[go: up one dir, main page]

JPH11199980A - High strength extra fine steel wire - Google Patents

High strength extra fine steel wire

Info

Publication number
JPH11199980A
JPH11199980A JP10021584A JP2158498A JPH11199980A JP H11199980 A JPH11199980 A JP H11199980A JP 10021584 A JP10021584 A JP 10021584A JP 2158498 A JP2158498 A JP 2158498A JP H11199980 A JPH11199980 A JP H11199980A
Authority
JP
Japan
Prior art keywords
steel wire
strength
wire
ferrite
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10021584A
Other languages
Japanese (ja)
Other versions
JP3814070B2 (en
Inventor
Toshizo Tarui
敏三 樽井
Hitoshi Tashiro
均 田代
Naoki Maruyama
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02158498A priority Critical patent/JP3814070B2/en
Publication of JPH11199980A publication Critical patent/JPH11199980A/en
Application granted granted Critical
Publication of JP3814070B2 publication Critical patent/JP3814070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tyre Moulding (AREA)

Abstract

(57)【要約】 【課題】 引張強さが4200MPa以上で延性の優れ
た高強度極細鋼線を実現する。 【解決手段】 C:0.85〜1.1%、Si:0.0
5〜2.0%、Mn:0.2〜2.0%を含有するか、
あるいは更にCr:0.05〜1.0%、Ni:0.1
〜1.0%、V:0.01〜0.5%、Nb:0.00
1〜0.1%の1種または2種以上を含むとともに残部
はFe及び不可避的不純物からなる鋼線において、伸線
加工されたパーライト組織を有し、かつフェライト中の
C濃度が1.5原子%以下であることを特徴とする高強
度極細鋼線。
(57) [Problem] To provide a high-strength ultrafine steel wire having a tensile strength of 4200 MPa or more and excellent ductility. SOLUTION: C: 0.85 to 1.1%, Si: 0.0
Contains 5 to 2.0%, Mn: 0.2 to 2.0%,
Alternatively, Cr: 0.05 to 1.0%, Ni: 0.1
-1.0%, V: 0.01-0.5%, Nb: 0.00
A steel wire containing 1 to 0.1% of one or more kinds and the balance being Fe and unavoidable impurities has a drawn pearlite structure and a C concentration of 1.5% in ferrite. High-strength ultrafine steel wire characterized by being at most atomic%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スチールタイヤコ
ード、スチールベルトコード等の素線として使用され、
延性に優れた引張強さが4200MPa以上の高強度極
細鋼線に関するものである。
TECHNICAL FIELD The present invention is used as a strand for steel tire cords, steel belt cords and the like.
The present invention relates to a high-strength ultrafine steel wire having excellent ductility and a tensile strength of 4200 MPa or more.

【0002】[0002]

【従来の技術】軽量化などのために極細鋼線に対する高
強度化の要求は一段と高まっている。従来、自動車用タ
イヤ、産業用各種ベルト類などの補強用に使用されてい
る極細鋼線は、高炭素鋼の熱間圧延線材から中間伸線、
パテンティング処理を繰り返し所定の線径にした後、最
終パテンティング処理を行い、伸線加工性およびゴムと
の接着性を向上させるめっき処理を施し所定の線径まで
湿式伸線加工することにより製造される。例えばスチー
ルタイヤコードは、上記のように製造される素線を最終
的にダブルツイスタなどの撚り線機を用いて撚り線加工
することによって製造される。
2. Description of the Related Art The demand for higher strength of ultrafine steel wires for weight reduction and the like is increasing more and more. Conventionally, ultra-fine steel wires used for reinforcement of automobile tires, industrial belts, etc. are made from hot-rolled high-carbon steel wire,
After the patenting process is repeatedly performed to a predetermined wire diameter, a final patenting process is performed, a plating process is performed to improve the wire drawing processability and the adhesion to rubber, and wet drawing is performed to a predetermined wire diameter. Is done. For example, a steel tire cord is manufactured by finally twisting a strand manufactured as described above using a twisting machine such as a double twister.

