを電極で覆うことによって戻
り光による雑音特性が改善された。Also, by providing conduction between the first conductive layer or the second conductive layer and the electrode on the side opposite to the side where the heat sink is die-bonded, for example, a structure in which the active layer and the heat sink are close to each other to improve temperature characteristics. In the semiconductor laser device, the noise characteristics due to the return light were improved by covering most of the end face portions with the electrodes.
【0033】また誘電体保護膜に延伸された導電層が酸
化スズまたは酸化インジウム系の透明導電膜とすること
によって活性層の位置に関係なく、もっとも容量の大き
いコンデンサを端面部に作ることができ、静電耐圧が更
に向上した。By forming the conductive layer extended on the dielectric protective film as a transparent conductive film of tin oxide or indium oxide, a capacitor having the largest capacitance can be formed on the end face regardless of the position of the active layer. And the electrostatic withstand voltage was further improved.
【0034】また誘電体保護膜をBi系、LiNbO
系、PbTiO系、PZLT系などの強誘電体膜で形成
することによって容量の大きなコンデンサを端面部に作
ることができ、静電耐圧が更に向上した。The dielectric protection film is made of Bi-based, LiNbO
A capacitor having a large capacitance can be formed at the end face portion by forming a ferroelectric film such as a PbTiO-based, PZLT-based, or the like, and the electrostatic withstand voltage is further improved.
【0035】さらに半導体レーザ素子の出射端面以外で
電極が形成されていない面上を誘電体保護膜で覆い、さ
らにその誘電体保護膜の上側の光出射部分以外に第1導
電型または第2導電型の電極のどちらか一方のみと導通
のある導電層で覆うことによって4つのコンデンサを並
列に作り込むことができ静電耐圧が更に向上するととも
に、ダイボンド時のろう材の這い上がりによるリーク電
流がなくなり、歩留まりが向上し、コストダウンでき
た。Further, the surface of the semiconductor laser device other than the emission end surface on which no electrode is formed is covered with a dielectric protection film, and the first conductivity type or the second conductivity type is formed on the dielectric protection film other than the light emission portion above the dielectric protection film. Four capacitors can be built in parallel by covering them with a conductive layer that is conductive to only one of the mold electrodes, further improving the electrostatic withstand voltage and reducing the leakage current due to the rise of the brazing material during die bonding. The yield was improved, and the cost was reduced.
【0036】また誘電体保護膜の上側を覆う導電層がダ
イボンドする側の電極を一様に覆うことによってダイボ
ンド面に凹凸ができることによるダイボンドの不均一性
がなくなり、放熱特性が向上し、信頼性が向上した。In addition, since the conductive layer covering the upper side of the dielectric protection film uniformly covers the electrode on the side where the die bond is formed, unevenness of the die bond surface due to unevenness of the die bond surface is eliminated, and the heat radiation characteristics are improved and the reliability is improved. Improved.
【0037】また本発明は誘電体保護膜の上側に形成さ
れる導電層を形成するときにレジスト膜などの表面張力
を利用して第1電極および第2電極が短絡しないように
半導体レーザ素子の側面部にマスク膜を作成し、この上
から導電膜を蒸着、スパッタなどで形成し、その後にマ
スク膜およびマスク膜上の導電膜を取り除くことによっ
て製造することによって簡単に実現でき、素子のコスト
ダウンや信頼性の向上が図れた。Further, according to the present invention, when forming the conductive layer formed on the dielectric protection film, the first electrode and the second electrode are prevented from being short-circuited by utilizing the surface tension of a resist film or the like. A mask film is formed on the side surface, a conductive film is formed thereon by vapor deposition, sputtering, and the like, and then the mask film and the conductive film on the mask film are removed to manufacture the device. Down and reliability were improved.
【0038】[0038]
【発明の実施の形態】以下、本発明を詳しく説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0039】〈第1の実施例〉図1に第1の実施例の半
導体レーザ素子の斜視図を示す。<First Embodiment> FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment.
【0040】図中の1はn型GaAs基板、2はn型A
lGaInPクラッド層、3はGaInP/AlGaI
nP歪多重量子井戸層、4はp型AlGaInPクラッ
ド層、5はp型GaInP中間層、6はp型GaAsコ
ンタクト層、7はp型GaAsキャップ層、8はn型電
流狭窄層、9はn型電極A、10はp型電極A、11、
12はAl2O3誘電体保護膜、13はp型電極B、14
はn型電極である。In the figure, 1 is an n-type GaAs substrate and 2 is an n-type A substrate.
1GaInP cladding layer, 3 is GaInP / AlGaI
nP strained multiple quantum well layer, 4 is a p-type AlGaInP cladding layer, 5 is a p-type GaInP intermediate layer, 6 is a p-type GaAs contact layer, 7 is a p-type GaAs cap layer, 8 is an n-type current confinement layer, and 9 is n The type electrodes A and 10 are p-type electrodes A and 11,
12 is an Al 2 O 3 dielectric protection film, 13 is a p-type electrode B, 14
Is an n-type electrode.
【0041】次に作成方法を示す。図2に示すように半
導体レーザ素子ウエハ15を半導体レーザ素子バー16
にへき開し、図3に示すようにへき開された端面部17
にAl2O3誘電体保護膜11,12を電子ビーム蒸着機
などで作成し、図4に示すように例えばフォトレジスト
20を例えばスピンコーターで塗布した石英ガラス19
上に半導体レーザ素子バー16を置く。この時、フォト
レジスト20の表面張力を利用して、Al2O3誘電体保
護膜11,12の上を、活性層3を覆うようにフォトレ
ジストの厚さを決めるのが肝要である。Next, a creation method will be described. As shown in FIG. 2, the semiconductor laser device wafer 15 is
The cleaved end face 17 as shown in FIG.
Then, Al 2 O 3 dielectric protective films 11 and 12 are formed by an electron beam evaporator or the like, and as shown in FIG.
The semiconductor laser element bar 16 is placed on top. At this time, it is important to determine the thickness of the photoresist so as to cover the active layer 3 over the Al 2 O 3 dielectric protection films 11 and 12 using the surface tension of the photoresist 20.
【0042】そして、図5に示すように、例えば真空蒸
着機などでp型電極B13を蒸着し、図6に示すように
フォトレジスト20及びフォトレジスト20上のp型電
極B13を有機洗浄などによってリフトオフする。さら
に図7に示すように例えばフォトレジスト21を例えば
スピンコーターで塗布した石英ガラス22上に半導体レ
ーザ素子バー16を先ほどと電極が反対になるように置
く。この時フォトレジスト22の表面張力を利用して、
Al2O3誘電体保護膜11,12の上を、活性層3を覆
うようにフォトレジストの厚さを決めるのが肝要であ
る。Then, as shown in FIG. 5, a p-type electrode B13 is deposited by, for example, a vacuum deposition machine or the like, and as shown in FIG. 6, the photoresist 20 and the p-type electrode B13 on the photoresist 20 are washed by organic washing or the like. Lift off. Further, as shown in FIG. 7, a semiconductor laser element bar 16 is placed on a quartz glass 22 on which a photoresist 21 is applied by, for example, a spin coater so that the electrodes are opposite to those of the bar. At this time, utilizing the surface tension of the photoresist 22,
It is important to determine the thickness of the photoresist so as to cover the active layers 3 on the Al 2 O 3 dielectric protection films 11 and 12.
