[go: up one dir, main page]

JP2000063987A - High carbon steel wire with excellent drawability - Google Patents

High carbon steel wire with excellent drawability

Info

Publication number
JP2000063987A
JP2000063987A JP22787498A JP22787498A JP2000063987A JP 2000063987 A JP2000063987 A JP 2000063987A JP 22787498 A JP22787498 A JP 22787498A JP 22787498 A JP22787498 A JP 22787498A JP 2000063987 A JP2000063987 A JP 2000063987A
Authority
JP
Japan
Prior art keywords
wire
pearlite
less
steel
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22787498A
Other languages
Japanese (ja)
Inventor
Junichi Hiwatari
淳一 樋渡
Takashi Tsukamoto
孝 塚本
Takanari Hamada
貴成 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22787498A priority Critical patent/JP2000063987A/en
Publication of JP2000063987A publication Critical patent/JP2000063987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【課題】ワイヤロープ、ばね、PC鋼線、ビードワイヤ
ー、スチールコードなどの用途に好適な伸線加工性に優
れた高炭素鋼線材を提供する。 【解決手段】重量%で、C:0.5〜1.3%、Si:
0.1〜1.7%、Mn:0.3〜0.9%、P:0.
02%以下、S:0.02%以下を含有し、残部はFe
と不純物からなり、その組織の90%以上がパーライト
組織で、しかも、パーライトの平均ラメラ間隔が0.1
〜0.4μmで平均コロニー径が150μm以下である
伸線加工性に優れた高炭素鋼線材。
(57) [Problem] To provide a high carbon steel wire excellent in drawability suitable for applications such as wire ropes, springs, PC steel wires, bead wires, and steel cords. SOLUTION: In weight%, C: 0.5 to 1.3%, Si:
0.1-1.7%, Mn: 0.3-0.9%, P: 0.
02% or less, S: 0.02% or less, the balance being Fe
90% or more of the structure is a pearlite structure, and the average lamella spacing of the pearlite is 0.1%.
A high-carbon steel wire excellent in wire drawing workability having an average colony diameter of 150 μm or less at 0.4 μm or less.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、伸線加工性に優れ
た高炭素鋼線材に関する。より詳しくは、例えば、ワイ
ヤロープ、ばね、PC鋼線、ビードワイヤー、スチール
コードなどの用途に好適な伸線加工性に優れた高炭素鋼
線材に関する。 【0002】 【従来の技術】ワイヤロープ、ばね、PC鋼線は、一般
に、熱間圧延して得た鋼線材(以下、「鋼線材を」単に
「線材」という)に伸線加工を施し、更に、焼入れ焼戻
しの調質処理、あるいはブルーイング処理を施して製造
される。又、自動車のラジアルタイアの補強材として用
いられるスチールコード用極細鋼線は、熱間圧延後調整
冷却した線径が約5.5mmの線材に、1次伸線加工、
パテンティング処理、2次伸線加工、最終パテンティン
グ処理を行い、次いで、ブラスメッキを施し、更に最終
湿式伸線加工を施すことによって製造されている。この
ようにして得られた極細鋼線を、更に撚り加工で複数本
撚り合わせて撚鋼線とすることでスチールコードが製造
される。 【0003】一般に、線材を鋼線に加工する際に断線が
生ずると、生産性と歩留りが大きく低下してしまう。し
たがって、上記技術分野に属する線材は、伸線加工時、
特にスチールコードを製造する場合は強度の冷間加工が
行われる湿式伸線加工時に、断線しないことが強く要求
される。 【0004】近年、種々の目的からワイヤロープ、ば
ね、PC鋼線、ビードワイヤーやスチールコードなどを
軽量化する動きが高まってきた。このため、前記の各種
製品に対して高強度が要求されるようになり、C含有量
が高くて鋼線に高い強度を確保させることができ、しか
も伸線加工性に優れた線材、つまり伸線加工性に優れた
高炭素鋼線材に対する要求が極めて大きくなっている。 【0005】上記した近年の産業界からの要望に対し
て、線材のミクロ組織を制御して線材の強度と伸線加工
性を高める技術が検討されている。 【0006】例えば、第141回、第142回西山記念
技術講座の「条鋼製品の高強度化」(1992年、p.
187、鉄鋼協会)に記載されているように、高炭素鋼
線材を高強度化するためにパーライトのラメラ間隔を微
細にすることが行われている。一方、高炭素鋼線材の伸
線加工性を高めるためには、パーライトのコロニー径を
微細化することが有効である。しかしながら、過去、高
強度化と高い伸線加工性を両立させるためのパーライト
のラメラ間隔とコロニー径に関して定量的な検討は行わ
れていない。このため、良好な伸線加工性を維持したま
まで高強度化することは困難な状況であった。 【0007】 【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、ワイヤロープ、ば
ね、PC鋼線、ビードワイヤー、スチールコードなどの
用途に好適な伸線加工性に優れた高炭素鋼線材を提供す
ることである。 【0008】 【課題を解決するための手段】本発明の要旨は、下記に
示す伸線加工性に優れた高炭素鋼線材にある。 【0009】すなわち、「重量%で、C:0.5〜1.
3%、Si:0.1〜1.7%、Mn:0.3〜0.9
%、P:0.02%以下、S:0.02%以下を含有
し、残部はFe及び不可避不純物からなり、その組織の
90%以上がパーライト組織で、しかも、パーライトの
平均ラメラ間隔が0.1〜0.4μmで平均コロニー径
が150μm以下である高炭素鋼線材」である。 【0010】本発明者らは、熱間圧延した高炭素鋼線材
の組織、なかでもパーライト組織が占める割合と、パー
