JPH11195244A - Optical recording medium and recording/reproducing method therefor - Google Patents
Optical recording medium and recording/reproducing method thereforInfo
- Publication number
- JPH11195244A JPH11195244A JP9360967A JP36096797A JPH11195244A JP H11195244 A JPH11195244 A JP H11195244A JP 9360967 A JP9360967 A JP 9360967A JP 36096797 A JP36096797 A JP 36096797A JP H11195244 A JPH11195244 A JP H11195244A
- Authority
- JP
- Japan
- Prior art keywords
- recording medium
- optical recording
- layer
- titanium oxide
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 32
- 239000010410 layer Substances 0.000 claims abstract description 80
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 56
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000031700 light absorption Effects 0.000 claims abstract description 23
- 239000011241 protective layer Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims description 11
- 230000001699 photocatalysis Effects 0.000 claims description 4
- 239000012790 adhesive layer Substances 0.000 abstract description 9
- 239000004922 lacquer Substances 0.000 abstract description 7
- 238000013032 photocatalytic reaction Methods 0.000 description 14
- 239000012535 impurity Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 239000000428 dust Substances 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- -1 2P (photopolymer) Polymers 0.000 description 4
- 229910001215 Te alloy Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 208000017983 photosensitivity disease Diseases 0.000 description 3
- 231100000434 photosensitization Toxicity 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- FXPLCAKVOYHAJA-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 FXPLCAKVOYHAJA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザー光を用い
て情報の記録及び/又は再生を行う光記録媒体とその記
録/再生方法に関し、詳しくは、光記録媒体表面に付着
する塵、ゴミ、指紋等、その中の特に有機汚れを効率的
に除去可能な光記録媒体及びこの光記録媒体の記録/再
生方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium for recording and / or reproducing information by using a laser beam, and a method for recording / reproducing the same. The present invention relates to an optical recording medium capable of efficiently removing organic stains therein, such as a fingerprint, and a recording / reproducing method of the optical recording medium.
【0002】[0002]
【従来の技術】近年、光記録媒体に関する研究が盛んに
行われている。この光記録媒体は、非接触で記録/再生
が行えるため磁気記録媒体に比べて塵、ゴミ、指紋等に
強いこと、光の回折限界まで記録/再生が行えるため高
密度化が可能なこと、再生専用型、追記型、書換可能型
のそれぞれのメモリ形態に対応できること等、数々の利
点を有しており、安価な大容量ファイルを実現する方式
として幅広い用途への適用が考えられる。そして、現
在、更に高密度を有する光記録媒体への要求が高まり、
その実現のために様々な方法が検討されている。2. Description of the Related Art In recent years, research on optical recording media has been actively conducted. This optical recording medium can perform recording / reproduction in a non-contact manner, so that it is more resistant to dust, dust, fingerprints, and the like than a magnetic recording medium. It has a number of advantages, such as being compatible with read-only, write-once, and rewritable memory types, and can be applied to a wide range of applications as a method for realizing inexpensive large-capacity files. At present, the demand for optical recording media having higher density has increased,
Various methods are being studied to achieve this.
【0003】光記録媒体の高密度化に対する有効な手段
として、記録、再生に用いるレーザー光のスポット径を
より微小にするために短波長レーザー光を用いたり、開
口数(N.A.:Numerical Apertur
e)の大きな対物レンズを用いて、高密度に微小ピット
を記録、再生する方法がある。例えば、現在、普及が進
んでいるCD(Compact Disk)は780n
m付近のレーザー波長を、今後、普及が見込まれるDV
D(Digital Video Disk)は650
nm付近のレーザー波長を、更に、将来、実用化が見込
まれる光記録媒体は410nm付近のレーザー波長を用
いることが予想される。As an effective means for increasing the density of an optical recording medium, a short-wavelength laser beam is used to make the spot diameter of a laser beam used for recording and reproduction smaller, and a numerical aperture (NA: Numerical) is used. Apertur
There is a method of recording and reproducing minute pits at a high density by using a large objective lens e). For example, CDs (Compact Disks) that are currently spreading are 780n
m near the laser wavelength, DV is expected to spread in the future
D (Digital Video Disk) is 650
It is anticipated that a laser wavelength near nm will be used, and a laser wavelength near 410 nm will be used for an optical recording medium expected to be put to practical use in the future.
【0004】ところで、光記録媒体に用いられる基板と
しては、照射するレーザー光に対して透明で、かつ、複
製が容易であるポリカーボネート、2P(フォトポリマ
ー)、ポリメチルメタアクリルレート等の樹脂やガラス
が用いられる。特に、熱的、機械的特性に優れているポ
リカーボネートが広く用いられている。しかし、樹脂は
絶縁体であるため帯電し易い。光記録媒体が帯電すると
微小な塵やゴミ等が静電気により光記録媒体のレーザー
光入射側に付着して情報の記録/再生の妨げになる。そ
して、上述したように、現在検討が進められている、微
小スポットで記録/再生を行う高密度光記録媒体では、
塵、ゴミ、指紋、傷等が情報の記録/再生に与える影響
は今まで以上に大きくなることが考えられる。[0004] By the way, the substrate used for the optical recording medium is a resin or glass such as polycarbonate, 2P (photopolymer), polymethyl methacrylate, etc., which is transparent to the irradiated laser beam and easy to copy. Is used. Particularly, polycarbonate having excellent thermal and mechanical properties is widely used. However, resin is easily charged because it is an insulator. When the optical recording medium is charged, minute dust and dirt adhere to the laser light incident side of the optical recording medium due to static electricity and hinder recording / reproducing of information. As described above, a high-density optical recording medium that performs recording / reproduction with a minute spot, which is currently under study,
The influence of dust, dirt, fingerprints, scratches, etc. on the recording / reproducing of information may be greater than ever.