【0043】そして、図8に示すように、例えば真空蒸
着機などでn型電極B14を蒸着しフォトレジスト22
及びフォトレジスト22上のn型電極B14を有機洗浄
などによってリフトオフし、チップ化することによって
本発明が実現される。Then, as shown in FIG. 8, for example, an n-type electrode
The present invention is realized by lifting off the n-type electrode B14 on the photoresist 22 by organic cleaning or the like to form a chip.
【0044】本実施例によれば、図9に示すように、半
導体レーザ部にコンデンサが並列に2つ並ぶ構成と等価
になるために、静電耐圧が向上する。本実施例では、電
極間の距離を3から5ミクロン程度にすることによっ
て、半導体レーザ素子の静電容量が約30pFから36
pFと20%増加し、静電耐圧も40Vから60Vへと
向上した。また、ダイボンドするp型電極10の上を一
様に凹凸なくp型電極B13が覆っているので、ダイボ
ンド後のチップからヒートシンクへの熱放散が良く、p
型電極B13による信頼性の低下が防止できた。According to the present embodiment, as shown in FIG. 9, since the configuration is equivalent to a configuration in which two capacitors are arranged in parallel in the semiconductor laser section, the electrostatic breakdown voltage is improved. In the present embodiment, by setting the distance between the electrodes to about 3 to 5 microns, the capacitance of the semiconductor laser device is increased from about 30 pF to 36 pF.
The pF was increased by 20%, and the electrostatic withstand voltage was also improved from 40 V to 60 V. Further, since the p-type electrode B13 uniformly covers the p-type electrode 10 to be die-bonded without unevenness, the heat dissipation from the chip after die-bonding to the heat sink is good.
A decrease in reliability due to the mold electrode B13 was prevented.
【0045】〈第2の実施例〉図10に第2の実施例の
斜視図を示す。<Second Embodiment> FIG. 10 is a perspective view of a second embodiment.
【0046】図中の31はn型GaAs基板、32はn
型AlGaAsクラッド層、33はGaAs/AlGa
As多重量子井戸層、34はp型AlGaAsクラッド
層、35はp型GaAsコンタクト層、36はp型Ga
Asキャップ層、37はn型GaAs電流狭窄層、38
はn型電極A、39はp型電極A、40、41はSiO
2誘電体保護膜、42はp型電極B、43はn型電極B
である。In the figure, 31 is an n-type GaAs substrate, and 32 is n-type GaAs substrate.
Type AlGaAs cladding layer, 33 is GaAs / AlGa
As multiple quantum well layer, 34 is a p-type AlGaAs cladding layer, 35 is a p-type GaAs contact layer, 36 is p-type Ga
As cap layer, 37 is an n-type GaAs current confinement layer, 38
Is an n-type electrode A, 39 is a p-type electrode A, 40 and 41 are SiO
2 Dielectric protection film, 42 is p-type electrode B, 43 is n-type electrode B
It is.
【0047】次に作成方法を示す。図11に示すように
半導体レーザ素子ウエハ45を半導体レーザ素子バー4
6にへき開し、図12に示すようにへき開された端面部
47にSiO2誘電体保護膜48を電子ビーム蒸着機な
どで作成し、図13に示すように半導体レーザ素子バー
46のSiO2誘電体保護膜40,41上にフォトリソ
グラフィー法でマスク49を端面の発光部と電極などと
平行な筋状に作成し、図14に示すように、例えば真空
蒸着機などでp型電極B42、n型電極B43を蒸着し
マスク49及びマスク49上のp型電極B42を有機洗
浄などによってリフトオフし、チップ化することによっ
て本発明が実現される。Next, a creation method will be described. As shown in FIG. 11, the semiconductor laser element wafer 45 is
Cleaved to 6, a SiO 2 dielectric protective film 48 as created by the electron beam evaporation machine end face 47 which is cleaved as shown in FIG. 12, SiO 2 dielectric semiconductor laser element bar 46 as shown in FIG. 13 A mask 49 is formed on the body protective films 40 and 41 by photolithography in a streak shape parallel to the light emitting portion on the end face and the electrodes, and as shown in FIG. 14, for example, a p-type electrode B42, n The present invention is realized by evaporating the pattern electrode B43, lifting off the mask 49 and the p-type electrode B42 on the mask 49 by organic cleaning or the like, and forming chips.
【0048】本実施例によれば、図9に示すように、半
導体レーザ部にコンデンサが並列に2つ並ぶ構成と等価
になるために、静電耐圧が向上する。本実施例では、電
極間の距離を2ミクロン程度にすることによって、半導
体レーザ素子の静電容量が約30pFから40pFと約
30%増加し、静電耐圧も40Vから70Vへと向上し
た。According to the present embodiment, as shown in FIG. 9, since the configuration is equivalent to a configuration in which two capacitors are arranged in parallel in the semiconductor laser portion, the electrostatic breakdown voltage is improved. In this embodiment, by setting the distance between the electrodes to about 2 μm, the capacitance of the semiconductor laser element was increased by about 30% from about 30 pF to 40 pF, and the electrostatic breakdown voltage was also improved from 40 V to 70 V.
【0049】〈第3の実施例〉次に図15に第3の実施
例の斜視図を示す。<Third Embodiment> FIG. 15 is a perspective view of a third embodiment.
【0050】図中の61はn型GaAs基板、62はn
型AlGaInPクラッド層、63はGaInP/Al
GaInP歪多重量子井戸層、64はp型AlGaIn
Pクラッド層、65はp型GaInP中間層、66はp
型GaAsキャップ層、67はn型電流狭窄層、68は
n型電極A、69はp型電極A、70、71はTiO 2
誘電体保護膜、72はn型電極Bであり、ヒートシンク
にダイボンドする面、電極である。In the figure, 61 is an n-type GaAs substrate, and 62 is n-type GaAs substrate.
Type AlGaInP cladding layer, 63 is GaInP / Al
GaInP strained multiple quantum well layer, 64 is p-type AlGaIn
P clad layer, 65 is a p-type GaInP intermediate layer, 66 is p
-Type GaAs cap layer, 67 is an n-type current confinement layer, 68 is
N-type electrodes A and 69 are p-type electrodes A, 70 and 71 are TiO Two
A dielectric protective film 72 is an n-type electrode B and a heat sink
The surface to be die-bonded is the electrode.
【0051】次に作成方法を示す。図16に示すように
半導体レーザ素子ウエハ74を半導体レーザ素子バー7
5にへき開し、図17に示すようにへき開された端面部
76にTiO2誘電体保護膜70,71を電子ビーム蒸
着機などで作成し、図18に示すように例えばフォトレ
ジスト78を例えばスピンコーターで塗布した石英ガラ
ス79上に半導体レーザ素子バー75のダイボンド面と
反対側を石英ガラス79側に置く。この時フォトレジス
ト78の表面張力を利用して、TiO2誘電体保護膜7
0,71の上を、活性層63を覆うようにフォトレジス
トの厚さを決めるのが肝要である。Next, a creation method will be described. As shown in FIG. 16, the semiconductor laser device wafer 74 is
5, TiO 2 dielectric protection films 70 and 71 are formed on the cleaved end face portions 76 by an electron beam evaporator as shown in FIG. 17, and a photoresist 78 is spin-coated, for example, as shown in FIG. On the quartz glass 79 coated with a coater, the side opposite to the die bonding surface of the semiconductor laser element bar 75 is placed on the quartz glass 79 side. At this time, the surface tension of the photoresist 78 is used to form the TiO 2 dielectric protection film 7.