【0003】上記のような製造工程において、極細鋼線
の高強度化を図るためには、最終パテンティング処理後
の素線強度を上げるか、最終の伸線加工歪みを増加させ
る必要がある。ところが、最終パテンティング処理後の
素線強度ないしは伸線加工歪を増加させて極細鋼線の高
強度化を図っても、強度が4200MPaを越えると延
性の低下が著しく、実用化することが極めて困難とな
る。
In the above-described manufacturing process, in order to increase the strength of the ultrafine steel wire, it is necessary to increase the strength of the wire after the final patenting process or to increase the final drawing strain. However, even if the strength of the ultrafine steel wire is increased by increasing the wire strength or drawing strain after the final patenting treatment, if the strength exceeds 4200 MPa, the ductility is significantly reduced, and it is extremely difficult to put it to practical use. It will be difficult.

【0004】これに対して、延性低下の少ない高強度化
手段の従来の知見としては、例えば特開昭60−204
865号、特開昭63−24046号、特公平3−23
674号の各公報にはそれぞれC、Si、Mn、Cr等
の化学成分を規制した高強度で高延性の極細線用高炭素
線材が提案されている。しかし、これらの公報で開示さ
れている実施例からもわかるように鋼線の引張強さは最
大でも3500〜3600MPaであり、極細鋼線の高
強度化には限界があった。また、特開平6−14589
5号公報では化学成分と非金属介在物組成および初析セ
メンタイトの面積分率を制御した高強度高靭性鋼線材が
提案されている。更に、特開平7−113119号公報
では鋼の化学成分と最終ダイスでの減面率を制御する高
強度高靭延性極細鋼線の製造方法が開示されている。し
かし、いずれの技術でも引張強さが4200MPa以上
で高延性を有する極細鋼線を実現することは困難であっ
た。
[0004] On the other hand, as a conventional finding of means for increasing the strength with less decrease in ductility, for example, Japanese Patent Application Laid-Open No. 60-204 discloses
865, JP-A-63-24046, JP-B-3-23
No. 674 proposes a high-strength, high-ductility, high-carbon wire rod for ultrafine wires in which chemical components such as C, Si, Mn, and Cr are regulated. However, as can be seen from the examples disclosed in these publications, the tensile strength of the steel wire is 3500 to 3600 MPa at the maximum, and there is a limit in increasing the strength of the ultrafine steel wire. In addition, Japanese Patent Application Laid-Open No. 6-14589
No. 5 proposes a high-strength and high-toughness steel wire in which the chemical composition, the composition of nonmetallic inclusions, and the area fraction of proeutectoid cementite are controlled. Furthermore, Japanese Patent Application Laid-Open No. Hei 7-113119 discloses a method for manufacturing a high-strength, high-toughness ductile ultrafine steel wire that controls the chemical composition of steel and the reduction in area in the final die. However, it was difficult to realize an ultrafine steel wire having a tensile strength of 4200 MPa or more and a high ductility by any of the techniques.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の如き実
状に鑑みなされたものであって、線径が0.05〜0.
4mmの極細鋼線を高強度化する際に問題となる延性の
低下を防止し、強度が4200MPa以上でで且つ延性
に優れた高強度極細鋼線を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has a wire diameter of 0.05 to 0.5 mm.
An object of the present invention is to provide a high-strength ultra-fine steel wire having a strength of 4200 MPa or more and having excellent ductility while preventing a decrease in ductility which is a problem when increasing the strength of a 4 mm ultra-fine steel wire.

【0006】[0006]

【課題を解決するための手段】本発明者らは高強度鋼線
の延性の支配要因について種々解析した結果、強加工さ
れたパーライト組織におけるフェライト中のC濃度が鋼
線の延性に著しい影響を及ぼすことを見い出した。即
ち、伸線加工歪みが増加するとセメンタイトが分解しフ
ェライト中のC濃度が増加し、高強度鋼線の延性が低下
するという全く新たな事実を見い出した。
Means for Solving the Problems The inventors of the present invention have analyzed the controlling factors of the ductility of a high-strength steel wire in various ways. Have been found to have an effect. That is, the inventors have found a completely new fact that when the drawing strain increases, cementite is decomposed, the C concentration in ferrite increases, and the ductility of the high-strength steel wire decreases.