ライト組織の微細構造、つまりラメラ間隔及びコロニー
径とが高炭素鋼線材の強度と伸線加工性に及ぼす影響に
ついて調査・研究を重ねた。その結果、下記の知見を得
た。 【0011】(a)伸線加工で高炭素鋼線材を高強度化
するためには、被加工材である線材の組織の90%以上
をパーライト組織とすれば良い。 【0012】(b)上記(a)の組織の90%以上がパ
ーライト組織である線材を伸線加工する場合、加工限界
値が最大となるパーライトラメラ間隔が存在する。 【0013】(c)パーライトラメラ間隔が上記(b)
の加工限界値が最大となるパーライトラメラ間隔の近傍
の値である場合、更に、コロニー径を特定の値以下にす
れば大きな加工限界値が得られる。 【0014】本発明は、上記の知見に基づいて完成され
たものである。 【0015】 【発明の実施の形態】以下、本発明について詳しく説明
する。なお、化学成分の含有量の「%」は「重量%」を
意味する。 【0016】(A)線材の化学組成 C:0.5〜1.3% Cは、強度を確保するのに有効な元素である。しかし、
その含有量が0.5%未満の場合には、ワイヤロープ、
ばね、PC鋼線、ビードワイヤー、スチールコードなど
の最終製品において、安定して高い強度を確保すること
が困難である。一方、Cの含有量が多すぎると鋼材が硬
質化して冷間加工性の低下を招く。特に、C含有量が
1.3%を超えると、線材が硬質化するばかりでなく、
初析セメンタイト(つまり、旧オーステナイト粒界に沿
うセメンタイト)の生成防止が困難になって伸線加工性
が低下する。したがって、Cの含有量を0.5〜1.3
%とした。 【0017】Si:0.1〜1.7% Siは、強度を高めるのに有効な元素である。更に、脱
酸剤として必要な元素でもある。しかし、その含有量が
0.1%未満では添加効果に乏しく、一方、1.7%を
超えると加熱時に脱炭層が生成してワイヤロープ、ば
ね、PC鋼線、ビードワイヤー、スチールコードなどの
最終製品の耐疲労特性が低下するようになる。更に、延
性が低下して伸線加工での加工限界値が低下してしま
う。したがって、Si含有量を0.1〜1.7%とし
た。 【0018】Mn:0.3〜0.9% Mnは、製鋼工程での脱酸、パーライトの微細化、焼入
れ性の確保及び強度を高める作用を有する。しかし、そ
の含有量が0.3%未満では前記した効果が得難い。一
方、Mnは偏析しやすい元素であり、0.9%を超える
と特に線材の中心部に偏析し、その偏析部にはマルテン
サイトやベイナイトが生成するので、伸線加工性が低下
してしまう。したがって、Mnの含有量を0.3〜0.
9%とした。 【0019】P:0.02%以下 Pは靭性を低下させるとともに伸線加工性をも低下させ
てしまう。特にその含有量が0.02%を超えると靭性
と伸線加工性の低下が著しくなる。したがって、Pの含
有量を0.02%以下とした。 【0020】S:0.02%以下 Sは靭性を低下させるとともに伸線加工性をも低下させ
てしまう。特にその含有量が0.02%を超えると靭性
と伸線加工性の低下が著しくなる。したがって、Sの含
有量を0.02%以下とした。 【0021】(B)線材の組織 組織中にパーライトの占める割合が90%未満の場合に
は、大きな加工度で伸線しても高い強度が得難い。した
がって、被加工材である線材の組織の90%以上をパー
ライト組織とした。なお、パーライト組織が100%で
あっても良い。 【0022】組織の90%以上がパーライト組織である
線材を伸線加工する場合、図1に一例を示すように、パ
ーライトの平均ラメラ間隔が0.1〜0.4μmの場合
に加工限界値が大きくなる。したがって、パーライトの
平均ラメラ間隔を0.1〜0.4μmとした。 【0023】組織の90%以上がパーライト組織で、し
かもパーライトの平均ラメラ間隔が上記の0.1〜0.
4μmの範囲にある線材を伸線加工する場合、図2に1
例を示すように、パーライトの平均コロニー径が150
μm以下の場合に加工限界値が大きくなる。したがっ
て、パーライトの平均コロニー径を150μm以下とし
た。なお、このパーライトの平均コロニー径は小さけれ
ば小さいほど伸線加工性は良好になる。 【0024】以下、実施例により本発明を詳しく説明す
る。 【0025】 【実施例】表1に示す化学組成を有する鋼A〜Jを通常
の方法で溶製した。表1における鋼A〜Jはすべて化学
組成が本発明で規定する含有量の範囲内にある本発明例
である。 【0026】 【表1】 【0027】次いで、これらの鋼を、予備実験に基づい
て圧延の加熱温度及び圧延後の冷却速度を調整して熱間
圧延し、パーライトの平均ラメラ間隔及び平均コロニー
径を変化させて、直径5.5mmの線材に仕上げた。な
お、各鋼について3条件の線材に仕上げ、その組織(組
織中にパーライトが占める割合(面積率)、パーライト
の平均ラメラ間隔、パーライトの平均コロニー径)を調
査した。 【0028】又、前記の直径5.5mmに仕上げた各線
材を通常の方法で冷間伸線加工して伸線加工限界値を調
査した。 【0029】表2に各種の調査結果をまとめて示す。 【0030】 【表2】 【0031】表2から明らかなように、化学組成が本発
明で規定する含有量の範囲内にあり、しかも、組織の9
0%以上がパーライト組織で、パーライトの平均ラメラ
間隔と平均コロニー径が本発明で規定する範囲内にある
本発明例の場合には、加工限界値がすべて95%以上で
あり伸線加工性に優れていることが明らかである。 【0032】 【発明の効果】本発明の線材は伸線加工性に優れるの
で、この線材を素材としてワイヤロープ、ばね、PC鋼
線、ビードワイヤー、スチールコードなどを高い生産性
の下に歩留り良く提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon steel wire excellent in wire drawing workability. More specifically, the present invention relates to a high carbon steel wire excellent in drawability suitable for applications such as wire ropes, springs, PC steel wires, bead wires, and steel cords. [0002] Wire ropes, springs, and PC steel wires are generally drawn by hot-rolling steel wires (hereinafter referred to simply as "wires"). Further, it is manufactured by subjecting it to a quenching and tempering refining process or a bluing process. In addition, ultra-fine steel wire for steel cord used as a reinforcing material for radial tires of automobiles is prepared by primary drawing into a wire rod with a diameter of about 5.5 mm adjusted and cooled after hot rolling.
