[go: up one dir, main page]

JPH11214929A - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator

Info

Publication number
JPH11214929A
JPH11214929A JP2392098A JP2392098A JPH11214929A JP H11214929 A JPH11214929 A JP H11214929A JP 2392098 A JP2392098 A JP 2392098A JP 2392098 A JP2392098 A JP 2392098A JP H11214929 A JPH11214929 A JP H11214929A
Authority
JP
Japan
Prior art keywords
oscillator
circuit
heaters
small
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2392098A
Other languages
Japanese (ja)
Inventor
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2392098A priority Critical patent/JPH11214929A/en
Priority to DE69933615T priority patent/DE69933615T2/en
Priority to PCT/JP1999/000128 priority patent/WO1999037018A1/en
Priority to CA002283963A priority patent/CA2283963C/en
Priority to US09/367,691 priority patent/US6147565A/en
Priority to EP99900335A priority patent/EP0969591B1/en
Publication of JPH11214929A publication Critical patent/JPH11214929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystal oscillator which is easily made inexpensive and small, and has excellent frequency stability and rise time characteristic. SOLUTION: Six surface mounted small heaters 4, 4', 5, 5', 6 and 6' are arranged on a printed circuit 1. The small heaters 4, 4', 5 and 5' are adhered closely and fixed between a metallic cap 9 of an oscillator 10 and the circuit 1. Also, the small heaters 6 and 6' are adhered closely and fixed between lead terminals 11 and 11' of the oscillator 10 and the circuit 1 via a metallic piece 8. The six small heaters are connected to a temperature control circuit 3 on the bottom of the circuit 1. A temperature sensor 7 is arranged between the heaters 6 and 6' and is connected to the circuit 3. The six small heaters take into consideration the heat capacity and heat radiation of a quartz oscillator, and respective heating quantity is separately set.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電発振器に関し、
特に、発振周波数が高安定な圧電発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric oscillator,
In particular, the present invention relates to a piezoelectric oscillator having a high oscillation frequency.

【0002】[0002]

【従来の技術】移動体通信基地局の通信設備のメンテナ
ンス等の為に使用する周波数カウンタや衛星通信器等の
電気機器分野に於いては、これらに基準発信源として用
いられる水晶発振器に対しては周波数安定度が高安定な
ものが要求されている為、一般に周波数安定度は1×1
-7〜1×10-10程度の恒温槽型水晶発振器を使用す
る。更に、近年これらの分野では小型、軽量で携帯可能
であることが求められており、恒温槽型水晶発振器に対
しても小型、軽量化が求められている。恒温槽型水晶発
振器は高安定な発振周波数を得る為に水晶振動子を熱容
量が大きな金属製のブロックに形成した凹所内に収容
し、更に、金属ブロックを所定の温度にて一定に加熱す
る構成としていた。図3は従来の恒温槽型水晶発振器の
一例を示す部分断面斜視図である。同図に示すようにア
ルミニウム等の金属から成る金属ブロック(100)に
は凹所が形成されており、該凹所の内部には水晶振動子
(101)が収納されている。この水晶振動子(10
1)のリード端子は発振回路が構成された基板(10
2)と半田付け等により接続している。また、金属ブロ
ック(100)の外周面には、該金属ブロック(10
0)を加熱する為のヒータ線(103)を巻き付けると
共に、このヒータ線(103)の通電電力を制御する為
のトランジスタ等の半導体素子(104)が密着固定さ
れている。これにより半導体素子(104)を補助熱源
として利用することが出来ると共に、ヒータ線(10
3)の加熱により半導体素子(104)を一定温度で加
熱することで、半導体素子(104)の特性を安定なも
のにしている。更に、(105)は金属ブロック(10
0)内部の温度を検知する為のサーミスタ等の温度セン
サであり、(106)は前記温度センサ(105)から
の温度情報に基づき、前記半導体素子(104)と共に
加熱温度を制御する為の温度制御回路を構成した基板で
ある。(107)はアルミニウム等から成る金属容器で