【0007】以上の新知見に基づき、強加工したパーラ
イト組織のフェライト中のC濃度を制御すれば、高強度
極細鋼線の延性低下を防止することが出来るとの結論に
達し本発明をなしたものである。
Based on the above-mentioned new findings, the present inventors have concluded that it is possible to prevent a decrease in ductility of a high-strength ultrafine steel wire by controlling the C concentration in the ferrite of the pearlite structure which has been strongly worked, and have made the present invention. Things.

【0008】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、重量%で、 C:0.85〜1.1% Si:0.05〜2.0% Mn:0.2〜2.0% を含有するか、あるいは更に Cr:0.05〜1.0% Ni:0.1〜1.0% V:0.01〜0.5% Nb:0.001〜0.1% の1種または2種以上を含むとともに残部はFe及び不
可避的不純物からなる鋼線において、伸線加工されたパ
ーライト組織を有し、かつフェライト中のC濃度が1.
5原子%以下であることを特徴とする高強度極細鋼線に
ある。
[0008] The present invention has been made based on the above findings, and the gist of the present invention is that in weight%, C: 0.85 to 1.1% Si: 0.05 to 2.0% Mn: 0.2 to 2.0%, or Cr: 0.05 to 1.0% Ni: 0.1 to 1.0% V: 0.01 to 0.5% Nb: 0 The steel wire contains 0.001 to 0.1% of one or more kinds and the balance is Fe and unavoidable impurities. The steel wire has a drawn pearlite structure, and the C concentration in ferrite is 1.0%.
A high-strength ultrafine steel wire characterized by being at most 5 atomic%.

【0009】[0009]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0010】はじめに、本発明の成分限定理由について
述べる。
First, the reasons for limiting the components of the present invention will be described.

【0011】C:Cはパテンティング処理後の引張強さ
の増加および伸線加工硬化率を高める効果があり、より
少ない伸線加工歪で極細鋼線の引張強さを高めることが
できる。Cが0.85%未満では本発明で目的とする4
200MPa以上の高強度の極細鋼線を製造することが
困難となり、一方、1.1%を越えるとパテンティング
処理時に初析セメンタイトがオーステナイト粒界に析出
して伸線加工性が劣化し伸線加工工程あるいは撚り線加
工工程で断線が頻発するため、Cを0.85〜1.1%
の範囲に限定した。
C: C has the effect of increasing the tensile strength after the patenting treatment and increasing the hardening rate of the wire drawing work, and can increase the tensile strength of the ultrafine steel wire with less drawing strain. If C is less than 0.85%, 4
It becomes difficult to produce a high-strength ultrafine steel wire of 200 MPa or more. On the other hand, if it exceeds 1.1%, proeutectoid cementite precipitates at austenite grain boundaries during the patenting treatment, and wire drawing workability is deteriorated and wire drawing becomes poor C is 0.85 to 1.1% because disconnection frequently occurs in the processing step or the stranded wire processing step.
Limited to the range.

【0012】Si:Siはパーライト中のフェライトを
強化させるためと鋼の脱酸のために有効な元素である。
0.05%未満では上記の効果が期待できず、一方2.
0%を越えると伸線加工性に対して有害な硬質のSiO
2系介在物が発生しやすくなるため、0.05〜2.0
%の範囲に制限した。
Si: Si is an effective element for strengthening ferrite in pearlite and for deoxidizing steel.
If it is less than 0.05%, the above effect cannot be expected, while 2.
If it exceeds 0%, hard SiO which is harmful to drawability
For 2 inclusions are likely to occur, 0.05-2.0
% Range.