It is manufactured by performing a patenting process, a secondary drawing process, a final patenting process, then performing a brass plating, and further performing a final wet drawing process. A steel cord is manufactured by twisting a plurality of the extra-fine steel wires obtained in this manner by twisting to obtain a twisted steel wire. In general, when a wire is broken into a steel wire, breakage occurs, and productivity and yield are greatly reduced. Therefore, the wire rod belonging to the above technical field, at the time of wire drawing,
Particularly, in the case of manufacturing a steel cord, it is strongly required not to break the wire at the time of wet drawing in which strong cold working is performed. In recent years, there has been an increasing movement to reduce the weight of wire ropes, springs, PC steel wires, bead wires, steel cords and the like for various purposes. For this reason, high strength is required for the above-mentioned various products, and a high C content allows a steel wire to have high strength, and furthermore, a wire rod excellent in wire drawing workability, that is, a wire rod having excellent drawability. The demand for high-carbon steel wires excellent in wire workability has become extremely large. [0005] In response to the recent demands from the industrial world, techniques for controlling the microstructure of the wire to improve the strength and drawability of the wire have been studied. [0006] For example, in the 141st and 142nd Nishiyama Memorial Technical Lecture, "Strengthening of steel products" (1992, p.
187, the Iron and Steel Institute of Japan), the lamella spacing of pearlite is reduced in order to increase the strength of high-carbon steel wires. On the other hand, in order to enhance the drawability of a high carbon steel wire, it is effective to reduce the pearlite colony diameter. However, in the past, quantitative studies have not been performed on the lamella spacing and the colony diameter of pearlite for achieving both high strength and high wire drawing workability. For this reason, it has been difficult to increase the strength while maintaining good drawability. SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has as its object to provide a wire rope, a spring, a PC steel wire, a bead wire, a steel cord suitable for use. An object of the present invention is to provide a high carbon steel wire having excellent wire workability. [0008] The gist of the present invention resides in a high-carbon steel wire having excellent drawability as described below. That is, "in terms of% by weight, C: 0.5-1.
3%, Si: 0.1 to 1.7%, Mn: 0.3 to 0.9
%, P: 0.02% or less, S: 0.02% or less, the balance being Fe and unavoidable impurities, and 90% or more of the structure is a pearlite structure, and the average lamella spacing of pearlite is 0%. 