It is important to determine the thickness of the photoresist so as to cover the active layer 63 on 0,71.
【0052】そして、図19に示すように、例えば真空
蒸着機などでn型電極B72を蒸着しフォトレジスト7
8及びフォトレジスト78上のp型電極B72を有機洗
浄などによってリフトオフし、チップ化した後、図20
に示すように、n型電極Bをヒートシンク80にダイボ
ンドすることによって本発明が実現される。Then, as shown in FIG. 19, for example, an n-type electrode B72 is
After the p-type electrode B72 on the photoresist 8 and the photoresist 78 is lifted off by organic cleaning or the like to form a chip, FIG.
The present invention is realized by die-bonding the n-type electrode B to the heat sink 80 as shown in FIG.
【0053】本実施例によれば、図9に示すように、半
導体レーザ部にコンデンサが並列に2つ並ぶ構成と等価
になるために、静電耐圧が向上するとともに、p型電極
B72とヒートシンクがつながっているので、端面部の
放熱性が向上し、端面破壊レベルが15mWから25m
Wへ向上した。さらに信頼性も70℃5mWの条件下で
5000時間から20000時間へ向上した。とくに本
実施例では半導体レーザ素子の活性層をダイボンドする
面から離した実装方法(アップサイドアップ法)で効果
的である。According to the present embodiment, as shown in FIG. 9, since the configuration is equivalent to a configuration in which two capacitors are arranged in parallel in the semiconductor laser portion, the electrostatic breakdown voltage is improved, and the p-type electrode B72 and the heat sink are connected. Are connected, the heat radiation of the end face is improved, and the end face destruction level is from 15 mW to 25 m.
W improved. Further, the reliability was improved from 5000 hours to 20,000 hours under the condition of 70 ° C. and 5 mW. In particular, in this embodiment, it is effective to use a mounting method (upside-up method) in which the active layer of the semiconductor laser device is separated from the surface to be die-bonded.
【0054】また、アップサイドアップ法によって実装
歩留まりが向上して、10%以上のコストダウンが図れ
た。また、本実施例では、電極間の距離を3から5ミク
ロン程度にすることによって、半導体レーザ素子の静電
容量が約30pFから36pFと20%増加し、静電耐
圧も40Vから60Vへと向上した。さらに、本実施例
では、アップサイドアップ法で実装したが、他の実装方
法でも端面部の放熱性が向上するために端面破壊レベル
が向上し、さらに信頼性も向上した。Also, the mounting yield was improved by the upside-up method, and the cost was reduced by 10% or more. Further, in this embodiment, by setting the distance between the electrodes to about 3 to 5 microns, the capacitance of the semiconductor laser element is increased by 20% from about 30 pF to 36 pF, and the electrostatic breakdown voltage is also improved from 40 V to 60 V. did. Further, in this embodiment, the mounting is performed by the upside-up method. However, in other mounting methods as well, the heat radiation of the end face is improved, so that the end face breakdown level is improved, and the reliability is further improved.
【0055】〈第4の実施例〉次に図21に第4の実施
例の斜視図を示す。<Fourth Embodiment> FIG. 21 is a perspective view of a fourth embodiment.
【0056】図中の91はn型GaAs基板、92はn
型AlGaInPクラッド層、93はGaInP/Al
GaInP歪多重量子井戸層、94はp型AlGaIn
Pクラッド層、95はp型GaInP中間層、96はp
型GaAsキャップ層、97はn型電流狭窄層、98は
n型電極A、99はp型電極A、100、101はSi
Nx誘電体保護膜、102はn型電極Bであり、ヒート
シンクにダイボンドする面、電極と反対側の面、電極で
ある。In the figure, reference numeral 91 denotes an n-type GaAs substrate;
Type AlGaInP cladding layer, 93 is GaInP / Al
GaInP strained multiple quantum well layer, 94 is p-type AlGaIn
P clad layer, 95 is a p-type GaInP intermediate layer, 96 is p
-Type GaAs cap layer, 97 is an n-type current confinement layer, 98 is an n-type electrode A, 99 is a p-type electrode A, 100 and 101 are Si
The Nx dielectric protection film 102 is an n-type electrode B, which is a surface to be die-bonded to a heat sink, a surface opposite to the electrode, and an electrode.
【0057】次に作成方法を示す。図22に示すように
半導体レーザ素子ウエハ104を半導体レーザ素子バー
105にへき開し、図23に示すようにへき開された端
面部106にSiNx誘電体保護膜100,101をプ
ラズマCVD装置などで作成し、図24に示すように例
えばフォトレジスト108を例えばスピンコーターで塗
布した石英ガラス109上に半導体レーザ素子バー10
5のダイボンド面と反対側を石英ガラス109側に置
く。この時フォトレジスト108の表面張力を利用し
て、SiNx誘電体保護膜100,101の上を、活性
層93を覆うようにフォトレジストの厚さを決めるのが
肝要である。Next, a creation method will be described. As shown in FIG. 22, a semiconductor laser device wafer 104 is cleaved into a semiconductor laser device bar 105, and as shown in FIG. 23, SiN x dielectric protection films 100 and 101 are formed on the cleaved end face portion 106 by a plasma CVD device or the like. Then, as shown in FIG. 24, for example, a semiconductor laser element bar 10 is formed on a quartz glass 109 coated with a photoresist 108 by, for example, a spin coater.
The side opposite to the die bonding surface of No. 5 is placed on the quartz glass 109 side. At this time, it is important to determine the thickness of the photoresist so as to cover the active layer 93 over the SiN x dielectric protection films 100 and 101 using the surface tension of the photoresist 108.
【0058】そして、図25に示すように、例えば真空
蒸着機などでn型電極B102を蒸着しフォトレジスト
108及びフォトレジスト108上のn型電極B102
を有機洗浄などによってリフトオフし、チップ化した
後、図26に示すように、p型電極Aをヒートシンク1
10にダイボンドすることによって本発明が実現され
る。Then, as shown in FIG. 25, an n-type electrode B102 is deposited by, for example, a vacuum deposition machine or the like, and the photoresist 108 and the n-type electrode B102 on the photoresist 108 are deposited.
Is lifted off by organic washing or the like to form a chip, and then, as shown in FIG.
The present invention is realized by die bonding to 10.