【0013】Mn:Mnは脱酸、脱硫のために必要であ
るばかりでなく、鋼の焼入性を向上させパテンティング
処理後の引張強さを高めるために有効な元素であるが、
0.2%未満では上記の効果が得られず、一方2.0%
を越えると上記の効果が飽和しさらにパテンティング処
理時のパーライト変態を完了させるための処理時間が長
くなりすぎて生産性が低下するため、0.2〜2.0%
の範囲に限定した。
Mn: Mn is an element not only required for deoxidation and desulfurization but also effective for improving the hardenability of steel and increasing the tensile strength after patenting.
If it is less than 0.2%, the above effects cannot be obtained.
Exceeds 0.2%, the above effect is saturated, and the processing time for completing the pearlite transformation during the patenting process becomes too long, and the productivity is reduced.
Limited to the range.

【0014】本発明による高強度極細鋼線においては、
上記の元素に加えて、更にCr:0.05〜2.0%、
Ni:0.1〜1.0%、V:0.01〜0.5%、N
b:0.001〜0.1%の範囲で1種または2種以上
を含有することができる。
In the high-strength ultrafine steel wire according to the present invention,
In addition to the above elements, Cr: 0.05 to 2.0%,
Ni: 0.1 to 1.0%, V: 0.01 to 0.5%, N
b: One or more kinds can be contained in the range of 0.001 to 0.1%.

【0015】Cr:Crはパーライトのセメンタイト間
隔を微細化しパテンティング処理後の引張強さを高める
とともに特に伸線加工硬化率を向上させる有効な元素で
あるが、0.05%未満では前記作用の効果が少なく、
一方2.0%を越えるとパテンティング処理時のパーラ
イト変態終了時間が長くなり生産性が低下するため、
0.05〜2.0%の範囲に限定した。
Cr: Cr is an effective element for refining the cementite spacing of pearlite, increasing the tensile strength after the patenting treatment, and particularly improving the drawing hardening rate. Less effective,
On the other hand, if it exceeds 2.0%, the pearlite transformation end time during the patenting process becomes longer, and the productivity decreases.
It was limited to the range of 0.05 to 2.0%.

【0016】Ni:Niはパテンティング処理時に変態
生成するパーライトを伸線加工性の良好なものにする作
用を有するが、0.1%未満では上記の効果が得られ
ず、1.0%を越えても添加量に見合うだけの効果が少
ないためこれを上限とした。
Ni: Ni has the effect of improving the drawability of pearlite generated during transformation during patenting. However, if it is less than 0.1%, the above effect cannot be obtained. Even if it exceeds, there is little effect corresponding to the added amount, so this is set as the upper limit.

【0017】V:Vはパーライトのセメンタイト間隔を
微細化しパテンティング処理後の引張強さを高める効果
があるが、この効果は0.01%未満では不十分であ
り、一方0.5%を越えると効果が飽和するため0.0
1〜0.5%の範囲に制限した。
V: V has the effect of refining the cementite spacing of pearlite and increasing the tensile strength after patenting, but this effect is insufficient at less than 0.01%, while exceeding 0.5%. And the effect saturates to 0.0
Restricted to the range of 1-0.5%.

【0018】Nb:NbはVと同様にパーライトのセメ
ンタイト間隔を微細化しパテンティング処理後の引張強
さを高める効果があるが、0.001%未満では不十分
であり、一方0.1%を越えて添加しても効果が飽和す
るため0.001〜0.1%の範囲に制限した。
Nb: Like V, Nb has the effect of refining the cementite spacing of pearlite and increasing the tensile strength after patenting, but less than 0.001% is insufficient, while 0.1% Even if added in excess, the effect saturates, so the content is limited to the range of 0.001 to 0.1%.