0.1 to 0.4 μm and an average colony diameter of 150 μm or less ”. The inventors of the present invention have determined that the structure of hot-rolled high-carbon steel wire, in particular, the proportion occupied by the pearlite structure, and the microstructure of the pearlite structure, that is, the lamella spacing and the colony diameter, are the strength and strength of the high-carbon steel wire. Investigations and studies were conducted on the effects on wire drawing workability. As a result, the following findings were obtained. (A) In order to increase the strength of a high-carbon steel wire by wire drawing, 90% or more of the structure of the wire to be processed should be a pearlite structure. (B) When a wire rod having a pearlite structure in which 90% or more of the structure of the above (a) is drawn, there is a pearlite lamella interval at which the processing limit value is maximized. (C) When the pearlite lamella spacing is above (b)
If the processing limit value is near the pearlite lamella interval at which the processing limit value becomes the maximum, a larger processing limit value can be obtained by further reducing the colony diameter to a specific value or less. The present invention has been completed based on the above findings. Hereinafter, the present invention will be described in detail. In addition, “%” of the content of the chemical component means “% by weight”. (A) Chemical composition C of the wire rod: 0.5 to 1.3% C is an element effective for securing the strength. But,
When the content is less than 0.5%, a wire rope,
In final products such as springs, PC steel wires, bead wires, and steel cords, it is difficult to stably ensure high strength. On the other hand, if the content of C is too large, the steel material becomes hard and causes a reduction in cold workability. In particular, when the C content exceeds 1.3%, not only is the wire hardened,
It is difficult to prevent the formation of proeutectoid cementite (that is, cementite along the prior austenite grain boundaries), and the wire drawing workability is reduced. Therefore, the content of C is set to 0.5 to 1.3.
%. Si: 0.1-1.7% Si is an effective element for increasing the strength. Further, it is an element necessary as a deoxidizing agent. However, if the content is less than 0.1%, the effect of addition is poor. On the other hand, if the content exceeds 1.7%, a decarburized layer is formed upon heating, and the wire rope, spring, PC steel wire, bead wire, steel cord, etc. The fatigue resistance of the final product is reduced. Further, the ductility is reduced and the processing limit value in the wire drawing is reduced. Therefore, the Si content is set to 0.1 to 1.7%. Mn: 0.3-0.9% Mn has the effect of deoxidizing in the steel making process, miniaturizing pearlite, securing hardenability and increasing the strength. However, if the content is less than 0.3%, it is difficult to obtain the above-mentioned effects. On the other hand, Mn is an element that tends to segregate. If it exceeds 0.9%, it segregates especially at the center of the wire, and martensite and bainite are formed at the segregated portion, so that the wire drawing workability decreases. . Therefore, the content of Mn is set to 0.3 to 0.1.