【0005】現状では、光記録媒体の帯電を防止する目
的で、光記録媒体のレーザー光入射側表面に、帯電防止
膜や透明導電膜を設けることが提案されている。更に、
基板表面に化学的に付着した塵や指紋等の有機汚れを、
布等で拭く方法も提案されている。しかしながら、帯電
防止膜や透明導電膜を設ける方法の場合、指紋等の有機
汚れに対する効果が、必ずしも十分ではないという問題
点があった。更に、布等で拭く方法の場合、ポリカーボ
ネート基板等は表面硬度が低いため基板に傷が生じ易
く、情報の記録/再生に支障をきたす虞れがあるため、
必ずしも十分ではないという間題点があった。At present, for the purpose of preventing charging of an optical recording medium, it has been proposed to provide an antistatic film or a transparent conductive film on the surface of the optical recording medium on the laser light incident side. Furthermore,
Organic dirt such as dust and fingerprints chemically attached to the substrate surface
A method of wiping with a cloth or the like has also been proposed. However, the method of providing an antistatic film or a transparent conductive film has a problem that the effect on organic stains such as fingerprints is not always sufficient. Further, in the case of a method of wiping with a cloth or the like, since the polycarbonate substrate or the like has a low surface hardness, the substrate is easily damaged, and there is a possibility that information recording / reproduction may be hindered.
There was an issue that was not always enough.
【0006】こうした状況の中、特に人間の油脂を主た
る構成因子とする有機汚れ(指紋等)を除去する方法と
して、特開平9−180253号公報では、光記録媒体
を構成する基板に、レーザー光入射側に膜厚0.01〜
3.0μmの酸化ケイ素からなる薄膜を設け、かつ、こ
の酸化ケイ素薄膜の外側に膜厚0.05〜10μmの酸
化チタン薄膜を設けた光記録媒体が提案されている。In such a situation, Japanese Patent Application Laid-Open No. 9-180253 discloses a method for removing organic stains (fingerprints and the like) mainly composed of human fats and oils on a substrate constituting an optical recording medium. Thickness 0.01 ~
There has been proposed an optical recording medium in which a thin film of silicon oxide having a thickness of 3.0 μm is provided and a titanium oxide thin film having a thickness of 0.05 to 10 μm is provided outside the silicon oxide thin film.
【0007】これは、酸化チタンの光触媒機能を利用
し、太陽光等に曝すことで指紋の主成分である油脂を酸
化分解して光記録媒体表面を清浄化するものである。酸
化チタン等の光触媒反応は、光エネルギーを直接化学エ
ネルギーに変換できる人工光合成型のプロセスとして脚
光を浴び、近年では実用化を目指した研究が活発化して
いる。特に、酸化チタンはその高い活性、安定性と無毒
性のため、高範囲な実用化に最も近い光触媒として期待
されている。In this method, the surface of an optical recording medium is cleaned by utilizing the photocatalytic function of titanium oxide to oxidize and decompose fats and oils, which are the main components of a fingerprint, by exposing it to sunlight or the like. The photocatalytic reaction of titanium oxide or the like has been spotlighted as an artificial photosynthesis-type process that can directly convert light energy into chemical energy, and research aimed at practical use has been recently active. In particular, titanium oxide is expected as a photocatalyst closest to practical use in a wide range because of its high activity, stability and non-toxicity.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、酸化チ
タンは可視光領域に吸収がなく、太陽光に3〜5%含ま
れる紫外線しか利用できない。このため、前述した従来
の光記録媒体では、公報にも記載されているように、有
機汚れを清浄化するのに十数分以上太陽光に曝さなけれ
ばならず効率が悪いという問題がある。However, titanium oxide has no absorption in the visible light region, and can utilize only ultraviolet rays contained in sunlight at 3 to 5%. For this reason, as described in the official gazette, the conventional optical recording medium described above has a problem in that it has to be exposed to sunlight for more than ten minutes to clean organic dirt, which is inefficient.
【0009】本発明は上記の事情に鑑みてなされたもの
で、基板表面に付着する塵、ゴミ、指紋、傷等、その中
でも特に有機汚れを効率的に除去し、ジッターの増加を
防止できる信頼性の高い光記録媒体を提供することを目
的とする。また、この光記録媒体を用い、記録/再生と
同時に有機汚れを除去するようにした光記録媒体の記録
/再生方法を提供することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and it is a reliable technique that can efficiently remove dust, dirt, fingerprints, scratches, and the like, especially organic stains, from the surface of a substrate and can prevent an increase in jitter. It is an object to provide an optical recording medium having high performance. It is another object of the present invention to provide a recording / reproducing method for an optical recording medium which uses this optical recording medium to remove organic stain simultaneously with recording / reproduction.
【0010】[0010]
【課題を解決するための手段】このため、請求項1に記
載の発明では、レーザー光を用いて情報の記録及び/又
は再生を行う光記録媒体において、光記録媒体を構成す
る基板のレーザー光入射側表面に、400nm〜850
nmの波長領域に光吸収端を有する酸化チタン層を形成
したことを特徴とする。Therefore, according to the first aspect of the present invention, in an optical recording medium for recording and / or reproducing information by using a laser beam, a laser beam on a substrate constituting the optical recording medium is used. 400 nm to 850 on the incident side surface
A titanium oxide layer having a light absorption edge in a wavelength region of nm is formed.
【0011】かかる構成では、酸化チタン層が350n
m以上の可視光波長領域で十分な吸収を持つため、太陽
光に半分以上含まれる可視光によって光記録媒体に付着
した有機汚れを除去できる。これにより、太陽光等の光
に曝す時間を極めて短縮でき、有機汚れの除去効果を向
上でき、ジッターの増加を防止できるようになる。尚、
酸化チタン層の光吸収端の制御は、例えば、色素光増感
法(B.O’Regan,Nature,357,73
7(1991)やイオン注入法(竹内等,触媒,36,
157(1994)等の不純物添加法によって実際に行
うことができる。In this structure, the titanium oxide layer has a thickness of 350 n.
Since it has sufficient absorption in the visible light wavelength region of m or more, it is possible to remove organic dirt attached to the optical recording medium by visible light contained in half or more of sunlight. As a result, the time for exposure to light such as sunlight can be extremely reduced, the effect of removing organic dirt can be improved, and an increase in jitter can be prevented. still,
The light absorption edge of the titanium oxide layer can be controlled by, for example, a dye photosensitization method (B.O'Regan, Nature, 357, 73).
7 (1991) and ion implantation (Takeuchi et al., Catalyst, 36,
157 (1994) or the like.
【0012】また、請求項2に記載のように、前記レー
ザー光の波長が、前記酸化チタン層の光吸収端の波長よ
りも短波長となるようにするとよい。かかる構成によれ
ば、記録/再生に使用するレーザー光を照射すること
で、有機汚れを除去することが可能となり、記録及び/
又は再生時に同時に有機汚れを除去できるようになる。It is preferable that the wavelength of the laser light is shorter than the wavelength of the light absorption edge of the titanium oxide layer. According to such a configuration, by irradiating a laser beam used for recording / reproduction, it is possible to remove organic stains, and to perform recording and / or reproduction.