【0019】他の元素は特に限定しないが、不純物とし
て含有される元素としてP:0.015%以下、S:
0.015%以下、N:0.007%以下が望ましい範
囲である。また、Alは0.005%を越えると鋼中の
介在物の中で最も硬質なAl23系介在物が生成しやす
くなり、伸線加工あるいは撚り線加工の際の断線原因と
なるため、0.005%以下が好ましい範囲である。
Other elements are not particularly limited, but P: 0.015% or less, S:
Desirable ranges are 0.015% or less and N: 0.007% or less. On the other hand, if the content of Al exceeds 0.005%, the hardest Al 2 O 3 -based inclusion among the inclusions in the steel is likely to be generated, which causes a disconnection in wire drawing or stranded wire processing. , 0.005% or less is a preferable range.

【0020】次に、本発明で目的とする高強度極細鋼線
の延性低下を防止する上で極めて重要となるパーライト
組織におけるフェライト中のC濃度の限定理由について
述べる。
Next, the reason for limiting the C concentration in the ferrite in the pearlite structure, which is extremely important in preventing the decrease in ductility of the high-strength ultrafine steel wire intended in the present invention, will be described.

【0021】本発明では鋼線の延性をねじり試験を用い
て破断までのねじり回数で評価している。図1は伸線加
工真歪みで4以上の強加工を行った線径が0.15mm
の極細鋼線のフェライト中のC濃度とねじり回数の関係
について解析した一例である。極細鋼線の引張強さは、
鋼の化学成分と伸線加工歪みを変化させることによっ
て、約4500MPaに調整したものである。同図から
明らかなように、強加工を受けたパーライト組織におけ
るフェライト中のC濃度が増加するとねじり回数は低下
する。特に、フェライト中のC濃度が1.5原子%を越
えるとねじり回数が著しく低下し、延性が劣化すること
がわかる。極細鋼線の線径、強度を種々に変化させた場
合についても全く同様の結果が得られることから、フェ
ライト中のC濃度を1.5原子%以下に制限するもので
ある。極細鋼線の高強度化と高延性化を両立する観点か
ら、フェライト中のC濃度は1.2原子%以下が好まし
い範囲である。
In the present invention, the ductility of a steel wire is evaluated by the number of twists up to breaking using a torsion test. FIG. 1 shows that the wire diameter is 0.15 mm obtained by performing a strong processing of 4 or more with a true strain of wire drawing.
1 is an example in which the relationship between the C concentration in ferrite and the number of times of torsion of an ultrafine steel wire is analyzed. The tensile strength of extra fine steel wire is
The steel composition was adjusted to about 4500 MPa by changing the chemical composition and strain of wire drawing. As is clear from the figure, the number of twists decreases as the C concentration in the ferrite in the pearlite structure that has undergone heavy working increases. In particular, when the C concentration in the ferrite exceeds 1.5 atomic%, the number of twists is significantly reduced, and the ductility is deteriorated. Since exactly the same results can be obtained when the wire diameter and strength of the ultrafine steel wire are variously changed, the C concentration in the ferrite is limited to 1.5 atomic% or less. From the viewpoint of achieving both high strength and high ductility of the ultrafine steel wire, the C concentration in the ferrite is preferably 1.2 atomic% or less.

【0022】ここで、強加工された極細鋼線のパーライ
ト組織におけるフェライト中のC濃度を1.5原子%以
下に制御するために、最終パテンティング処理以降の製
造工程で下記のA〜Gの製造方法を採用することがで
き、それぞれ単独ではなく、組み合わせることが重要で
ある。下記A〜Gの製造方法の中でも、A、B、C、
D、E、Gが特に重要な技術である。このため、C濃度
が1.5原子%以下の極細鋼線を製造するためには、
A、B、C、D、E、F、Gの内、2種類以上、好まし
くは3種類以上の方法を組み合わせることが良い。
Here, in order to control the C concentration in ferrite in the pearlite structure of the strongly processed ultrafine steel wire to 1.5 atomic% or less, the following A to G in the manufacturing process after the final patenting treatment. Manufacturing methods can be adopted, and it is important to combine them not alone. Among the following production methods A to G, A, B, C,
D, E, and G are particularly important technologies. For this reason, in order to produce an ultrafine steel wire having a C concentration of 1.5 atomic% or less,
Of the methods A, B, C, D, E, F and G, two or more, preferably three or more methods may be combined.