9%. P: 0.02% or less P lowers the toughness and also lowers the drawability. In particular, when the content exceeds 0.02%, the toughness and the drawability are significantly reduced. Therefore, the content of P is set to 0.02% or less. S: not more than 0.02% S reduces the toughness and also the wire drawing workability. In particular, when the content exceeds 0.02%, the toughness and the drawability are significantly reduced. Therefore, the content of S is set to 0.02% or less. (B) When the percentage of pearlite in the microstructure of the wire is less than 90%, it is difficult to obtain a high strength even if the wire is drawn at a high working ratio. Therefore, 90% or more of the structure of the wire rod to be processed was defined as a pearlite structure. The pearlite structure may be 100%. In the case where a wire rod having 90% or more of the structure is a pearlite structure is drawn, as shown in an example in FIG. 1, when the average lamella spacing of the pearlite is 0.1 to 0.4 μm, the processing limit value is increased. growing. Therefore, the average lamella spacing of pearlite was set to 0.1 to 0.4 μm. 90% or more of the structure is a pearlite structure, and the average lamella spacing of the pearlite is 0.1 to 0.5 mm.
In the case of drawing a wire rod in a range of 4 μm, FIG.
As shown in the example, the average colony diameter of perlite was 150
If it is less than μm, the processing limit value increases. Therefore, the average colony diameter of pearlite was set to 150 μm or less. The smaller the average colony diameter of this pearlite, the better the wire drawing processability. Hereinafter, the present invention will be described in detail with reference to examples. EXAMPLES Steels A to J having the chemical compositions shown in Table 1 were produced by a conventional method. Steels A to J in Table 1 are all examples of the present invention in which the chemical composition is within the range defined by the present invention. [Table 1] Next, these steels were hot-rolled based on preliminary experiments by adjusting the heating temperature of the rolling and the cooling rate after the rolling, and the average lamella spacing and the average colony diameter of pearlite were changed to obtain a diameter of 5 mm. Finished into a wire of 0.5 mm. In addition, each steel was finished into a wire rod under three conditions, and its structure (the ratio of pearlite in the structure (area ratio), the average lamella spacing of pearlite, and the average colony diameter of pearlite) was examined. Each of the wires finished to 5.5 mm in diameter was subjected to cold drawing by a usual method, and the limit value of the drawing was examined. Table 2 summarizes the results of various investigations. [Table 2] As is clear from Table 2, the chemical composition is within the range defined by the present invention,
In the case of the present invention example in which 0% or more has a pearlite structure and the average lamella spacing and average colony diameter of pearlite are within the range specified in the present invention, all of the processing limit values are 95% or more, and the wire drawing workability is poor. It is clear that it is excellent. Since the wire of the present invention is excellent in wire drawing workability, a wire rope, a spring, a PC steel wire, a bead wire, a steel cord, or the like can be used as a material at a high yield with a high productivity. Can be provided.