あり、該金属容器(107)内の隙間には断熱材(10
8)が充填されている。この様に構成された恒温槽型水
晶発振器は温度制御回路(106)の制御に基づきヒー
タ線(103)を発熱させ金属ブロック(100)及
び、水晶振動子(101)を特定の一定温度に加熱す
る。これにより恒温槽型水晶発振器は高安定な周波数信
号を出力することが可能となる。
2. Description of the Related Art In the field of electric equipment such as a frequency counter used for maintenance of communication equipment of a mobile communication base station, a satellite communication device, etc., a crystal oscillator used as a reference transmission source for these is used. Is required to have high frequency stability, so that the frequency stability is generally 1 × 1
A constant temperature oven crystal oscillator of about 0 -7 to 1 × 10 -10 is used. In recent years, in these fields, there has been a demand for small size, light weight, and portability, and there has been a demand for a thermostatic oven crystal oscillator to be small and light. A constant temperature oven crystal oscillator is configured to house a crystal oscillator in a recess formed in a metal block with a large heat capacity in order to obtain a high stable oscillation frequency, and to further heat the metal block at a predetermined temperature. And had FIG. 3 is a partial sectional perspective view showing an example of a conventional oven controlled crystal oscillator. As shown in the figure, a recess is formed in a metal block (100) made of a metal such as aluminum, and a quartz oscillator (101) is housed in the recess. This crystal oscillator (10
The lead terminal of 1) is connected to the substrate (10) on which the oscillation circuit is formed.
2) is connected by soldering or the like. Also, on the outer peripheral surface of the metal block (100), the metal block (10
A heater wire (103) for heating the heater wire (0) is wound, and a semiconductor element (104) such as a transistor for controlling the power supplied to the heater wire (103) is tightly fixed. Thereby, the semiconductor element (104) can be used as an auxiliary heat source, and the heater wire (10) can be used.
By heating the semiconductor element (104) at a constant temperature by the heating of (3), the characteristics of the semiconductor element (104) are stabilized. Furthermore, (105) is a metal block (10
0) a temperature sensor such as a thermistor for detecting an internal temperature; and (106) a temperature for controlling a heating temperature together with the semiconductor element (104) based on temperature information from the temperature sensor (105). It is a substrate on which a control circuit is configured. (107) is a metal container made of aluminum or the like, and a gap between the metal container (107) is provided with a heat insulating material (10).
8) is filled. The oven controlled crystal oscillator configured as described above causes the heater wire (103) to generate heat under the control of the temperature control circuit (106) to heat the metal block (100) and the crystal oscillator (101) to a specific constant temperature. I do. Thus, the oven-controlled crystal oscillator can output a highly stable frequency signal.