【0023】A:鋼の化学成分と最終パテンティング処
理条件を最適化することにより、パテンティング材強度
を1450MPa以上にする。なお、パテンティング処
理は、ベイナイトが生成しない温度で行うことが重要で
ある。
A: The strength of the patenting material is increased to 1450 MPa or more by optimizing the chemical composition of the steel and the final patenting treatment conditions. It is important that the patenting process is performed at a temperature at which bainite is not generated.

【0024】B:アプローチ角度が8〜12°、ベアリ
ング長さが0.2〜0.5D(D:ダイス径)であるダ
イスを用いて伸線加工を行う。
B: Wire drawing is performed using a die having an approach angle of 8 to 12 ° and a bearing length of 0.2 to 0.5 D (D: die diameter).

【0025】C:従来の超硬ダイスではなく、ダイヤモ
ンドダイスを使用する。
C: A diamond die is used instead of a conventional carbide die.

【0026】D:伸線による加工発熱を抑える。好まし
くは、伸線材の温度を50℃以下に制御して伸線加工を
行う。
D: Suppression of heat generation due to wire drawing. Preferably, the wire drawing is performed while controlling the temperature of the drawn material to 50 ° C. or less.

【0027】E:潤滑能力の高い潤滑剤を使用する。好
ましくは、ダイスと伸線材の摩擦係数が0.1以下の潤
滑剤を使用する。
E: Use a lubricant having a high lubricating ability. Preferably, a lubricant having a friction coefficient of 0.1 or less between the die and the drawn wire is used.

【0028】F:伸線加工真歪みで1までの伸線加工の
初期は、1ダイス当たりの減面率を20%以上にする。
F: Wire drawing In the initial stage of wire drawing up to 1 with true strain, the area reduction rate per die is set to 20% or more.

【0029】G:伸線加工後、200〜500℃の温度
に加熱する。
G: After drawing, heat to a temperature of 200 to 500 ° C.

【0030】フェライト中のC濃度は、アトムプローブ
電界イオン顕微鏡を用いれば、簡単に且つ正確に測定す
ることができる。本発明において、フェライト中のC濃
度Xは、アトムプローブ電界イオン顕微鏡による分析か
ら、全検出イオン数をY(total)、Cの検出イオ
ン数をY(carbon)とした時に、下式により求め
る。
The C concentration in ferrite can be easily and accurately measured by using an atom probe field ion microscope. In the present invention, the C concentration X in the ferrite is determined by the following equation when the total number of detected ions is Y (total) and the number of detected ions of C is Y (carbon) from analysis by an atom probe field ion microscope.

【0031】 X=[Y(carbon)/Y(total)]×100 (原子%)X = [Y (carbon) / Y (total)] × 100 (atomic%)

【0032】[0032]

【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

【0033】表1に供試材の化学組成を示す。これらの
供試材を用いて線径が0.12〜0.35mmのブラス
めっきを有する極細鋼線を試作した。表2に極細鋼線の
製造条件および引張強さ、フェライト中のC濃度、ねじ
り回数を示す。同表において製造条件の記号であるB〜
Gは前述した内容である。ねじり試験は、試験片の両端
を線径の100倍のつかみの間隔で固定し、破断するま
でのねじり回数を測定した。
Table 1 shows the chemical compositions of the test materials. Using these test materials, ultrafine steel wires having a brass plating with a wire diameter of 0.12 to 0.35 mm were prototyped. Table 2 shows the manufacturing conditions and tensile strength of ultrafine steel wire, the C concentration in ferrite, and the number of twists. In the table, symbols B to
G is the content described above. In the torsion test, both ends of the test piece were fixed at an interval of a grip 100 times the wire diameter, and the number of torsion until breaking was measured.