Alternatively, organic dirt can be removed simultaneously with regeneration.
【0013】また、請求項3に記載のように、前記基板
と酸化チタン層との間に、前記レーザー光に対して略透
明な無機物からなる保護層を設ける構成とすれば、基板
が樹脂等の有機物である場合は、酸化チタンの光触媒反
応から基板を保護することができる。また、基板がガラ
スの場合には、ガラス中のNaの拡散による酸化チタン
の機能低下を防止できるようになる。According to a third aspect of the present invention, when a protective layer made of an inorganic substance substantially transparent to the laser beam is provided between the substrate and the titanium oxide layer, the substrate can be made of resin or the like. In the case of the organic substance, the substrate can be protected from the photocatalytic reaction of titanium oxide. Further, when the substrate is glass, it is possible to prevent the function of titanium oxide from lowering due to the diffusion of Na in the glass.
【0014】請求項4に記載の発明では、請求項2又は
3に記載の光記録媒体に、レーザー光を照射して、記録
及び/又は再生と同時に酸化チタン層による光触媒機能
が発現されるようにした光記録媒体の記録/再生方法を
提供する。According to the fourth aspect of the present invention, the optical recording medium according to the second or third aspect is irradiated with a laser beam so that the titanium oxide layer exhibits a photocatalytic function simultaneously with recording and / or reproduction. And a recording / reproducing method for an optical recording medium.
【0015】[0015]
【発明の実施の形態】以下、本発明に係る光記録媒体の
実施形態について説明する。図1は、本実施形態による
光記録媒体の構成例を示す断面図である。図1におい
て、本実施形態では、記録層に相変化型記録材料を用い
た相変化型光記録媒体の例を示している。透明基板2の
レーザー光入射側と反対側に、下部誘電体層3、記録層
4、上部誘電体層5、反射層6、及びラッカー層7をこ
の順で積層形成し、透明基板2のレーザー光入射側に、
保護層8及び400nm〜850nmの波長領域に光吸
収端を持つ酸化チタン層9をこの順で積層形成する。こ
のようにして形成した2枚の光記録媒体を、ラッカー層
7側を対向させて、接着層10を介して接合することに
より、両面記録用の光記録媒体1を形成した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the optical recording medium according to the present invention will be described. FIG. 1 is a cross-sectional view illustrating a configuration example of the optical recording medium according to the present embodiment. FIG. 1 shows an example of a phase change type optical recording medium using a phase change type recording material for a recording layer in this embodiment. A lower dielectric layer 3, a recording layer 4, an upper dielectric layer 5, a reflective layer 6, and a lacquer layer 7 are formed in this order on the opposite side of the transparent substrate 2 from the laser beam incident side. On the light incident side,
A protective layer 8 and a titanium oxide layer 9 having a light absorption edge in a wavelength region of 400 nm to 850 nm are laminated in this order. The two optical recording media thus formed were joined via an adhesive layer 10 with the lacquer layer 7 side facing each other to form an optical recording medium 1 for double-sided recording.
【0016】前記酸化チタン層9は、通常、スパッタ法
や真空蒸着法、プラズマCVD法、光CVD法、電子ビ
ーム蒸着法、ゾル−ゲル法、スプレーパイロリシス法、
ディップコーティング法等により形成する。酸化チタン
層へは不純物を添加するが、その添加方法は特に制限さ
れず、例えば、上記薄膜形成中に同時に添加することも
できるし、或いは、前述した色素光増感法やイオン注入
法を用いることもできる。色素光増感法で用いる最も高
い効率を示す色素としては、ルテニウム錯体[Ru
(4,4’−ジカルボキシル−2,2’−ビピリジン)
2 (NCS)2 ]が挙げられ、イオン注入法で注入する
イオンとしては、金属イオンが好ましく、Crイオンや
Vイオン等の遷移金属イオンがより好ましい。酸化チタ
ン層9の厚みは、1000nm以下が好ましく、200
nm以下がより好ましい。これは、光触媒反応が、酸化
チタン層表面近傍でおこるためと、1000nm以上厚
みを有しても効果が変わらないためである。The titanium oxide layer 9 is generally formed by a sputtering method, a vacuum evaporation method, a plasma CVD method, a photo CVD method, an electron beam evaporation method, a sol-gel method, a spray pyrolysis method,
It is formed by a dip coating method or the like. Although an impurity is added to the titanium oxide layer, the method of addition is not particularly limited. For example, it can be added simultaneously during the formation of the thin film, or the dye photosensitization method or the ion implantation method described above is used. You can also. The most efficient dye used in the dye photosensitization method is a ruthenium complex [Ru
(4,4'-dicarboxyl-2,2'-bipyridine)
2 (NCS) 2 ], and the ion to be implanted by the ion implantation method is preferably a metal ion, and more preferably a transition metal ion such as a Cr ion or a V ion. The thickness of the titanium oxide layer 9 is preferably 1000 nm or less,
nm or less is more preferable. This is because the photocatalytic reaction occurs near the surface of the titanium oxide layer, and the effect does not change even if the thickness is 1000 nm or more.
【0017】半導体である酸化チタンは、その光吸収端
以下の波長の光を強く吸収し、光触媒反応に利用する。
不純物を添加していない純粋の酸化チタンの光吸収端は
約380nmにあるため、純粋の酸化チタンは可視光
(350nm〜750nm)のうち380nm以下のわ
ずかな波長の光しか光触媒反応に利用できない。本発明
においては、酸化チタンに不純物を添加してその光吸収
端を長波長側にシフトさせ、400nm〜850nmに
存在するようにする。この結果、太陽光のうちのより広
い波長領域の光を光触媒反応に利用できるようになり、
より効率的に光記録媒体表面の汚染を除去することがで
きる。尚、不純物を添加して移動させる光吸収端の位置
は、400nmより長波長側でないと大きな効果を期待
できない。また、不純物添加によって光吸収端を850
nmよりも長波長側にシフトさせることは原理的に難し
い。記録及び/又は再生に使用するレーザー光の波長
が、酸化チタン層の光吸収端よりも短波長側にある場合
には、酸化チタン層はそのレーザー光をも吸収して光触
媒反応に利用することができる。即ち、そのレーザー光
は、信号の記録及び/又は再生を行うと同時に、光記録
媒体表面の汚染を除去する。Titanium oxide, which is a semiconductor, strongly absorbs light having a wavelength equal to or shorter than its light absorption edge and is used for a photocatalytic reaction.