【0003】[0003]

【本発明が解決しようとする課題】しかしながら、図3
に示すような水晶発振器は、水晶振動子(101)を一
定の温度に保持するべく所定の熱容量を有する金属ブロ
ック(100)を使用することが必要となっていた為、
発振器がコストアップすると共に、形状が大型化すると
いう問題があった。また、水晶振動子(101)と接続
されるリード端子及び、これに接続される基板(10
2)に水晶振動子の熱が放熱される為、外気温の変動に
伴い水晶振動子の温度が急変し発振周波数が不安定とな
る周波数安定度の問題もあった。更に、電源が投入され
た後、ヒータ(103)は加熱を始めるが、ヒータ(1
03)からの熱は金属ブロック(100)から水晶振動
子の金属キャップを介し、水晶素板へと長い熱伝達経路
を経て伝達される為、水晶振動子の温度が安定するまで
に長時間を必要とし、これにより電源電圧投入時から発
振周波数が安定するまでの立ち上がり時間が長時間とな
る問題も起きていた。本発明は上記の問題を解決する為
になされたものであり、低価格、小型化が容易に行え、
更に、起動特性及び、立ち上がり時間特性に優れた水晶
発振器を提供することにある。
[Problems to be solved by the present invention] However, FIG.
Since it is necessary to use a metal block (100) having a predetermined heat capacity in order to maintain the crystal oscillator (101) at a constant temperature,
There has been a problem that the cost of the oscillator increases and the size of the oscillator increases. Also, the lead terminals connected to the crystal oscillator (101) and the substrate (10
Since the heat of the crystal oscillator is radiated in 2), there is also a problem of frequency stability in which the temperature of the crystal oscillator changes suddenly due to the fluctuation of the outside air temperature and the oscillation frequency becomes unstable. Further, after the power is turned on, the heater (103) starts heating.
03) is transmitted from the metal block (100) to the quartz crystal plate via the metal cap of the crystal unit via a long heat transfer path, so it takes a long time for the temperature of the crystal unit to stabilize. This causes a problem that the rise time from turning on the power supply voltage to stabilizing the oscillation frequency becomes long. The present invention has been made in order to solve the above-mentioned problems, and can be easily reduced in cost and size.
Another object of the present invention is to provide a crystal oscillator having excellent start-up characteristics and rise time characteristics.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する為に
本発明に係わる請求項1記載の発明は 発振回路と複数
の表面実装型加熱ヒータと該加熱ヒータの加熱温度を制
御する為の温度制御回路とを基板上に配置し、圧電振動
子と発振回路及び温度制御回路とを同時に加熱するべ
く、前記圧電振動子のケースと圧電振動子のリード端子
部をそれぞれ別個の加熱ヒータにより同時に加熱するこ
とを特徴とする。請求項2記載の発明は請求項1記載の
発明に加え前記圧電振動子の熱容量の違いに応じて発振
器発振周波数が安定するよう個々のヒータへの供給電力
の比率を設定したことを特徴とする。
According to the present invention, there is provided an oscillator circuit, a plurality of surface-mount heaters, and a temperature for controlling a heating temperature of the heater. A control circuit is disposed on a substrate, and a case of the piezoelectric vibrator and a lead terminal of the piezoelectric vibrator are simultaneously heated by separate heaters in order to simultaneously heat the piezoelectric vibrator, the oscillation circuit, and the temperature control circuit. It is characterized by doing. According to a second aspect of the present invention, in addition to the first aspect, a ratio of electric power supplied to each heater is set such that an oscillator oscillation frequency is stabilized according to a difference in heat capacity of the piezoelectric vibrator. .