【0034】表2において、試験No.1〜8が本発明
例であり、その他は比較例である。同表に見られるよう
に、本発明例はいずれも引張強さが4200MPa以上
であるとともにフェライト中のC濃度が1.5原子%以
下に押さえられている。この結果、高強度であるにもか
かわらず、ねじり回数が高く高延性の極細鋼線が実現で
きている。
In Table 2, test no. 1 to 8 are examples of the present invention, and others are comparative examples. As can be seen from the table, all of the examples of the present invention have a tensile strength of 4200 MPa or more and a C concentration in the ferrite of 1.5 at% or less. As a result, despite the high strength, a very fine steel wire having a high number of twists and a high ductility has been realized.

【0035】これに対して比較例であるNo.9、1
6、17は、いずれも鋼の化学成分が不適切な例であ
る。即ち、No.9はC量が0.72%と低いために4
200MPa以上の高強度化が達成できていない。ま
た、No.16はSi含有量が高すぎるためにSiO2
系介在物が多くなり、伸線途中で断線が頻発した例であ
る。更に、No.17はC含有量が高すぎるためにパテ
ンティング処理時に初析セメンタイトが析出した例であ
る。この結果、伸線加工性が劣化し、伸線加工時に断線
が頻発したものである。
On the other hand, the comparative example No. 9, 1
Nos. 6 and 17 are examples in which the chemical composition of steel is inappropriate. That is, No. 9 is 4 because C content is as low as 0.72%.
High strength of 200 MPa or more has not been achieved. In addition, No. No. 16 is SiO 2 because the Si content is too high.
This is an example in which the number of system inclusions increased and the disconnection frequently occurred during drawing. In addition, No. No. 17 is an example in which proeutectoid cementite was precipitated during the patenting treatment because the C content was too high. As a result, the wire drawing workability was deteriorated, and the wire was frequently broken during the wire drawing.

【0036】また、比較例である10〜15のいずれの
いずれの極細鋼線もフェライト中のC濃度が1.5原子
%を越えているため、本発明例に比べねじり回数が低下
しており延性劣化が著しい。
Further, in any of the ultrafine steel wires of Comparative Examples 10 to 15, the C concentration in the ferrite exceeds 1.5 atomic%, so that the number of twists is lower than that of the present invention. Significant ductility deterioration.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上の実施例からも明かなように、本発
明は引張強さが4200MPa以上の高強度極細鋼線の
延性低下の防止に対して、フェライト中のC濃度を制御
することが極めて有効であることを見出し、高延性の高
強度極細鋼線を実現してものであり、産業上の効果は極
めて顕著なものがある。
As is clear from the above examples, the present invention controls the concentration of C in ferrite in order to prevent a decrease in ductility of a high-strength ultrafine steel wire having a tensile strength of 4200 MPa or more. It is extremely effective and realizes a high-strength ultra-fine steel wire with high ductility, and the industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】極細鋼線のフェライト中のC濃度とねじり回数
の関係について解析した一例を示す図である。
FIG. 1 is a diagram showing an example of analyzing a relationship between a C concentration in ferrite of an ultrafine steel wire and the number of twists.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.85〜1.1% Si:0.05〜2.0% Mn:0.2〜2.0% 残部はFeおよび不可避的不純物からなる鋼線におい
て、伸線加工されたパーライト組織を有し、かつフェラ
イト中のC濃度が1.5原子%以下であることを特徴と
する高強度極細鋼線。
C .: 0.85 to 1.1% Si: 0.05 to 2.0% Mn: 0.2 to 2.0% by weight% Steel wire consisting of Fe and inevitable impurities 3. The high-strength ultrafine steel wire according to claim 1, which has a drawn pearlite structure and a C concentration in ferrite of 1.5 atomic% or less.
【請求項2】 更に、重量%で、 Cr:0.05〜2.0% Ni:0.1〜1.0% V:0.01〜0.5% Nb:0.001〜0.1% の1種または2種以上を含有することを特徴とする請求
項1記載の高強度極細鋼線。
2. Further, by weight%, Cr: 0.05 to 2.0% Ni: 0.1 to 1.0% V: 0.01 to 0.5% Nb: 0.001 to 0.1 The high-strength ultrafine steel wire according to claim 1, which contains one or more of the following.
JP02158498A 1998-01-20 1998-01-20 High-strength ultrafine steel wire and method for producing the same Expired - Fee Related JP3814070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02158498A JP3814070B2 (en) 1998-01-20 1998-01-20 High-strength ultrafine steel wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02158498A JP3814070B2 (en) 1998-01-20 1998-01-20 High-strength ultrafine steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11199980A true JPH11199980A (en) 1999-07-27
JP3814070B2 JP3814070B2 (en) 2006-08-23