Since the light absorption edge of pure titanium oxide to which impurities are not added is at about 380 nm, pure titanium oxide can use only a small wavelength of light of 380 nm or less in visible light (350 nm to 750 nm) for the photocatalytic reaction. In the present invention, an impurity is added to titanium oxide to shift the light absorption edge to a longer wavelength side so that the titanium oxide exists at 400 nm to 850 nm. As a result, light in a wider wavelength range of sunlight can be used for a photocatalytic reaction,
The contamination on the optical recording medium surface can be more efficiently removed. Note that a significant effect cannot be expected unless the position of the light absorption edge to which the impurity is added and moved is on the longer wavelength side than 400 nm. Further, the light absorption edge is set to 850 by adding impurities.
Shifting to a longer wavelength side than nm is difficult in principle. When the wavelength of the laser light used for recording and / or reproduction is shorter than the light absorption edge of the titanium oxide layer, the titanium oxide layer also absorbs the laser light and uses it for the photocatalytic reaction. Can be. That is, the laser beam performs recording and / or reproduction of a signal and, at the same time, removes contamination on the surface of the optical recording medium.
【0018】不純物の添加方法としては、以下のような
理由から、イオン注入法は好ましい方法である。イオン
注入は、数百keVという高エネルギーで金属イオンを
加速して酸化チタン薄膜内部に注入する方法で行われ、
具体的にはイオン注入装置によって行う。イオン注入は
LSI製造では不可欠な技術であり、他の方法では得ら
れない次の特徴を有する。As a method for adding impurities, an ion implantation method is a preferable method for the following reasons. Ion implantation is performed by a method in which metal ions are accelerated at a high energy of several hundred keV and implanted into a titanium oxide thin film.
More specifically, the ion implantation is performed. Ion implantation is an indispensable technology in LSI manufacturing, and has the following features that cannot be obtained by other methods.
【0019】(1)不純物濃度及び深さ方向の分布が、
イオンの加速電圧、電流、注入時間によって正確に制御
できる。 (2)ドープされる不純物の純度が極めて高い。 (3)任意の不純物を短時間で注入できるため準安定物
質の創製が期待できる。(1) The impurity concentration and distribution in the depth direction are:
It can be accurately controlled by the ion acceleration voltage, current, and implantation time. (2) The purity of the impurity to be doped is extremely high. (3) Creation of a metastable substance can be expected because arbitrary impurities can be injected in a short time.
【0020】(4)マスクパターン通りのドーピングパ
ターンが可能である。 イオン注入法で注入するイオンは、前述のように金属イ
オンが好ましく、Crイオン又はVイオンがより好まし
い。光の吸収領域は、注入する金属イオン濃度に依存し
てある程度任意に変えることができる。金属イオンの注
入量は、0.01×1016〜100×1016個/cm2
が好ましく、0.1×1016〜30×1016個/cm2
がより好ましい。また、金属イオンが、表面から数十n
mの深さに局在するようイオン注入を行うと、光触媒反
応の効率が上がる。また、基板がガラスの場合には、必
要に応じて酸化チタン層を熱処理することができる。(4) A doping pattern according to the mask pattern is possible. The ions to be implanted by the ion implantation method are preferably metal ions as described above, and more preferably Cr ions or V ions. The light absorption region can be arbitrarily changed to some extent depending on the concentration of the metal ions to be implanted. The implantation amount of metal ions is 0.01 × 10 16 to 100 × 10 16 / cm 2
Is preferably 0.1 × 10 16 to 30 × 10 16 / cm 2
Is more preferred. Moreover, several tens of n
When the ion implantation is performed so as to be localized at a depth of m, the efficiency of the photocatalytic reaction increases. When the substrate is glass, the titanium oxide layer can be heat-treated as necessary.
【0021】保護層8は、透明基板2が樹脂等の有機物
である場合には酸化チタン層9の光触媒反応から透明基
板2を保護する目的で形成され、透明基板2がガラスで
ある場合にはガラス中のNaの拡散による酸化チタンの
機能低下を防ぐ目的で形成される。保護層8は、用いる
光ビームに対して略透明である無機物が好ましく、具体
的な例としては、例えば、SiO、SiO2 、ZnO、
A12 03 、SnO2、In2 03 、MgO、ZrO2
等の金属酸化物、Si3 N4 、AIN、BN、TiN、
ZrN等の窒化物、ZnS、In2 S3 、TaS4 等の
硫化物、SiC、TaC、WC、TiC、ZrC、B4
C等の炭化物やダイヤモンド状カ一ボンがあげられる。
これらの材料は単体で用いることもできるし、2つ以上
の材料を混合して用いることもできる。また、必要に応
じて不純物を含んでいてもよい。保護層8は、スパッタ
法や真空蒸着法、プラズマCVD法、光CVD法、電子
ビーム蒸着法により形成できる。保護層8の厚みは、5
〜1000nm程度が好ましく、10〜100nmがよ
り好ましい。厚みが5nmより薄くなると透明基板2が
酸化チタン層9の光触媒反応の影響を直接受けることに
なり、また、1000nmより厚くても保護層の効果は
変わらない。The protective layer 8 is formed for the purpose of protecting the transparent substrate 2 from the photocatalytic reaction of the titanium oxide layer 9 when the transparent substrate 2 is an organic substance such as a resin, and when the transparent substrate 2 is glass. It is formed for the purpose of preventing the function of titanium oxide from lowering due to the diffusion of Na in the glass. The protective layer 8 is preferably made of an inorganic material that is substantially transparent to the light beam used, and specific examples include, for example, SiO, SiO 2 , ZnO,
A1 2 0 3, SnO 2, In 2 0 3, MgO, ZrO 2
Metal oxides such as Si 3 N 4 , AIN, BN, TiN,
Nitrides such as ZrN, sulfides such as ZnS, In 2 S 3 and TaS 4 , SiC, TaC, WC, TiC, ZrC, B 4
Carbides such as C and diamond-like carbon.
These materials can be used alone or as a mixture of two or more materials. Further, it may contain impurities as needed. The protective layer 8 can be formed by a sputtering method, a vacuum evaporation method, a plasma CVD method, a photo CVD method, or an electron beam evaporation method. The thickness of the protective layer 8 is 5
It is preferably about 1000 nm, more preferably 10 nm to 100 nm. When the thickness is less than 5 nm, the transparent substrate 2 is directly affected by the photocatalytic reaction of the titanium oxide layer 9, and the effect of the protective layer does not change even when the thickness is more than 1000 nm.