【0005】[0005]

【本発明の実施の形態】以下、図示した実施例に基づい
て本発明を詳細に説明する。図1は本発明の実施例を示
す水晶発振器の主要部の構造を示すものであり、同図
(a)は側面図であり、同図(b)は上面図である。同
図に示すプリント基板(1)の下面には発振回路(2)
と温度制御回路(3)とを構成し、前記プリント基板
(1)にの上面には6個の表面実装型小型ヒータ(4、
4'、5、5'、6、6')を互いに間隔を離して配置す
る。小型ヒータ(4、4'、5、5')はいずれも前記振
動子(10)の金属キャップ(9)と基板(1)との間
に密着固定されており、小型ヒータ(6、6')は振動
子(10)のリード端子(11、11')と前記プリン
ト基板(1)との間に金属片(8)を介して密着固定さ
れている。前記6個の小型ヒータ(4、4'、5、5'、
6、6')は前記温度制御回路(3)に電気的に接続し
ている。また、前記小型ヒータ(6、6')の間のプリ
ント基板(1)上に温度センサ(7)を配置し、該温度
センサ(7)は前記温度制御回路(3)に電気的に接続
している。更に、温度制御用のパワートランジスタ(1
2)はキャップ(9)と密着固定し、補助熱源としても
利用する。そして更に、必要に応じて前記プリント基板
(1)及び、これに実装される部品の周囲を断熱材(図
示していない)にて覆う、或いはパッケージに収納して
も良い。この様な構成の水晶発振器に付いてその動作を
説明する。水晶発振器に電源を投入すると発振回路は水
晶振動子の共振周波数に基づく周波数にて発振を開始す
る。一方、温度制御回路(3)は温度センサ(7)の検
知した温度と設定温度とを一致させるべく6個の前記小
型ヒータに電力を供給する。該小型ヒータ(4、4'、
5、5')は金属キャップ(9)を加熱し、該金属キャ
ップ(9)からの放射熱により水晶素板が暖められる。
前記小型ヒータ(6、6')は前記リード端子(11、
11')を加熱し、該リード端子(11、11')から直
接伝搬する熱により水晶素板を暖める。更に、6個の前
記小型ヒータはプリント基板(1)を加熱する一方、パ
ワートランジスタ(12)も水晶振動子(9)を暖め
る。図2は前記温度制御回路(3)の一例を示すもので
ある。その構成は抵抗素子R2とR3とは直列接続さ
れ、その接続の中心は差動オペアンプIC1のプラス側
入力と接続している。また、温度センサとするサーミス
タTH1と抵抗素子R1とは直列接続され、その接続の
中心は抵抗素子R4を介し前記差動オペアンプIC1の
マイナス側入力と接続している。前記抵抗素子R2と前
記サーミスタTH1のそれぞれの他の一方の端子は電源
素子IC2と接続しており、前記抵抗素子R1とR3と
のそれぞれの端子の他の一方は接地している。前記差動
オペアンプIC1の出力とマイナス側入力との間には帰
還抵抗R5が接続されている。前記トランジスタTR1
のコレクタと電源Vccの間には、直列接続されたヒー
タH1とヒータH2、ヒータH3とヒータH4、ヒータ
H5とヒータH6のそれぞれが接続されている。尚、前
記トランジスタTR1のコレクタと接地間及び、前記電
源素子IC2と設置間とに接続されているC1、C3は
バイパスコンデンサである。この様な図2に示す温度制
御回路(3)の動作に付いて以下に簡単に説明する。前
記差動オペアンプはプラス側入力とマイナス側入力との
電圧差に応じた電圧を出力する。前記電圧差は低温であ
るほどサーミスタTH1の抵抗値が高抵抗となる為、高
電圧となり、更に、これに伴い前記差動オペアンプの出
力電圧は高電圧となり、ヒータ(H1、H2、H3、H
4、H5、H6)のそれぞれを加熱する。尚、チエナー
ダイオードZD1は前記トランジスタTR1が動作する
最低電圧を決定する為のものである。このような水晶発
振器に於いて、これに使用する水晶振動子(10)の金
属キャップ(9)とリード端子部(11)とでは熱容量
及び、放熱量が異なる。即ち、水晶振動子(10)内部
の水晶素板が加熱される経路は、金属キャップ(9)を
加熱した場合、金属キャップ(9)からの輻射熱により
水晶素板を加熱する経路が主となり、リード端子部(1
1)を加熱した場合、リード端子部から水晶素板に直接
伝達される経路が主となる。その為、水晶振動子の熱容
量及び、放熱量の差を考慮し、小型ヒータ(4、4’、
5、5’、6、6’)のそれぞれの加熱量を個別に設定
することにより、加熱効率の向上と、外気温度の影響に
対し水晶振動子(10)の温度が変動し難いようにする
ことが可能である。尚、本実施例では水晶振動子(1
0)の金属キャップ(9)及び、リード端子部(11、
11’)と小型ヒータ(4、4’、5、5’、6、
6’)とを直接接触又は金属板(8)を介し密着固定さ
せると説明したが、熱伝導性に優れた接着剤等を用いて
接着固定してもよい。また、上記説明では小型ヒータを
6個使用したが、本発明はこれに限るものでなく、それ
以下または、それ以上の小型ヒータの数であっても振動
子及び、プリント基板を安定的に加熱するよう個々の小
型ヒータの加熱容量を設定することにより本実施例と同
等の動作が得られることは言うまでもない。更に、上記
本実施例の説明では温度センサ(7)としてサーミスタ
素子を用いたが、本発明はこれに限るものではなく、温
度センサとして半導体センサ等、他の半導体素子であっ
ても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. 1A and 1B show the structure of a main part of a crystal oscillator according to an embodiment of the present invention. FIG. 1A is a side view, and FIG. 1B is a top view. An oscillation circuit (2) is provided on the lower surface of the printed circuit board (1) shown in FIG.
And a temperature control circuit (3), and six small surface-mount type heaters (4,
4 ', 5, 5', 6, 6 ') are spaced apart from each other. Each of the small heaters (4, 4 ', 5, 5') is tightly fixed between the metal cap (9) of the vibrator (10) and the substrate (1). ) Are tightly fixed between the lead terminals (11, 11 ′) of the vibrator (10) and the printed board (1) via a metal piece (8). The six small heaters (4, 4 ', 5, 5',
6, 6 ') are electrically connected to the temperature control circuit (3). A temperature sensor (7) is arranged on the printed circuit board (1) between the small heaters (6, 6 '), and the temperature sensor (7) is electrically connected to the temperature control circuit (3). ing. Furthermore, a power transistor (1
2) is tightly fixed to the cap (9), and is also used as an auxiliary heat source. Further, if necessary, the periphery of the printed circuit board (1) and components mounted thereon may be covered with a heat insulating material (not shown), or may be stored in a package. The operation of the crystal oscillator having such a configuration will be described. When power is supplied to the crystal oscillator, the oscillation circuit starts oscillating at a frequency based on the resonance frequency of the crystal resonator. On the other hand, the temperature control circuit (3) supplies power to the six small heaters so that the temperature detected by the temperature sensor (7) matches the set temperature. The small heater (4, 4 ',