【0059】本実施例によれば、図9に示すように、半
導体レーザ部にコンデンサが並列に2つ並ぶ構成と等価
になるために、静電耐圧が向上するとともに、n型電極
B102が端面部のほとんどを覆うため、戻り光による
影響を受けず、雑音特性が120dBから140dBへ
と向上した。また、本実施例では、電極間の距離を3か
ら5ミクロン程度にすることによって、半導体レーザ素
子の静電容量が約30pFから36pFと20%増加
し、静電耐圧も40Vから60Vへと向上した。According to the present embodiment, as shown in FIG. 9, since the configuration is equivalent to a configuration in which two capacitors are arranged in parallel in the semiconductor laser portion, the electrostatic breakdown voltage is improved and the n-type electrode B102 is connected to the end face. Since almost all parts are covered, the noise characteristics are improved from 120 dB to 140 dB without being affected by the return light. Further, in this embodiment, by setting the distance between the electrodes to about 3 to 5 microns, the capacitance of the semiconductor laser element is increased by 20% from about 30 pF to 36 pF, and the electrostatic breakdown voltage is also improved from 40 V to 60 V. did.
【0060】〈第5の実施例〉図27に第5の実施例の
半導体レーザ素子の斜視図を示す。<Fifth Embodiment> FIG. 27 is a perspective view of a semiconductor laser device according to a fifth embodiment.
【0061】図中の121はn型GaAs基板、122
はn型AlGaInPクラッド層、123はGaInP
/AlGaInP歪多重量子井戸層、124はp型Al
GaInPクラッド層、125はp型GaInP中間
層、126はp型GaAsコンタクト層、127はp型
GaAsキャップ層、128はn型電流狭窄層、129
はn型電極A、130はp型電極A、131はAl2O3
誘電体保護膜、132はAl2O3/Si誘電体保護膜1
33はp型透明導電膜電極Bである。In the figure, reference numeral 121 denotes an n-type GaAs substrate;
Is an n-type AlGaInP cladding layer, and 123 is GaInP
/ AlGaInP strained multiple quantum well layer, 124 is p-type Al
GaInP cladding layer, 125 is a p-type GaInP intermediate layer, 126 is a p-type GaAs contact layer, 127 is a p-type GaAs cap layer, 128 is an n-type current confinement layer, 129
Is an n-type electrode A, 130 is a p-type electrode A, 131 is Al 2 O 3
Dielectric protection film 132 is Al 2 O 3 / Si dielectric protection film 1
33 is a p-type transparent conductive film electrode B.
【0062】次に作成方法を示す。図28に示すように
半導体レーザ素子ウエハ135を半導体レーザ素子バー
136にへき開し、図29に示すようにへき開された端
面部137にAl2O3誘電体保護膜、Al2O3/Si誘
電体保護膜132を電子ビーム蒸着機などで作成し、図
30に示すように例えばフォトレジスト138を例えば
スピンコーターで塗布した石英ガラス139上に半導体
レーザ素子バー136を置く。この時フォトレジスト1
38の表面張力を利用して、Al2O3誘電体保護膜13
1,Al2O3/Si誘電体保護膜132の上を、石英ガ
ラス139上から1ミクロン程度覆うようにフォトレジ
スト138の厚さを決めるとより効果的である。Next, a creation method will be described. As shown in FIG. 28, the semiconductor laser device wafer 135 is cleaved into semiconductor laser device bars 136, and as shown in FIG. 29, the cleaved end surface 137 has an Al 2 O 3 dielectric protection film and an Al 2 O 3 / Si dielectric. The body protective film 132 is formed by an electron beam evaporator or the like, and as shown in FIG. 30, a semiconductor laser element bar 136 is placed on a quartz glass 139 coated with a photoresist 138 by, for example, a spin coater. At this time, photoresist 1
The surface tension of the Al 2 O 3 dielectric protective film 13 is
It is more effective if the thickness of the photoresist 138 is determined so that the surface of the Al 2 O 3 / Si dielectric protection film 132 covers about 1 μm from the quartz glass 139.
【0063】そして、図31に示すように、例えば真空
蒸着機などで酸化スズまたは酸化インジウム系のp型透
明導電膜電極B133を蒸着しフォトレジスト138及
びフォトレジスト138上のp型透明導電膜電極B13
3を有機洗浄などによってリフトオフし、チップ化する
ことによって本発明が実現される。Then, as shown in FIG. 31, a p-type transparent conductive film electrode B133 of tin oxide or indium oxide is deposited by, for example, a vacuum evaporator to form a photoresist 138 and a p-type transparent conductive film electrode on the photoresist 138. B13
The present invention is realized by lifting off 3 by organic cleaning or the like to form a chip.
【0064】本実施例によれば、図9に示すように、半
導体レーザ部にコンデンサが並列に2つ並ぶ構成と等価
になるために、静電耐圧が向上する。さらに透明導電膜
電極を用いることによって活性層がチップのどの位置に
あっても電極間の位置を1ミクロンや1ミクロン以下で
作成することが簡単な本発明の製造方法でできる。本実
施例では、半導体レーザ素子の静電容量が約30pFか
ら60pFと倍増し、静電耐圧も40Vから100Vへ
と飛躍的に向上した。According to the present embodiment, as shown in FIG. 9, since the configuration is equivalent to a configuration in which two capacitors are arranged in parallel in the semiconductor laser section, the electrostatic breakdown voltage is improved. Further, by using the transparent conductive film electrode, the position between the electrodes can be formed at 1 micron or less than 1 micron at any position of the active layer on the chip by the simple manufacturing method of the present invention. In the present embodiment, the capacitance of the semiconductor laser device doubled from about 30 pF to 60 pF, and the electrostatic breakdown voltage was dramatically improved from 40 V to 100 V.
【0065】〈第6の実施例〉図32に第6の実施例の
半導体レーザ素子の斜視図を示す。<Sixth Embodiment> FIG. 32 is a perspective view of a semiconductor laser device according to a sixth embodiment.
【0066】図中の151はn型GaAs基板、152
はn型AlGaInPクラッド層、153はGaInP
/AlGaInP歪多重量子井戸層、154はp型Al
GaInPクラッド層、155はp型GaInP中間
層、156はp型GaAsコンタクト層、157はp型
GaAsキャップ層、158はn型電流狭窄層、159
はn型電極A、160はp型電極A、161、162は
LiNbO3誘電体保護膜、163はn型電極Bであ
る。In the figure, reference numeral 151 denotes an n-type GaAs substrate;
Is an n-type AlGaInP cladding layer, 153 is GaInP
/ AlGaInP strained multiple quantum well layer, 154 is p-type Al
A GaInP cladding layer, 155 is a p-type GaInP intermediate layer, 156 is a p-type GaAs contact layer, 157 is a p-type GaAs cap layer, 158 is an n-type current confinement layer, 159
Is an n-type electrode A, 160 is a p-type electrode A, 161 and 162 are LiNbO 3 dielectric protective films, and 163 is an n-type electrode B.
【0067】次に作成方法を示す。図33に示すように
半導体レーザ素子ウエハ164を半導体レーザ素子バー
165にへき開し、図34に示すようにへき開された端
面部167にLiNbO3誘電体保護膜161、162
をプラズマCVD法などで作成し、図35に示すように
例えばフォトレジスト168を例えばスピンコーターで
塗布した石英ガラス169上に半導体レーザ素子バー1
65を置く。この時フォトレジスト168の表面張力を
利用して、LiNbO3誘電体保護膜161、162の
上を、活性層153を覆うようにフォトレジスト168
の厚さを決めると良い。Next, a creation method will be described. As shown in FIG. 33, the semiconductor laser device wafer 164 is cleaved into semiconductor laser device bars 165, and as shown in FIG. 34, LiNbO 3 dielectric protection films 161 and 162 are formed on the cleaved end portions 167.