【0022】次に、酸化チタン層9、保護層8以外の構
成要素について説明する。透明基板2は、用いる光ビー
ムに対して透明である材質、例えば、樹脂やガラス等か
ら構成することが好ましく、特に、取り扱いが容易で安
価であることから樹脂が好ましい。樹脂として具体的に
は例えば、ポリカーボネート、2P、ポリメチルメタア
クリルレート等を用いる。基板の形状および寸法は特に
限定されないが、通常、ディスク状であり、その厚さ
は、通常、0.5〜3mm程度、直径は40〜360m
m程度である。透明基板2の表面には、トラッキング用
やアドレス用等のために、グルーブ等の所定のパターン
が必要に応じて設けられる。Next, components other than the titanium oxide layer 9 and the protective layer 8 will be described. The transparent substrate 2 is preferably made of a material that is transparent to the light beam to be used, for example, a resin or glass, and is particularly preferably a resin because it is easy to handle and inexpensive. Specifically, for example, polycarbonate, 2P, polymethyl methacrylate, or the like is used as the resin. The shape and dimensions of the substrate are not particularly limited, but are usually disk-shaped, and the thickness is usually about 0.5 to 3 mm, and the diameter is 40 to 360 m.
m. A predetermined pattern such as a groove is provided on the surface of the transparent substrate 2 as needed for tracking, addressing, and the like.
【0023】下部誘電体層3と上部誘電体層5は、入射
光の多重干渉や、記録時に記録層4に蓄積される熱の放
熱層として設けられ、材料としては、保護層8と同様
な、酸化物、窒化物、硫化物、炭化物の単体や混合物等
が用いられる。下部誘電体層3の厚さは、50〜300
nm程度であり、上部誘電体層5の厚さは、10〜25
0nm程度である。The lower dielectric layer 3 and the upper dielectric layer 5 are provided as a heat radiation layer for multiple interference of incident light and heat accumulated in the recording layer 4 during recording. The material is the same as that of the protective layer 8. , Oxides, nitrides, sulfides, carbides, etc. alone or in a mixture. The thickness of the lower dielectric layer 3 is 50 to 300.
nm, and the thickness of the upper dielectric layer 5 is 10-25.
It is about 0 nm.
【0024】記録層4は、Au−In−Sb−Te合
金、Ag−In−Sb−Te合金、Ge−Sb−Te合
金等を用いることが好ましいが、これに限定されるもの
ではない。記録層4の厚みは、10〜200nm程度で
ある。反射層6は、入射光の反射や放熱層として設けら
れ、Al、Au、Ag、Pt、Cu等の単体或いはこれ
らの1種以上を含む合金等の高反射金属から構成すれば
よい。反射層6の厚みは、30〜300nm程度であ
る。The recording layer 4 is preferably made of an Au-In-Sb-Te alloy, an Ag-In-Sb-Te alloy, a Ge-Sb-Te alloy or the like, but is not limited thereto. The thickness of the recording layer 4 is about 10 to 200 nm. The reflection layer 6 is provided as a layer for reflecting incident light and as a heat radiation layer, and may be made of a highly reflective metal such as Al, Au, Ag, Pt, Cu, or a simple substance or an alloy containing at least one of these. The thickness of the reflection layer 6 is about 30 to 300 nm.
【0025】ラッカー層7は、耐擦傷性や耐腐食性の向
上のために設けられ、種々の有機系の物質から構成され
ることが好ましいが、特に、放射線硬化型化合物やその
組成物を、電子線、紫外線等の放射線により硬化させた
有機物から構成されることが好ましい。ラッカー層7の
厚さは、通常、0.1〜100μm程度であり、スピン
コート、グラビア塗布、スプレーコート等、通常の方法
により形成すればよい。The lacquer layer 7 is provided for improving abrasion resistance and corrosion resistance, and is preferably composed of various organic substances. It is preferable to be composed of an organic material cured by radiation such as an electron beam and ultraviolet rays. The thickness of the lacquer layer 7 is usually about 0.1 to 100 μm, and may be formed by a usual method such as spin coating, gravure coating, or spray coating.
【0026】接着層10は、種々の有機系の物質から構
成されることが望ましいが、熱可塑性物質、粘着性物
質、放射線硬化型化合物やその組成物を、電子線、紫外
線等の放射線により硬化させた有機物から構成されるこ
とが好ましい。接着層10の厚さは0.1〜100μm
程度であり、接着層10を構成する物質により選ばれる
最適な方法、例えば、スピンコート、グラビア塗布、ス
プレーコート、ロールコートなどにより形成すればよ
い。The adhesive layer 10 is desirably composed of various organic substances. The adhesive layer 10 is formed by curing a thermoplastic substance, an adhesive substance, a radiation-curable compound or a composition thereof by radiation such as an electron beam or ultraviolet rays. It is preferable that the organic material is made of an organic material. The thickness of the adhesive layer 10 is 0.1 to 100 μm
It may be formed by an optimum method selected according to the material constituting the adhesive layer 10, for example, spin coating, gravure coating, spray coating, roll coating, or the like.