5, 5 ') heats the metal cap (9), and the quartz plate is warmed by radiant heat from the metal cap (9).
The small heater (6, 6 ′) is connected to the lead terminal (11,
11 ′) is heated, and the quartz crystal plate is heated by the heat directly transmitted from the lead terminals (11, 11 ′). Furthermore, the six miniature heaters heat the printed circuit board (1), while the power transistors (12) also heat the crystal resonator (9). FIG. 2 shows an example of the temperature control circuit (3). In this configuration, the resistance elements R2 and R3 are connected in series, and the center of the connection is connected to the positive input of the differential operational amplifier IC1. The thermistor TH1 serving as a temperature sensor and the resistor R1 are connected in series, and the center of the connection is connected to the minus input of the differential operational amplifier IC1 via the resistor R4. The other terminal of each of the resistance element R2 and the thermistor TH1 is connected to the power supply element IC2, and the other one of the terminals of the resistance elements R1 and R3 is grounded. A feedback resistor R5 is connected between the output of the differential operational amplifier IC1 and the negative input. The transistor TR1
Are connected in series between heater H1 and heater H2, heater H3 and heater H4, and heater H5 and heater H6, which are connected in series. Incidentally, C1 and C3 connected between the collector of the transistor TR1 and the ground and between the power supply element IC2 and the installation are bypass capacitors. The operation of the temperature control circuit (3) shown in FIG. 2 will be briefly described below. The differential operational amplifier outputs a voltage corresponding to a voltage difference between a positive input and a negative input. As the voltage difference becomes lower, the resistance value of the thermistor TH1 becomes higher as the temperature becomes lower, so that the voltage becomes higher. Further, the output voltage of the differential operational amplifier becomes higher and the heater (H1, H2, H3, H3) becomes higher.
4, H5, H6) are each heated. The zener diode ZD1 is for determining the minimum voltage at which the transistor TR1 operates. In such a crystal oscillator, the metal cap (9) of the crystal unit (10) used for the crystal oscillator and the lead terminal portion (11) have different heat capacities and heat radiation amounts. That is, when the metal cap (9) is heated, the main path for heating the crystal plate inside the crystal unit (10) is mainly the path for heating the crystal plate by radiant heat from the metal cap (9). Lead terminal (1
When 1) is heated, the main path is directly transmitted from the lead terminal portion to the quartz crystal plate. Therefore, taking into account the difference in heat capacity and heat dissipation of the crystal unit, a small heater (4, 4 ',
5, 5 ', 6, 6') are individually set, so that the heating efficiency is improved and the temperature of the crystal unit (10) is hardly fluctuated by the influence of the outside air temperature. It is possible. In this embodiment, the quartz oscillator (1
0) metal cap (9) and lead terminal portion (11,
11 ') and small heaters (4, 4', 5, 5 ', 6,
6 ') is described as being in direct contact with or tightly fixed via the metal plate (8), but may be bonded and fixed using an adhesive or the like having excellent thermal conductivity. In the above description, six small heaters are used, but the present invention is not limited to this, and even if the number of small heaters is smaller or larger, the vibrator and the printed board are stably heated. Needless to say, by setting the heating capacities of the individual small heaters so as to perform the same operations as in the present embodiment. Furthermore, in the description of the present embodiment, a thermistor element is used as the temperature sensor (7). However, the present invention is not limited to this, and another semiconductor element such as a semiconductor sensor may be used as the temperature sensor.