Is formed by a plasma CVD method or the like, and as shown in FIG. 35, a semiconductor laser element bar 1 is formed on a quartz glass 169 coated with a photoresist 168 by a spin coater, for example.
Put 65. At this time, the surface tension of the photoresist 168 is used to cover the active layer 153 on the LiNbO 3 dielectric protection films 161 and 162 so as to cover the active layer 153.
It is good to decide the thickness of.
【0068】そして、図36に示すように、例えば真空
蒸着機などでn型電極B163を蒸着しフォトレジスト
168及びフォトレジスト168上のn型電極B168
を有機洗浄などによってリフトオフし、チップ化するこ
とによって本発明が実現される。Then, as shown in FIG. 36, an n-type electrode B 163 is vapor-deposited by, for example, a vacuum vapor deposition machine, and the photoresist 168 and the n-type electrode B 168 on the photoresist 168 are deposited.
The present invention is realized by lifting off by using organic cleaning or the like to form chips.
【0069】本実施例によれば、誘電体保護膜にAl2
O3膜より誘電率の高いLiNbO3膜を用いるために、
さらに静電耐圧が向上する。実施例では、半導体レーザ
素子の静電容量が約30pFから30000pFと約1
000倍増加し、静電耐圧も40Vから1kV以上へと
飛躍的に向上した。ここでは誘電体保護膜としてLiN
bO3膜を用いたがBi系、LiNbO系、PbTiO
系、PZLT系などの強誘電体膜であれば同じ効果が得
られた。According to this embodiment, the dielectric protection film is made of Al 2
In order to use a LiNbO 3 film having a higher dielectric constant than the O 3 film,
Further, the electrostatic withstand voltage is improved. In the embodiment, the capacitance of the semiconductor laser element is about 30 pF to 30,000 pF, which is about 1
000-fold increase, and the electrostatic withstand voltage has dramatically improved from 40 V to 1 kV or more. Here, LiN is used as the dielectric protection film.
bO 3 film was used, but Bi-based, LiNbO-based, PbTiO
The same effect was obtained with a ferroelectric film of PZLT or PZLT type.
【0070】〈第7の実施例〉図37に第7の実施例の
半導体レーザ素子の図を示す。<Seventh Embodiment> FIG. 37 is a diagram showing a semiconductor laser device according to a seventh embodiment.
【0071】図中の181はn型GaAs基板、182
はn型AlGaInPクラッド層、183はGaInP
/AlGaInP歪多重量子井戸層、184はp型Al
GaInPクラッド層、185はp型GaInP中間
層、186はp型GaAsコンタクト層、187はp型
GaAsキャップ層、188はn型電流狭窄層、189
はn型電極A、190はp型電極A、191、192は
Al2O3誘電体保護膜、193はn型電極Bである。In the figure, reference numeral 181 denotes an n-type GaAs substrate;
Is an n-type AlGaInP cladding layer, 183 is a GaInP
/ AlGaInP strained multiple quantum well layer, 184 is p-type Al
GaInP cladding layer, 185 is a p-type GaInP intermediate layer, 186 is a p-type GaAs contact layer, 187 is a p-type GaAs cap layer, 188 is an n-type current confinement layer, 189
Represents an n-type electrode A, 190 represents a p-type electrode A, 191 and 192 represent Al 2 O 3 dielectric protective films, and 193 represents an n-type electrode B.
【0072】次に作成方法を示す。図38に示すように
半導体レーザ素子ウエハ194を半導体レーザ素子バー
195にへき開し、さらにチップ196に分割し、図3
9に示すようにへき開された端面部197及びチップ側
面部198にAl2O3誘電体保護膜191、192をプ
ラズマCVD法などで作成し、図40に示すように例え
ばフォトレジスト199を例えばスピンコーターで塗布
した石英ガラス200上に半導体レーザ素子チップ19
6を置く。この時フォトレジスト199の表面張力を利
用して、Al2O3誘電体保護膜191,192の上を、
活性層183を覆うようにフォトレジスト199の厚さ
を決めるとより効果的である。Next, a creation method will be described. As shown in FIG. 38, the semiconductor laser device wafer 194 is cleaved into semiconductor laser device bars 195 and further divided into chips 196.
As shown in FIG. 9, Al 2 O 3 dielectric protection films 191 and 192 are formed on the cleaved end face portion 197 and the chip side face portion 198 by a plasma CVD method or the like, and as shown in FIG. Semiconductor laser device chip 19 on quartz glass 200 coated with a coater
Put 6. At this time, the surface tension of the photoresist 199 is used to cover the Al 2 O 3 dielectric protection films 191 and 192.
It is more effective to determine the thickness of the photoresist 199 so as to cover the active layer 183.
【0073】そして、図41に示すように、例えば真空
蒸着機などでn型電極B193を蒸着しフォトレジスト
199及びフォトレジスト199上のn型電極B193
を有機洗浄などによってリフトオフすることによって本
発明が実現される。Then, as shown in FIG. 41, an n-type electrode B193 is vapor-deposited by, for example, a vacuum vapor deposition machine, and the photoresist 199 and the n-type electrode B193 on the photoresist 199 are deposited.
The present invention is realized by lifting off by using organic cleaning or the like.
【0074】本実施例によれば、図42に示すように、
半導体レーザ部にコンデンサが並列に4つ並ぶ構成と等
価になるために、2つ並ぶ構成よりさらに静電耐圧が向
上する。実施例では、半導体レーザ素子の静電容量が約
30pFから42pFと40%増加し、静電耐圧も40
Vから70Vへと向上した。さらにAl2O3誘電体保護
膜169,170によってチップ側面全体が覆われるの
で、実装時のリークによる不良が減るために歩留まりが
向上し、コストダウンが図れた。According to this embodiment, as shown in FIG.
Since the configuration is equivalent to a configuration in which four capacitors are arranged in parallel in the semiconductor laser unit, the electrostatic withstand voltage is further improved as compared with the configuration in which two capacitors are arranged. In the embodiment, the capacitance of the semiconductor laser device is increased by about 40 pF from about 30 pF to 42 pF, and the electrostatic breakdown voltage is also increased by 40%.
From V to 70V. Furthermore, since the entire side surface of the chip is covered with the Al 2 O 3 dielectric protection films 169 and 170, defects due to leakage during mounting are reduced, so that the yield is improved and the cost is reduced.
【0075】[0075]
【発明の効果】本発明によって半導体レーザ素子の光出
射面のへき開面上を誘電体膜で覆い、さらにその誘電体
膜の上側の光出射部分以外に第1導電型または第2導電
型の電極のどちらか一方のみと導通のある導電層で覆う
ことによって電極/誘電体膜/電極をコンデンサとして
有効に働かせることができた。According to the present invention, the cleaved surface of the light emitting surface of the semiconductor laser device is covered with a dielectric film, and the first conductive type or the second conductive type electrode is formed on a portion other than the light emitting portion on the dielectric film. The electrode / dielectric film / electrode could effectively work as a capacitor by covering with only one of them.