【0027】かかる構成の光記録媒体によれば、400
nm〜850nmの波長領域に光吸収端を持つ酸化チタ
ン層9を設けたので、太陽光に半分以上含まれる可視光
で酸化チタンの光触媒機能が発現がされ、光記録媒体1
の表面に付着した有機汚れ(指紋等)を効率良く酸化分
解できる。このため、従来のものに比べて太陽光に曝す
時間が短時間で済む。また、この酸化チタン層9は、記
録及び/又は再生に使用するレーザー光の波長が酸化チ
タン層の光吸収端の波長よりも短波長である場合、記録
時や再生のレーザー光照射によっても、光記録媒体1表
面の有機汚れを除去できる。従って、情報の記録や再生
を行う際に、同時に有機汚れも分解除去でき、極めて効
率的である。これにより、塵、ゴミ、指紋、傷等、その
中でも特に指紋(有機汚れ)によるジッターの増加を防
止でき、信頼性の高い光記録媒体1を得ることができる
ようになる。更に、保護層8を設けることで、酸化チタ
ン層9の光触媒反応による透明基板2への悪影響を防止
でき、より一層光記録媒体1の信頼性を高めることがで
きる。According to the optical recording medium having such a configuration, 400
Since the titanium oxide layer 9 having a light absorption edge in the wavelength region of 850 nm to 850 nm is provided, the photocatalytic function of titanium oxide is exhibited by visible light contained in half or more of sunlight, and the optical recording medium 1
Organic dirt (fingerprints and the like) adhered to the surface can be efficiently oxidized and decomposed. For this reason, the exposure time to sunlight is shorter than that of the conventional one. In addition, when the wavelength of the laser beam used for recording and / or reproduction is shorter than the wavelength of the light absorption edge of the titanium oxide layer, the titanium oxide layer 9 can be used even during recording or reproduction by irradiation with the laser beam. Organic dirt on the surface of the optical recording medium 1 can be removed. Therefore, when recording or reproducing information, organic dirt can be decomposed and removed at the same time, which is extremely efficient. Thus, it is possible to prevent an increase in jitter due to dust, dirt, fingerprints, scratches and the like, especially fingerprints (organic stains), and to obtain the optical recording medium 1 with high reliability. Further, by providing the protective layer 8, it is possible to prevent the transparent substrate 2 from being adversely affected by the photocatalytic reaction of the titanium oxide layer 9, thereby further improving the reliability of the optical recording medium 1.
【0028】尚、本実施形態では、相変化型の光記録媒
体を例にして説明したが、本発明はこれに限定されるも
のでなく、再生専用型、追記型、書換可能型等、種々の
光記録媒体に適用が可能である。 〔実施例及び比較例〕次に、本発明の具体的実施例を示
し、本発明を更に詳細に説明するが、これらの実施例は
本発明を何ら制限するものではない。In this embodiment, the phase change type optical recording medium has been described as an example. However, the present invention is not limited to this, and various types such as a read-only type, a write-once type, and a rewritable type are available. Can be applied to the optical recording medium. [Examples and Comparative Examples] Next, the present invention will be described in more detail with reference to specific examples of the present invention. However, these examples do not limit the present invention in any way.
【0029】(実施例1)直径120mm、厚さ0.6
mmのランド/グルーブを有する、2枚のポリカーボネ
ート基板2のレーザー光入射側に、保護層8として酸化
ケイ素を100nm厚に、酸化チタン薄膜を100nm
厚に順次積層し、その後、酸化チタン薄膜に、200k
eVイオン注入装置を用いてCrイオンを12×1016
個/cm2注入し、光波長500nmに光吸収端をもつ
酸化チタン層9を形成した。更に、基板2のレーザー光
入射側と反対側上に、それぞれ下部誘電体層3としてZ
nS−SiO2 (SiO2 :20mol%)を140n
m厚に、記録層4としてAu−In−Sb−Te合金を
25nm厚に、上部誘電体層5としてZnS−SiO 2
(SiO2 :20mol%)を22nm厚に、反射層6
としてAlを100nm厚に、及びラッカー層7を10
μm厚に順次積層し、このように形成したものを、ラッ
カー層7側を対向させて、接着層10を介して接合し、
図1の構成を有する光記録媒体1を形成した。接着層1
0の厚みは30〜50μmであった。基板2のランド/
グルーブは、トラックピッチ0.74μm、深さ70n
mとした。(Example 1) Diameter 120 mm, thickness 0.6
2 polycarbonate with mm land / groove
Oxidation as a protective layer 8 on the laser beam incident side of the
Silicon to 100 nm thickness, titanium oxide thin film to 100 nm
Thickness, and then 200k
12 × 10 Cr ions using an eV ion implanter16
Pieces / cmTwoInjected and has light absorption edge at light wavelength 500nm
A titanium oxide layer 9 was formed. Further, the laser light of the substrate 2
On the side opposite to the incidence side, Z
nS-SiOTwo(SiOTwo: 20 mol%) to 140 n
m-thick Au—In—Sb—Te alloy as the recording layer 4
25 nm thick, ZnS-SiO as the upper dielectric layer 5 Two
(SiOTwo: 20 mol%) to a thickness of 22 nm and a reflective layer 6
To a thickness of 100 nm and a lacquer layer 7 of 10
μm layer in order.
The car layer 7 side is opposed to and joined via the adhesive layer 10,
An optical recording medium 1 having the configuration shown in FIG. 1 was formed. Adhesive layer 1
0 had a thickness of 30 to 50 μm. Land of substrate 2 /
The groove has a track pitch of 0.74 μm and a depth of 70 n.
m.
【0030】光記録媒体1作製後の記録層4は非晶質で
あった。このため、波長810nmの大出力半導体レー
ザー光により記録層4を十分に結晶化させ初期化状態と
した。こうして得られた光記録媒体1の記録は、波長6
35nmの半導体レーザー光をNA=0.6の対物レン
ズを通して酸化チタン層9側から照射し、記録層4の表
面で直径約1μmのスポット径に絞り込むことにより、
線速3.5m/sで8/16変調方式信号のランダム信
号を記録した。記録パワーは13mWとした。光記録媒
体1の再生は、波長635nmの半導体レーザと波長4
20nmのSHGレーザを用いて行い、レーザー光を酸
化チタン層9側から照射し線速3.5m/sで行った。
再生パワーは635nmで1mW、420nmで1.3
mWとした。ジッターは、ランダム信号のジッターをタ
イムインターバルアナライザにより測定した。After the production of the optical recording medium 1, the recording layer 4 was amorphous. For this reason, the recording layer 4 was sufficiently crystallized by a high-output semiconductor laser beam having a wavelength of 810 nm to be in an initialized state. The recording on the optical recording medium 1 thus obtained has a wavelength of 6
By irradiating a 35 nm semiconductor laser beam from the titanium oxide layer 9 side through an objective lens with NA = 0.6 and narrowing down to a spot diameter of about 1 μm on the surface of the recording layer 4,
A random signal of an 8/16 modulation system signal was recorded at a linear velocity of 3.5 m / s. The recording power was 13 mW. The reproduction of the optical recording medium 1 is performed by using a semiconductor laser having a wavelength of 635 nm and a wavelength of 4 nm.
A 20 nm SHG laser was used, and a laser beam was irradiated from the titanium oxide layer 9 side at a linear velocity of 3.5 m / s.
The reproducing power is 1 mW at 635 nm and 1.3 at 420 nm.
mW. Jitter measured the jitter of the random signal using a time interval analyzer.