【0006】[0006]

【本発明の効果】以上説明したように前記請求項1記載
の発明は、振動子の加熱を金属製等の恒温槽を使用せず
面実装型のヒータにより直接行う為、小型、且つ、低コ
スト化が容易に行える効果を奏する。また、金属ブロッ
クを用いず、更に、水晶素板に直接熱が伝達されるよう
リード端子部に小型ヒータを取り付け加熱する構造とし
ている為、加熱容積が小さくなり、発振器の低消費電流
化を可能とすると共に、電源投入時から周波数が安定す
るまでの立ち上がり時間が短時間となる効果をも奏す
る。請求項2記載の発明は、前記請求項1記載の発明の
効果に加え、水晶振動子を個別のヒータでバランス良
く、且つ、直接に加熱し、更に、圧電素板のねつが直接
伝達されるリード端子部にもヒータを取り付け加熱する
為、温度変化に対し発振周波数が短時間で安定する起動
特性に優れた発振器が構成できる効果を奏する。
As described above, according to the first aspect of the present invention, since the vibrator is directly heated by a surface-mount type heater without using a constant temperature bath made of metal or the like, the size and the size are low. The effect that cost reduction can be performed easily is produced. In addition, a small heater is attached to the lead terminal to heat the crystal plate without using a metal block so that the heat is directly transmitted to the crystal element plate. This reduces the heating volume and reduces the current consumption of the oscillator. At the same time, there is also an effect that the rise time from when the power is turned on until the frequency is stabilized is short. According to a second aspect of the present invention, in addition to the effects of the first aspect of the present invention, the quartz oscillator is directly heated in a well-balanced manner by an individual heater, and further, the screw of the piezoelectric element plate is directly transmitted. Since the heater is also attached to the lead terminal portion and heated, there is an effect that an oscillator having excellent start-up characteristics in which the oscillation frequency is stabilized in a short time with respect to a temperature change can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく水晶発振器の一実施例を示す図FIG. 1 is a diagram showing an embodiment of a crystal oscillator according to the present invention.

【図2】本発明に用いる温度制御回路の一実施例を示す
FIG. 2 is a diagram showing one embodiment of a temperature control circuit used in the present invention.

【図3】従来の水晶発振器を示す図FIG. 3 is a diagram showing a conventional crystal oscillator.

【符号の説明】[Explanation of symbols]

1・・・プリント基板、2・・・発振回路、3・・・温
度制御回路、4、4’、5、5’、6、6’・・・表面
実装型小型ヒータ、7・・・温度センサ、8・・・金属
片、9・・・金属キャップ、10・・・水晶振動子、1
1、11’・・・リード端子、12・・・パワートラン
ジスタ、100・・・金属ブロック、101・・・水晶
振動子、102・・・基板、103・・・ヒータ線、1
04・・・半導体素子、105・・・温度センサ、10
6・・・基板、107・・・金属容器、108・・・断
熱材
DESCRIPTION OF SYMBOLS 1 ... Printed circuit board, 2 ... Oscillation circuit, 3 ... Temperature control circuit, 4, 4 ', 5', 6, 6 '... Surface mount type small heater, 7 ... Temperature Sensor, 8: metal piece, 9: metal cap, 10: crystal oscillator, 1
1, 11 ': lead terminal, 12: power transistor, 100: metal block, 101: crystal oscillator, 102: substrate, 103: heater wire, 1
04: semiconductor element, 105: temperature sensor, 10
6 ... substrate, 107 ... metal container, 108 ... heat insulating material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧電振動子と、発振回路と、複数の表面実
装型加熱ヒータと、該加熱ヒータの加熱温度を制御する
為の温度制御回路とを基板上に配置し、圧電振動子と発
振回路及び温度制御回路とを同時に加熱するべく、前記
圧電振動子のケースと圧電振動子のリード端子部をそれ
ぞれ別個の加熱ヒータにより同時に加熱することを特徴
とする圧電発振器。
A piezoelectric vibrator, an oscillating circuit, a plurality of surface-mounted heaters, and a temperature control circuit for controlling a heating temperature of the heater are disposed on a substrate. A piezoelectric oscillator wherein the case of the piezoelectric vibrator and the lead terminal of the piezoelectric vibrator are simultaneously heated by separate heaters so as to simultaneously heat the circuit and the temperature control circuit.
【請求項2】前記圧電振動子の熱容量の違いに応じて発
振器発振周波数が安定するよう個々のヒータへの供給電
力の比率を設定したことを特徴とする前記請求項1記載
の圧電発振器。
2. The piezoelectric oscillator according to claim 1, wherein a ratio of power supplied to each heater is set so that an oscillation frequency of the oscillator is stabilized according to a difference in heat capacity of the piezoelectric vibrator.
JP2392098A 1998-01-20 1998-01-20 Piezoelectric oscillator Pending JPH11214929A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2392098A JPH11214929A (en) 1998-01-20 1998-01-20 Piezoelectric oscillator
DE69933615T DE69933615T2 (en) 1998-01-20 1999-01-18 PIEZO ELECTRIC OSCILLATOR
PCT/JP1999/000128 WO1999037018A1 (en) 1998-01-20 1999-01-18 Piezo-oscillator
CA002283963A CA2283963C (en) 1998-01-20 1999-01-18 Piezo-oscillator
US09/367,691 US6147565A (en) 1998-01-20 1999-01-18 Piezo-oscillator with heater and temperature control circuit
EP99900335A EP0969591B1 (en) 1998-01-20 1999-01-18 Piezo-oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2392098A JPH11214929A (en) 1998-01-20 1998-01-20 Piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JPH11214929A true JPH11214929A (en) 1999-08-06