【0076】また誘電体膜の上側を覆う導電層がヒート
シンクとダイボンドする側の電極と導通をもたせること
によって端面部の放熱性が向上し、素子の端面破壊レベ
ルが向上し、信頼性が向上した。Further, the conductive layer covering the upper side of the dielectric film has conductivity with the electrode on the side to be die-bonded to the heat sink, so that the heat radiation property at the end face is improved, the level of destruction of the end face of the element is improved, and the reliability is improved. .
【0077】また誘電体膜の上側を覆う導電層がヒート
シンクとダイボンドする側の反対側の電極と導通をもた
せることによって、例えば、温度特性をよくするために
活性層とヒートシンクを近くした構造の半導体レーザ素
子では、端面部のほとんどを電極で覆うことによって戻
り光による雑音特性が改善された。The conductive layer covering the upper side of the dielectric film is electrically connected to the electrode on the side opposite to the side where the die is bonded to the heat sink. For example, a semiconductor having a structure in which the active layer and the heat sink are close to each other in order to improve the temperature characteristics. In the laser device, the noise characteristics due to the return light were improved by covering most of the end faces with the electrodes.
【0078】また誘電体膜の上側を覆う導電層が酸化ス
ズまたは酸化インジウム系の透明導電膜とすることによ
って活性層の位置に関係なく、もっとも容量の大きいコ
ンデンサを端面部に作ることができ、静電耐圧が更に向
上した。Further, by using a transparent conductive film of tin oxide or indium oxide as the conductive layer covering the upper side of the dielectric film, a capacitor having the largest capacitance can be formed on the end face regardless of the position of the active layer. The electrostatic withstand voltage has been further improved.
【0079】また誘電体膜をBi系、LiNbO系、P
bTiO系、PZLT系などの強誘電体膜で形成するこ
とによって容量の大きなコンデンサを端面部に作ること
ができ、静電耐圧が更に向上した。。The dielectric film is made of Bi, LiNbO, P
By forming a ferroelectric film such as a bTiO-based or PZLT-based film, a capacitor having a large capacitance can be formed on the end face, and the electrostatic withstand voltage is further improved. .
【0080】さらにレーザの出射端面以外で電極が形成
されていない面上を誘電体膜で覆い、さらにその誘電体
膜の上側の光出射部分以外に第1導電型または第2導電
型の電極のどちらか一方のみと導通のある導電層で覆う
ことによって4つのコンデンサを並列に作り込むことが
でき静電耐圧が更に向上するとともに、ダイボンド時の
ろう材の這い上がりによるリーク電流がなくなり、歩留
まりが向上し、コストダウンできた。Further, the surface other than the laser emitting end surface on which no electrode is formed is covered with a dielectric film, and the first conductive type or the second conductive type electrode is formed on the upper surface of the dielectric film except for the light emitting portion. By covering the capacitor with a conductive layer that is conductive to only one of them, four capacitors can be built in parallel, further improving the electrostatic withstand voltage, eliminating the leakage current due to the creeping of the brazing material during die bonding, and reducing the yield. Improved and reduced costs.
【0081】また誘電体膜の上側を覆う導電層がダイボ
ンドする側の電極を一様に覆うことによってダイボンド
面に凹凸ができることによるダイボンドの不均一性がな
くなり、放熱特性が向上し、信頼性が向上した。Further, since the conductive layer covering the upper side of the dielectric film uniformly covers the electrode on the side of the die bond, unevenness of the die bond surface due to unevenness of the die bond surface is eliminated, heat radiation characteristics are improved, and reliability is improved. Improved.
【0082】また本発明は誘電体膜の上側に形成される
導電層を形成するときにレジスト膜などの表面張力を利
用して第1導電型および第2導電型の電極が短絡しない
ように半導体レーザの側面部にマスク膜を作成し、この
上から導電膜を蒸着、スパッタなどで形成し、その後に
マスク膜およびマスク膜上の導電膜を取り除くことによ
って製造することによって簡単に実現でき、素子のコス
トダウンや信頼性の向上が図れた。Further, according to the present invention, when a conductive layer formed on a dielectric film is formed, the first conductive type and the second conductive type electrodes are not short-circuited by utilizing the surface tension of a resist film or the like. The device can be easily realized by forming a mask film on the side surface of the laser, forming a conductive film thereon by vapor deposition, sputtering, or the like, and then manufacturing the mask film by removing the conductive film on the mask film. Cost and improved reliability.
【図1】本発明の第1の実施例を説明する斜視図であ
る。FIG. 1 is a perspective view illustrating a first embodiment of the present invention.
【図2】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 2 is a diagram illustrating a method for creating the first embodiment of the present invention.
【図3】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 3 is a diagram illustrating a creation method according to the first embodiment of the present invention.
【図4】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 4 is a diagram for explaining a method of creating the first embodiment of the present invention.
【図5】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 5 is a diagram illustrating a method for creating the first embodiment of the present invention.
【図6】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 6 is a diagram illustrating a method for creating the first embodiment of the present invention.
【図7】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 7 is a diagram for explaining a method of creating the first embodiment of the present invention.
【図8】本発明の第1の実施例の作成法を説明する図で
ある。FIG. 8 is a diagram illustrating a method for creating the first embodiment of the present invention.
【図9】本発明の第1の実施例の効果を説明する図であ
る。FIG. 9 is a diagram illustrating the effect of the first embodiment of the present invention.
【図10】本発明の第2の実施例を説明する斜視図であ
る。FIG. 10 is a perspective view illustrating a second embodiment of the present invention.
【図11】本発明の第2の実施例の作成法を説明する図
である。FIG. 11 is a diagram illustrating a creation method according to a second embodiment of the present invention.
【図12】本発明の第2の実施例の作成法を説明する図
である。FIG. 12 is a diagram for explaining a method of creating the second embodiment of the present invention.
【図13】本発明の第2の実施例の作成法を説明する図
である。FIG. 13 is a diagram for explaining a method of creating the second embodiment of the present invention.
【図14】本発明の第2の実施例の作成法を説明する図
である。FIG. 14 is a diagram illustrating a method for creating a second embodiment of the present invention.
【図15】本発明の第3の実施例を説明する斜視図であ
る。FIG. 15 is a perspective view illustrating a third embodiment of the present invention.
【図16】本発明の第3の実施例の作成法を説明する図
である。FIG. 16 is a diagram for explaining a method of creating the third embodiment of the present invention.
【図17】本発明の第3の実施例の作成法を説明する図
である。FIG. 17 is a diagram illustrating a method for creating a third embodiment of the present invention.
【図18】本発明の第3の実施例の作成法を説明する図
である。FIG. 18 is a diagram illustrating a creation method according to a third embodiment of the present invention.
【図19】本発明の第3の実施例の作成法を説明する図
である。FIG. 19 is a diagram for explaining a method of creating the third embodiment of the present invention.
【図20】本発明の第3の実施例の作成法を説明する図
である。FIG. 20 is a diagram for explaining a method of creating the third embodiment of the present invention.
【図21】本発明の第4の実施例を説明する斜視図であ
る。FIG. 21 is a perspective view illustrating a fourth embodiment of the present invention.