【0031】まず、光記録媒体1に、635nmの半導
体レーザにより記録を行い、635nmの半導体レーザ
により再生を行った。そのとき、光記録媒体1のジッタ
ーは8%であった。次に、記録を施した光記録媒体1の
レーザー光入射側、即ち酸化チタン層9上を素手で全周
にわたって接触し指紋を付着させ、更に塵も付着させ
た。指紋と塵をあわせて有機汚れとした。その後、この
光記録媒体1を635nmの半導体レーザで再生し、ジ
ッターを測定したところ、ジッターは平均で15%であ
った。First, recording was performed on the optical recording medium 1 with a 635 nm semiconductor laser, and reproduction was performed with a 635 nm semiconductor laser. At that time, the jitter of the optical recording medium 1 was 8%. Next, a finger was brought into contact with the laser beam incident side of the optical recording medium 1 on which the recording was made, that is, on the titanium oxide layer 9 with bare hands to adhere a fingerprint and further adhere dust. The fingerprint and dust were combined to make an organic stain. Thereafter, the optical recording medium 1 was reproduced with a 635 nm semiconductor laser, and the jitter was measured. The jitter was 15% on average.
【0032】次に、有機汚れが付着した光記録媒体1の
汚れ側を戸外で太陽光に5分間暴露し、その後、635
nmの半導体レーザーで再生し、ジッターを測定したと
ころ、ジッターは8%となっていた。このことにより、
500nmに光吸収端を持つ酸化チタン層9の光触媒反
応により、有機汚れが効率的に除去でき、ジッターの増
加を防ぐことができることがわかった。Next, the stained side of the optical recording medium 1 to which the organic stain has adhered is exposed outdoors to sunlight for 5 minutes.
When the data was reproduced with a semiconductor laser of nm and the jitter was measured, the jitter was 8%. This allows
It was found that the organic catalyst can be efficiently removed by the photocatalytic reaction of the titanium oxide layer 9 having a light absorption edge at 500 nm, and an increase in jitter can be prevented.
【0033】(比較例1)酸化チタン層に、Crイオン
を注入していない純粋な酸化チタンを用いた以外は、実
施例1と同様にして光記録媒体1を作成した。このとき
純粋な酸化チタンの光吸収端は約380nmであった。
実施例1と同様にして、光記録媒体1に、635nmの
半導体レーザーにより記録を行い、635nmの半導体
レーザーにより再生して、ジッターを測定したところ8
%であった。また、有機汚れを付着させた後の光記録媒
体1のジッターは平均で15%であった。(Comparative Example 1) An optical recording medium 1 was prepared in the same manner as in Example 1 except that pure titanium oxide into which Cr ions were not implanted was used for the titanium oxide layer. At this time, the light absorption edge of the pure titanium oxide was about 380 nm.
In the same manner as in Example 1, recording was performed on the optical recording medium 1 with a 635 nm semiconductor laser, and reproduction was performed with a 635 nm semiconductor laser, and jitter was measured.
%Met. Further, the jitter of the optical recording medium 1 after the organic stain was attached was 15% on average.
【0034】一方、有機汚れが付着した光記録媒体1を
実施例1と同様にして戸外で太陽光に暴露し、ジッター
を測定したところ、ジッターは15%のままであり、改
善は見られなかった。 (実施例2)実施例1と同様にして作成した。有機汚れ
が付着した光記録媒体1を420nmSHGレーザーで
再生し、ジッターを測定したところ、ジッターは平均で
10%となった。即ち、有機汚れが付着した光記録媒体
1に420nmSHGレーザーを照射することにより、
ジッターは5%低減した。On the other hand, when the optical recording medium 1 to which the organic stain was attached was exposed to sunlight outdoors in the same manner as in Example 1, and the jitter was measured, the jitter remained at 15%, and no improvement was observed. Was. (Example 2) It was produced in the same manner as in Example 1. The optical recording medium 1 to which organic stains were adhered was reproduced with a 420 nm SHG laser, and the jitter was measured. The jitter was 10% on average. That is, by irradiating the 420 nm SHG laser to the optical recording medium 1 to which the organic dirt has adhered,
Jitter was reduced by 5%.
【0035】現状では420nmSHGレーザーの性能
限界のため実施できないが、仮に、有機汚れが付着した
光記録媒体1に420nmSHGレーザーで記録を行え
ば、更に強いパワーを照射することができるので、ジッ
ターの向上は更に期待できるものと考えられる。このよ
うに、500nmに光吸収端を持つ酸化チタン層9を有
する光記録媒体1に、光吸収端よりも短い波長のレーザ
ー光で記録及び/又は再生を行えば、酸化チタン層9の
光触媒反応により同時に有機汚れが除去できることがわ
かった。従って、本実施形態の光記録媒体1によれば、
記録/再生と同時に有機汚れを除去し、ジッターの増加
を防ぐことができる。At present, this cannot be performed due to the performance limit of the 420 nm SHG laser. However, if recording is performed on the optical recording medium 1 to which organic dirt is adhered by the 420 nm SHG laser, a stronger power can be applied, and the jitter can be improved. Is expected to be even more promising. As described above, if recording and / or reproduction is performed on the optical recording medium 1 having the titanium oxide layer 9 having a light absorption edge at 500 nm with a laser beam having a shorter wavelength than the light absorption edge, the photocatalytic reaction of the titanium oxide layer 9 can be improved. It was found that organic stains could be removed at the same time. Therefore, according to the optical recording medium 1 of the present embodiment,
Organic dirt can be removed at the same time as recording / reproducing to prevent an increase in jitter.
【0036】(比較例2)比較例1と同様にして作成し
た。有機汚れが付着した光記録媒体1を420nmSH
Gレーザーで再生し、ジッターを測定したところ、ジッ
ターは平均で15%ょままであり、改善は見られなかっ
た。これは、再生に使用した420nmSHGレーザー
の波長が、(不純物を含まない)酸化チタン層の光吸収
端の波長(380nm)よりも長かったためである。(Comparative Example 2) A battery was prepared in the same manner as in Comparative Example 1. Optical recording medium 1 to which organic dirt has adhered is 420 nm SH
When reproduction was performed with a G laser and the jitter was measured, the jitter remained at an average of 15%, and no improvement was observed. This is because the wavelength of the 420 nm SHG laser used for reproduction was longer than the wavelength (380 nm) at the light absorption edge of the titanium oxide layer (containing no impurities).