【図面の簡単な説明】 【図1】組織の90%以上がパーライト組織である線材
を伸線加工した場合のパーライトの平均ラメラ間隔が加
工限界値に及ぼす影響の一例を示す図である。 【図2】組織の90%以上がパーライト組織で、しかも
パーライトの平均ラメラ間隔が0.1〜0.4μmの範
囲にある線材を伸線加工した場合のパーライトの平均ラ
メラ間隔が加工限界値に及ぼす影響の一例を示す図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of the effect of the average lamella spacing of pearlite on the processing limit value when a wire having 90% or more of the pearlite structure is drawn. FIG. 2 shows that the average lamella spacing of pearlite is the processing limit value when 90% or more of the pearlite structure is drawn and a wire having an average lamella spacing of pearlite in the range of 0.1 to 0.4 μm is drawn. It is a figure showing an example of the influence which it has.

Claims (1)

【特許請求の範囲】 【請求項1】重量%で、C:0.5〜1.3%、Si:
0.1〜1.7%、Mn:0.3〜0.9%、P:0.
02%以下、S:0.02%以下を含有し、残部はFe
及び不可避不純物からなり、その組織の90%以上がパ
ーライト組織で、しかも、パーライトの平均ラメラ間隔
が0.1〜0.4μmで平均コロニー径が150μm以
下である伸線加工性に優れた高炭素鋼線材。
Claims: 1. Weight percent C: 0.5-1.3%, Si:
0.1-1.7%, Mn: 0.3-0.9%, P: 0.
02% or less, S: 0.02% or less, the balance being Fe
90% or more of the structure is a pearlite structure, and the average lamella spacing of the pearlite is 0.1 to 0.4 μm and the average colony diameter is 150 μm or less. Steel wire rod.
JP22787498A 1998-08-12 1998-08-12 High carbon steel wire with excellent drawability Pending JP2000063987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22787498A JP2000063987A (en) 1998-08-12 1998-08-12 High carbon steel wire with excellent drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22787498A JP2000063987A (en) 1998-08-12 1998-08-12 High carbon steel wire with excellent drawability

Publications (1)

Publication Number Publication Date
JP2000063987A true JP2000063987A (en) 2000-02-29

Family

ID=16867708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22787498A Pending JP2000063987A (en) 1998-08-12 1998-08-12 High carbon steel wire with excellent drawability

Country Status (1)

Country Link
JP (1) JP2000063987A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277846A1 (en) * 2001-06-28 2003-01-22 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
EP1559805A1 (en) * 2004-01-20 2005-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High carbon steel wire rod superior in wire-drawability and method for producing the same
US7850793B2 (en) 2002-09-26 2010-12-14 Kobe Steel, Ltd. Hot milled wire rod excelling in wire drawability and enabling avoiding heat treatment before wire drawing
KR20200076046A (en) * 2018-12-19 2020-06-29 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277846A1 (en) * 2001-06-28 2003-01-22 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
US6783609B2 (en) 2001-06-28 2004-08-31 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
US7850793B2 (en) 2002-09-26 2010-12-14 Kobe Steel, Ltd. Hot milled wire rod excelling in wire drawability and enabling avoiding heat treatment before wire drawing
EP1559805A1 (en) * 2004-01-20 2005-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High carbon steel wire rod superior in wire-drawability and method for producing the same
US7393422B2 (en) 2004-01-20 2008-07-01 Kobe Steel, Ltd. Method for producing high carbon steel wire rod superior in wire-drawability
KR20200076046A (en) * 2018-12-19 2020-06-29 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR102223272B1 (en) 2018-12-19 2021-03-08 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
JP3997867B2 (en) Steel wire, method for producing the same, and method for producing steel wire using the steel wire
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
JP2000063987A (en) High carbon steel wire with excellent drawability
JPH05295448A (en) Manufacturing method of hyper-eutectoid steel wire
JP2544867B2 (en) Manufacturing method of hyper-eutectoid steel wire
JP3176226B2 (en) Manufacturing method of high strength and high toughness hot-dip coated steel wire
JP2641081B2 (en) Steel cord manufacturing method
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP3548419B2 (en) High strength steel wire
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JPH0526850B2 (en)
JP2993748B2 (en) High strength and high ductility ultrafine steel wire and method for producing the same
JPH04272134A (en) Production of high strength bead wire
JPS5935655A (en) High-carbon steel wire rod for hyperfine drawn wire
JPH05105951A (en) Production of high strength steel wire
JPH08295931A (en) Wire rod with excellent wire drawing workability
JP3157500B2 (en) Hot rolled wire and steel wire with excellent fatigue properties
JPH04346619A (en) Manufacturing method of ultra-high tensile strength steel wire with excellent ductility
JP3340232B2 (en) Manufacturing method of high strength steel wire
JP2641082B2 (en) Manufacturing method of high strength steel cord

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301