Family

ID=12123958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2392098A Pending JPH11214929A (en) 1998-01-20 1998-01-20 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPH11214929A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259345A (en) * 2006-03-24 2007-10-04 Nippon Dempa Kogyo Co Ltd Constant temperature crystal oscillator
JP2009027495A (en) * 2007-07-20 2009-02-05 Nippon Dempa Kogyo Co Ltd Control circuit of thermostat in crystal oscillator with thermostat
US7649423B2 (en) 2006-08-29 2010-01-19 Nihon Dempa Kogyo Co., Ltd. Oven controlled crystal oscillator
JP2010213102A (en) * 2009-03-11 2010-09-24 Daishinku Corp Piezoelectric oscillator and ambient temperature measuring method for the same
KR101024366B1 (en) 2009-03-06 2011-03-23 주식회사 티앤에프 Thermostat Crystal Oscillator
JP2018050351A (en) * 2018-01-09 2018-03-29 日本電波工業株式会社 Temperature control circuit for crystal oscillator with thermostatic chamber
CN116938184A (en) * 2023-09-19 2023-10-24 广东昕海科技有限公司 Crystal oscillator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259345A (en) * 2006-03-24 2007-10-04 Nippon Dempa Kogyo Co Ltd Constant temperature crystal oscillator
US7649423B2 (en) 2006-08-29 2010-01-19 Nihon Dempa Kogyo Co., Ltd. Oven controlled crystal oscillator
JP2009027495A (en) * 2007-07-20 2009-02-05 Nippon Dempa Kogyo Co Ltd Control circuit of thermostat in crystal oscillator with thermostat
KR101024366B1 (en) 2009-03-06 2011-03-23 주식회사 티앤에프 Thermostat Crystal Oscillator
JP2010213102A (en) * 2009-03-11 2010-09-24 Daishinku Corp Piezoelectric oscillator and ambient temperature measuring method for the same
JP2018050351A (en) * 2018-01-09 2018-03-29 日本電波工業株式会社 Temperature control circuit for crystal oscillator with thermostatic chamber
CN116938184A (en) * 2023-09-19 2023-10-24 广东昕海科技有限公司 Crystal oscillator

Similar Documents

Publication Publication Date Title
EP0969591B1 (en) Piezo-oscillator
JP2579915B2 (en) Compact thermostat oscillator
EP1598931B1 (en) Constant temperature type crystal oscillator
EP2228903B1 (en) Oscillator device comprising a thermally-controlled piezoelectric resonator
US8089325B2 (en) Oven controlled multistage crystal oscillator
US7965146B2 (en) Constant-temperature type crystal oscillator
US8076983B2 (en) Constant-temperature type crystal oscillator
US8013683B2 (en) Constant-temperature type crystal oscillator
US6166608A (en) Thermo-electric cooled oven controlled crystal oscillator
US20100225405A1 (en) Oscillator device comprising a thermally-controlled piezoelectric resonator
JP5218372B2 (en) Piezoelectric oscillator and frequency control method of piezoelectric oscillator
JPH11214929A (en) Piezoelectric oscillator
JP4499478B2 (en) Constant temperature crystal oscillator using crystal resonator for surface mounting
JP2009284372A (en) Constant temperature structure of crystal unit
JP4803758B2 (en) Oscillator
JP2000013140A (en) Piezoelectric oscillator
JP2000101346A (en) Structure for highly stable piezoelectric oscillator
JP5205822B2 (en) Piezoelectric oscillator
JP2001127579A (en) Piezoelectric vibration and piezoelectric oscillator using the same
JP2010187060A (en) Constant temperature piezoelectric oscillator
JPH0750523A (en) Constant temperature controlled crystal oscillator
JPH07135421A (en) Crystal oscillator
JP2000077940A (en) Piezo-oscillator
JPS6244570Y2 (en)
JP2000101350A (en) Piezoelectric oscillator