【0037】[0037]
【発明の効果】以上説明したように、請求項1に係る発
明によれば、光記録媒体を構成する基板のレーザー入射
側表面に、不純物の添加によって、400nm〜850
nmの波長領域に光吸収端を持つ酸化チタン層を形成し
たので、太陽光に半分以上含まれる可視光を利用して有
機汚れを除去できるようになるため、従来のものに比べ
て基板表面に付着する有機汚れをより効率的に除去でき
るという大きな効果を有する。従って、ジッターの増加
を防止でき光記録媒体の信頼性を向上できる。As described above, according to the first aspect of the present invention, the surface of the substrate constituting the optical recording medium, on the laser incident side, is doped with an impurity to a wavelength of 400 nm to 850 nm.
Since a titanium oxide layer with a light absorption edge in the wavelength region of nm is formed, organic dirt can be removed by using visible light contained in more than half of sunlight, so that the There is a great effect that the attached organic dirt can be more efficiently removed. Therefore, an increase in jitter can be prevented, and the reliability of the optical recording medium can be improved.
【0038】また、請求項2に記載の発明によれば、記
録/再生に使用するレーザー光によって基板表面に付着
する有機汚れを除去できる。従って、請求項4に記載の
ように、光記録媒体の記録及び/又は再生の際に、レー
ザー光を照射することで、記録/再生と同時に有機汚れ
を除去でき、極めて効率良く基板表面を清浄化できる。According to the second aspect of the present invention, the organic dirt adhering to the substrate surface can be removed by the laser beam used for recording / reproducing. Therefore, by irradiating a laser beam during recording and / or reproduction of the optical recording medium, organic dirt can be removed simultaneously with recording / reproduction, and the substrate surface can be cleaned very efficiently. Can be
【0039】また、請求項3に記載の発明によれば、請
求項1、2の効果に加えて、酸化チタン層の光触媒反応
から基板を保護することができ、より一層光記録媒体の
信頼性を向上できる。According to the third aspect of the invention, in addition to the effects of the first and second aspects, the substrate can be protected from the photocatalytic reaction of the titanium oxide layer, and the reliability of the optical recording medium can be further improved. Can be improved.
【図1】本発明の光記録媒体の一実施形態を示す構成図FIG. 1 is a configuration diagram showing an embodiment of an optical recording medium of the present invention.
1 光記録媒体 2 透明基板 3 下部誘電体層 4 記録層 5 上部誘電体層 6 反射層 7 ラッカー層 8 保護層 9 酸化チタン層 10 接着層 DESCRIPTION OF SYMBOLS 1 Optical recording medium 2 Transparent substrate 3 Lower dielectric layer 4 Recording layer 5 Upper dielectric layer 6 Reflective layer 7 Lacquer layer 8 Protective layer 9 Titanium oxide layer 10 Adhesive layer
Claims (4)
再生を行う光記録媒体において、 光記録媒体を構成する基板のレーザー光入射側表面に、
400nm〜850nmの波長領域に光吸収端を有する
酸化チタン層を形成したことを特徴とする光記録媒体。1. An optical recording medium for recording and / or reproducing information by using a laser beam, comprising:
An optical recording medium comprising a titanium oxide layer having a light absorption edge in a wavelength region of 400 nm to 850 nm.
層の光吸収端の波長よりも短波長である請求項1に記載
の光記録媒体。2. The optical recording medium according to claim 1, wherein a wavelength of said laser beam is shorter than a wavelength at a light absorption edge of said titanium oxide layer.
ーザー光に対して略透明な無機物からなる保護層を設け
る構成とした請求項1又は2に記載の光記録媒体。3. The optical recording medium according to claim 1, wherein a protective layer made of an inorganic substance substantially transparent to the laser beam is provided between the substrate and the titanium oxide layer.
ーザー光を照射して、記録及び/又は再生と同時に酸化
チタン層による光触媒機能が発現されるようにしたこと
を特徴とする光記録媒体の記録/再生方法。4. An optical recording medium according to claim 2, wherein the optical recording medium is irradiated with a laser beam so that the photocatalytic function of the titanium oxide layer is simultaneously exhibited during recording and / or reproduction. An optical recording medium recording / reproducing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9360967A JPH11195244A (en) | 1997-12-26 | 1997-12-26 | Optical recording medium and recording/reproducing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9360967A JPH11195244A (en) | 1997-12-26 | 1997-12-26 | Optical recording medium and recording/reproducing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11195244A true JPH11195244A (en) | 1999-07-21 |
Family
ID=18471647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9360967A Pending JPH11195244A (en) | 1997-12-26 | 1997-12-26 | Optical recording medium and recording/reproducing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11195244A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020011866A (en) * | 2000-08-04 | 2002-02-09 | 가네오 이토 | Optical recording medium |
-
1997
- 1997-12-26 JP JP9360967A patent/JPH11195244A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020011866A (en) * | 2000-08-04 | 2002-02-09 | 가네오 이토 | Optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252370A (en) | Optical recording medium and method for making | |
KR20110061618A (en) | Data storage media including carbon and metal layers | |
CN1188847C (en) | Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same | |
US7573803B2 (en) | Optical recording disc | |
JPH11195244A (en) | Optical recording medium and recording/reproducing method therefor | |
US20070098946A1 (en) | Optical recording disc | |
JP2005025841A (en) | Optical recording disk | |
JP2005025842A (en) | Optical recording disk | |
JP2005158191A (en) | Manufacturing method of optical recording medium, and optical recording medium | |
JP3034124B2 (en) | Optical information recording medium | |
JP2003022571A (en) | Optical information medium and optical head | |
JPH0373438A (en) | Production of optical recording medium | |
TWI478160B (en) | Data storage media containing carbon and metal layers and method for preparing optical information medium | |
KR100763364B1 (en) | Phase change optical disk | |
JP4060574B2 (en) | Write-once optical recording medium | |
JP3115088B2 (en) | Optical information recording medium provided with silicon hydride film | |
JP3510551B2 (en) | Optical recording medium | |
JPH09180253A (en) | Optical recording medium | |
SU1190405A1 (en) | Method of manufacturing optical information medium | |
JP2006276453A (en) | Information recording medium and optical recording method | |
JPS60234248A (en) | Optical information recording medium | |
JPS59198545A (en) | Optical information recording disc | |
WO2004077424A1 (en) | Optical information recording carrier | |
JPS6254854A (en) | Optical recording member | |
JPS63152035A (en) | Optical disk |