【図22】本発明の第4の実施例の作成法を説明する図
である。FIG. 22 is a diagram illustrating a method for creating the fourth embodiment of the present invention.
【図23】本発明の第4の実施例の作成法を説明する図
である。FIG. 23 is a diagram for explaining a method of creating the fourth embodiment of the present invention.
【図24】本発明の第4の実施例の作成法を説明する図
である。FIG. 24 is a diagram illustrating a method for creating the fourth embodiment of the present invention.
【図25】本発明の第4の実施例の作成法を説明する図
である。FIG. 25 is a diagram illustrating a method for creating a fourth embodiment of the present invention.
【図26】本発明の第4の実施例の作成法を説明する図
である。FIG. 26 is a diagram illustrating a method for creating the fourth embodiment of the present invention.
【図27】本発明の第5の実施例を説明する斜視図であ
る。FIG. 27 is a perspective view illustrating a fifth embodiment of the present invention.
【図28】本発明の第5の実施例の作成法を説明する図
である。FIG. 28 is a diagram for explaining a method of creating the fifth embodiment of the present invention.
【図29】本発明の第5の実施例の作成法を説明する図
である。FIG. 29 is a diagram illustrating a method for creating the fifth embodiment of the present invention.
【図30】本発明の第5の実施例の作成法を説明する図
である。FIG. 30 is a diagram for explaining a method of creating the fifth embodiment of the present invention.
【図31】本発明の第5の実施例の作成法を説明する図
である。FIG. 31 is a diagram illustrating a method for creating a fifth embodiment of the present invention.
【図32】本発明の第6の実施例を説明する斜視図であ
る。FIG. 32 is a perspective view illustrating a sixth embodiment of the present invention.
【図33】本発明の第6の実施例の作成法を説明する図
である。FIG. 33 is a diagram illustrating a method for creating the sixth embodiment of the present invention.
【図34】本発明の第6の実施例の作成法を説明する図
である。FIG. 34 is a diagram for explaining a method of creating the sixth embodiment of the present invention.
【図35】本発明の第6の実施例の作成法を説明する図
である。FIG. 35 is a diagram for explaining a method of creating the sixth embodiment of the present invention.
【図36】本発明の第6の実施例の作成法を説明する図
である。FIG. 36 is a diagram for explaining a method of creating the sixth embodiment of the present invention.
【図37】本発明の第7の実施例を説明する図である。FIG. 37 is a diagram illustrating a seventh embodiment of the present invention.
【図38】本発明の第7の実施例の作成法を説明する図
である。FIG. 38 is a diagram for explaining a method of creating the seventh embodiment of the present invention.
【図39】本発明の第7の実施例の作成法を説明する図
である。FIG. 39 is a diagram illustrating a method of creating the seventh embodiment of the present invention.
【図40】本発明の第7の実施例の作成法を説明する図
である。FIG. 40 is a diagram illustrating a method of creating the seventh embodiment of the present invention.
【図41】本発明の第7の実施例の作成法を説明する図
である。FIG. 41 is a diagram illustrating a method for creating the seventh embodiment of the present invention.
【図42】本発明の第7の実施例の効果を説明する図で
ある。FIG. 42 is a diagram illustrating the effect of the seventh embodiment of the present invention.
【図43】本発明に用いる、フォトレジストの厚さと、
半導体レーザ素子バーの端面部を覆うフォトレジストの
石英ガラスからの距離との関係を示す図である。FIG. 43 shows the thickness of a photoresist used in the present invention;
FIG. 4 is a diagram illustrating a relationship between a photoresist covering an end surface of a semiconductor laser element bar and a distance from quartz glass.
13 p型電極B 42 p型電極B 43 n型電極B 72 n型電極B 102 n型電極B 133 p型透明導電膜電極B 163 n型電極B 193 n型電極B 13 p-type electrode B 42 p-type electrode B 43 n-type electrode B 72 n-type electrode B 102 n-type electrode B 133 p-type transparent conductive film electrode B 163 n-type electrode B 193 n-type electrode B
Claims (6)
電型クラッド層、活性層、第2導電型クラッド層が積層
され、前記第1導電型基板下方に第1電極が、前記第2
導電型クラッド層上方に第2電極が形成されると共に、
レーザ光出射両端面に誘電体保護膜が形成された半導体
レーザ素子であって、 前記誘電体保護膜の少なくとも一方の一部を覆い、前記
第1電極と電気的に接続された第1導電層を有してなる
ことを特徴とする半導体レーザ素子。A first conductive type clad layer, an active layer, and a second conductive type clad layer are laminated on the first conductive type substrate, and a first electrode is provided below the first conductive type substrate;
A second electrode is formed above the conductive cladding layer,
What is claimed is: 1. A semiconductor laser device having a dielectric protection film formed on both end surfaces of a laser beam, wherein said first conductive layer covers at least a part of said dielectric protection film and is electrically connected to said first electrode. A semiconductor laser device comprising:
部を覆い、前記第2電極と電気的に接続された第2導電
層を有してなることを特徴とする請求項1に記載の半導
体レーザ素子。2. The device according to claim 1, further comprising a second conductive layer that covers at least a part of the dielectric protection film and is electrically connected to the second electrode. Semiconductor laser device.
電型クラッド層、活性層、第2導電型クラッド層が積層
され、前記第1導電型基板下方に第1電極が、前記第2
導電型クラッド層上方に第2電極が形成されると共に、
レーザ光出射端面に誘電体保護膜が形成された半導体レ
ーザ素子であって、 前記半導体レーザ素子側面の少なくとも一方に誘電体膜
を形成してなると共に、前記第1導電層は当該誘電体膜
に接触してなることを特徴とする請求項1又は2に記載
の半導体レーザ素子。3. A first conductive type clad layer, an active layer, and a second conductive type clad layer are laminated on a first conductive type substrate, and a first electrode is provided below the first conductive type substrate.
A second electrode is formed above the conductive cladding layer,
A semiconductor laser device in which a dielectric protection film is formed on a laser light emitting end surface, wherein a dielectric film is formed on at least one of side surfaces of the semiconductor laser device, and the first conductive layer is formed on the dielectric film. The semiconductor laser device according to claim 1, wherein the semiconductor laser device comes into contact with the semiconductor laser device.
て不透明であってレーザ出射光領域に形成されていない
か又はレーザ出射光に対して透明であることを特徴とす
る請求項1乃至3のいずれかに記載の半導体レーザ素
子。4. The first conductive layer according to claim 1, wherein the first conductive layer is opaque to laser emission light and is not formed in a laser emission light area or is transparent to laser emission light. 4. The semiconductor laser device according to any one of claims 1 to 3.
て不透明であってレーザ出射光領域に形成されていない
か又はレーザ出射光に対して透明であることを特徴とす
る請求項1乃至4のいずれかに記載の半導体レーザ素
子。5. The laser device according to claim 1, wherein the second conductive layer is opaque to laser emission light and is not formed in a laser emission light area or is transparent to laser emission light. 5. The semiconductor laser device according to any one of claims 1 to 4.
ザ素子を製造する方法であって、第1導電型基板上に、
少なくとも第1導電型クラッド層、活性層、第2導電型
クラッド層が積層され、前記第1導電型基板下方に第1
電極が、前記第2導電型クラッド層上方に第2電極が形
成されると共に、レーザ光出射両端面に誘電体保護膜が
形成された後、第1導電層を形成する際、 少なくとも第2電極を覆うマスクを形成する工程と、 第1導電層を形成する膜を被着させる工程と、 前記マスクを除去する工程と、を少なくとも備えてなる
ことを特徴とする半導体レーザ素子の製造方法。6. The method for manufacturing a semiconductor laser device according to claim 1, wherein:
At least a first conductive type clad layer, an active layer, and a second conductive type clad layer are laminated, and a first conductive type clad layer is provided below the first conductive type substrate.
When forming a first conductive layer after forming a second electrode above the second conductive type clad layer and forming a dielectric protective film on both end faces of the laser beam emission, at least the second electrode Forming a mask for covering the first conductive layer, applying a film for forming a first conductive layer, and removing the mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10018778A JPH11220205A (en) | 1998-01-30 | 1998-01-30 | Semiconductor laser element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10018778A JPH11220205A (en) | 1998-01-30 | 1998-01-30 | Semiconductor laser element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11220205A true JPH11220205A (en) | 1999-08-10 |
Family
ID=11981104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10018778A Pending JPH11220205A (en) | 1998-01-30 | 1998-01-30 | Semiconductor laser element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11220205A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073851A (en) * | 2004-09-03 | 2006-03-16 | Sanyo Electric Co Ltd | Semiconductor laser equipment |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59141281A (en) * | 1983-02-01 | 1984-08-13 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS62126684A (en) * | 1985-11-27 | 1987-06-08 | Matsushita Electric Ind Co Ltd | Semiconductor laser |
JPS647681A (en) * | 1987-06-30 | 1989-01-11 | Fujikura Ltd | Distributed reflex semiconductor laser |
JPH01100988A (en) * | 1987-10-13 | 1989-04-19 | Sharp Corp | Semiconductor laser device |
JPH0136687B2 (en) * | 1982-10-12 | 1989-08-02 | Matsushita Electric Ind Co Ltd | |
JPH03198025A (en) * | 1989-12-27 | 1991-08-29 | Nec Corp | Optical modulator and integratation type optical modulator and photodetector as well as production thereof |
JPH04309278A (en) * | 1991-04-08 | 1992-10-30 | Hitachi Ltd | Semiconductor laser |
JPH05347430A (en) * | 1991-07-17 | 1993-12-27 | Ricoh Co Ltd | Semiconductor light-emitting device |
JPH0697574A (en) * | 1992-09-14 | 1994-04-08 | Toshiba Corp | Semiconductor laser system |
JPH06215984A (en) * | 1993-01-20 | 1994-08-05 | Patent Puromooto Center:Yugen | Ceramic capacitor and manufacture thereof |
JPH06350047A (en) * | 1993-06-04 | 1994-12-22 | Nec Kyushu Ltd | Semiconductor memory device |
JPH07183482A (en) * | 1993-12-22 | 1995-07-21 | Nippon Telegr & Teleph Corp <Ntt> | Light transmitting element and light transmitting/ receiving element |
JPH08222810A (en) * | 1995-02-15 | 1996-08-30 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical element |
-
1998
- 1998-01-30 JP JP10018778A patent/JPH11220205A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0136687B2 (en) * | 1982-10-12 | 1989-08-02 | Matsushita Electric Ind Co Ltd | |
JPS59141281A (en) * | 1983-02-01 | 1984-08-13 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS62126684A (en) * | 1985-11-27 | 1987-06-08 | Matsushita Electric Ind Co Ltd | Semiconductor laser |
JPS647681A (en) * | 1987-06-30 | 1989-01-11 | Fujikura Ltd | Distributed reflex semiconductor laser |
JPH01100988A (en) * | 1987-10-13 | 1989-04-19 | Sharp Corp | Semiconductor laser device |
JPH03198025A (en) * | 1989-12-27 | 1991-08-29 | Nec Corp | Optical modulator and integratation type optical modulator and photodetector as well as production thereof |
JPH04309278A (en) * | 1991-04-08 | 1992-10-30 | Hitachi Ltd | Semiconductor laser |
JPH05347430A (en) * | 1991-07-17 | 1993-12-27 | Ricoh Co Ltd | Semiconductor light-emitting device |
JPH0697574A (en) * | 1992-09-14 | 1994-04-08 | Toshiba Corp | Semiconductor laser system |
JPH06215984A (en) * | 1993-01-20 | 1994-08-05 | Patent Puromooto Center:Yugen | Ceramic capacitor and manufacture thereof |
JPH06350047A (en) * | 1993-06-04 | 1994-12-22 | Nec Kyushu Ltd | Semiconductor memory device |
JPH07183482A (en) * | 1993-12-22 | 1995-07-21 | Nippon Telegr & Teleph Corp <Ntt> | Light transmitting element and light transmitting/ receiving element |
JPH08222810A (en) * | 1995-02-15 | 1996-08-30 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073851A (en) * | 2004-09-03 | 2006-03-16 | Sanyo Electric Co Ltd | Semiconductor laser equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3966067B2 (en) | Surface emitting semiconductor laser device and method for manufacturing the same | |
JP4299580B2 (en) | Light emitting element and light emitting device | |
JP4493153B2 (en) | Nitride-based semiconductor light emitting device | |
KR20010053855A (en) | Organic Micro-Cavity Laser | |
KR100199035B1 (en) | Light emitting diode array and manufacturing method thereof | |
KR101562375B1 (en) | Light emitting diode chip and light emitting diode package each having distributed bragg reflector | |
JPH11266058A (en) | Gallium nitride based compound semiconductor laser diode | |
JPH11220205A (en) | Semiconductor laser element and manufacture thereof | |
JP7523258B2 (en) | Vertical cavity light emitting device | |
US6660550B2 (en) | Surface emission type semiconductor light-emitting device and method of manufacturing the same | |
JP6705554B1 (en) | Method for manufacturing semiconductor laser device | |
TWI810653B (en) | Optical semiconductor device and manufacturing method thereof | |
KR20030073054A (en) | Semiconductor LED device and method thereof | |
JP2000124502A (en) | Semiconductor light-emitting element and manufacture thereof | |
US8891572B2 (en) | Semiconductor laser device having reflecting and emitting surfaces | |
JP3634538B2 (en) | Semiconductor laser device manufacturing method and semiconductor laser device | |
KR101136317B1 (en) | Laser Diode And Fabricating Method Thereof | |
JP7480350B2 (en) | RADIATION-EMITTING SEMICONDUCTOR CHIP AND METHOD FOR PRODUCING RADIATION-EMITTING SEMICONDUCTOR CHIP - Patent application | |
JP7665086B2 (en) | Vertical cavity light emitting device | |
KR100447029B1 (en) | Semiconductor LED device and method thereof | |
WO2025063048A1 (en) | Vertical cavity light-emitting element and light-emitting device | |
JPH07122781A (en) | Manufacture of led array | |
JPS5830172A (en) | light emitting semiconductor device | |
JP4168555B2 (en) | Semiconductor device | |
JP3681460B2 (en) | Semiconductor laser device, manufacturing method thereof, and semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040526 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070417 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070814 |