Family

ID=12059096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02158498A Expired - Fee Related JP3814070B2 (en) 1998-01-20 1998-01-20 High-strength ultrafine steel wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP3814070B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096544A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Wire rod for high-strength high-carbon steel wire and its manufacturing method
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
JP2006249561A (en) * 2005-03-14 2006-09-21 Nippon Steel Corp High-strength ultrafine steel wire with excellent ductility
WO2010150450A1 (en) 2009-06-22 2010-12-29 新日本製鐵株式会社 High-strength ultra-fine steel wire and manufacturing method therefor
WO2011126073A1 (en) 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
JP2013231251A (en) * 2012-04-27 2013-11-14 Bridgestone Corp Method for producing metal wire, and metal wire
JP2019056162A (en) * 2017-09-22 2019-04-11 新日鐵住金株式会社 High-strength steel wire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
JP2003096544A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Wire rod for high-strength high-carbon steel wire and its manufacturing method
JP4527913B2 (en) * 2001-09-20 2010-08-18 新日本製鐵株式会社 High-strength high-carbon steel wire and method for producing the same
JP2006249561A (en) * 2005-03-14 2006-09-21 Nippon Steel Corp High-strength ultrafine steel wire with excellent ductility
JP4555711B2 (en) * 2005-03-14 2010-10-06 新日本製鐵株式会社 High-strength ultrafine steel wire with excellent ductility
JP4719320B2 (en) * 2009-06-22 2011-07-06 新日本製鐵株式会社 High strength extra fine steel wire and method for producing the same
WO2010150450A1 (en) 2009-06-22 2010-12-29 新日本製鐵株式会社 High-strength ultra-fine steel wire and manufacturing method therefor
US20110168302A1 (en) * 2009-06-22 2011-07-14 Jun Takahashi High-strength ultrathin steel wire and method of manufacturing the same
TWI412608B (en) * 2009-06-22 2013-10-21 Nippon Steel & Sumitomo Metal Corp High strength extra-fine steel wire and manufacturing method thereof
EP2447382A4 (en) * 2009-06-22 2017-08-02 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-fine steel wire and manufacturing method therefor
WO2011126073A1 (en) 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
JP2013231251A (en) * 2012-04-27 2013-11-14 Bridgestone Corp Method for producing metal wire, and metal wire
JP2019056162A (en) * 2017-09-22 2019-04-11 新日鐵住金株式会社 High-strength steel wire

Also Published As

Publication number Publication date
JP3814070B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
CN107406950B (en) High-carbon steel wire rod and steel wire having excellent drawability
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JP3542489B2 (en) High-strength extra-fine steel wire with excellent fatigue properties
JP3814070B2 (en) High-strength ultrafine steel wire and method for producing the same
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3001572B1 (en) High-strength, high-ductility ultrafine steel wire, stranded wire, and method for producing the same
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP3237305B2 (en) High carbon steel wire for high strength and high ductility steel wire
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP2001271138A (en) High strength high carbon steel wire with excellent ductility
JP3548419B2 (en) High strength steel wire
JPH062039A (en) Manufacturing method of medium carbon ultrafine steel wire
JP2687839B2 (en) High carbon steel wire rod with excellent wire drawability and twistability
JP3641056B2 (en) High strength extra fine steel wire
JP2000063987A (en) High carbon steel wire with excellent drawability
JPS634039A (en) High-strength wire rod for ultra fine steel wire excellent in workability
JP2000319757A (en) Steel wire, steel wire, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees