JPH11142344A - Method and apparatus for measuring perspective distortion - Google Patents
Method and apparatus for measuring perspective distortionInfo
- Publication number
- JPH11142344A JPH11142344A JP31086597A JP31086597A JPH11142344A JP H11142344 A JPH11142344 A JP H11142344A JP 31086597 A JP31086597 A JP 31086597A JP 31086597 A JP31086597 A JP 31086597A JP H11142344 A JPH11142344 A JP H11142344A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- screen
- inspection
- annular screen
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/958—Inspecting transparent materials or objects, e.g. windscreens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/958—Inspecting transparent materials or objects, e.g. windscreens
- G01N2021/9586—Windscreens
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、透視歪の測定方法
及び装置に係り、特に、ガラス板等の光透過性の被測定
物を透過する光を観察して材料の欠陥、歪み度合い等を
測定する透視歪の測定方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring perspective distortion, and more particularly, to observing light transmitted through a light-transmitting object such as a glass plate to determine a defect and a degree of distortion of a material. The present invention relates to a method and an apparatus for measuring a perspective distortion to be measured.
【0002】[0002]
【従来の技術】自動車用窓ガラス等の光透過性材料の歪
みを測定する技術としては、例えば、特開平7−200
59号公報、特開平7−120402号公報等に開示の
技術がある。これらは、図4に示すようにガラス等の被
測定物1の背後にチェッカー模様等の所定の明暗コント
ラストパターンを有するスクリーン2を設置する一方、
被測定物1の手前側にCCDカメラ等の撮像装置4を設
置し、この撮像装置4にて被測定物1介して前記スクリ
ーン2を撮影し、その撮影データから被測定物1の透視
歪を測定するものである。2. Description of the Related Art As a technique for measuring the distortion of a light transmitting material such as a window glass for an automobile, for example, Japanese Patent Application Laid-Open No. 7-200
No. 59, Japanese Patent Application Laid-Open No. 7-120402 and the like disclose techniques. As shown in FIG. 4, a screen 2 having a predetermined contrast pattern such as a checker pattern is installed behind an object 1 such as glass as shown in FIG.
An imaging device 4 such as a CCD camera is installed in front of the DUT 1, and the screen 2 is photographed through the DUT 1 by the imaging device 4, and the perspective distortion of the DUT 1 is determined from the photographed data. It is to be measured.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の測定方法では、検査領域全般を保証するため、被測
定物よりも大きなスクリーンを配置する必要があり、特
に、自動車用窓ガラス等の大型ワークの全面検査を実施
する場合には、大画面のスクリーンを設置しなければな
らず、設置スペース上問題となる。However, in the above-mentioned conventional measuring method, it is necessary to arrange a screen larger than the object to be measured in order to guarantee the whole inspection area. When performing a full inspection, a large screen must be installed, which poses a problem in terms of installation space.
【0004】本発明はこのような事情に鑑みて成された
もので、大画面のスクリーンと同等の機能を有しつつ、
装置の小型化を図ることができる透視歪の測定方法及び
装置を提供することを目的とする。[0004] The present invention has been made in view of such circumstances, and has the same function as a large screen,
It is an object of the present invention to provide a method and an apparatus for measuring a perspective distortion which can reduce the size of the apparatus.
【0005】[0005]
【課題を解決するための手段】本発明は、前記目的を達
成するために、所定の規則性パターンを有するスクリー
ンを光透過性の被測定物の背後に設置する一方、被測定
物の手前側に受光装置を配置し、この受光装置によって
被測定物を透過した透過光を受光し、得られた受光デー
タに基づいて被測定物の透視歪を測定する方法におい
て、前記スクリーンとして円筒状又はベルト状の環状ス
クリーンを用い、前記被測定物、撮像手段及びスクリー
ンのうち少なくとも1つを移動させて被測定物の検査位
置を変更するとともに、該検査位置の移動速度に同調さ
せて前記環状スクリーンを回転駆動し、被測定物の所定
の測定範囲の受光データを順次取得することを特徴とし
ている。According to the present invention, in order to achieve the above object, a screen having a predetermined regular pattern is provided behind a light-transmitting DUT, while a screen having a predetermined pattern is provided on the front side of the DUT. In the method of receiving the transmitted light transmitted through the object by this light receiving device, and measuring the perspective distortion of the object based on the obtained light receiving data, a cylindrical or belt as the screen Using an annular screen, at least one of the object, the imaging means, and the screen is moved to change the inspection position of the object, and the annular screen is tuned to the moving speed of the inspection position. It is characterized in that it is driven to rotate, and light receiving data of a predetermined measurement range of an object to be measured is sequentially acquired.
【0006】この方法発明において、受光データから被
測定物の歪みを評価、測定する手法については適宜選定
して差し支えない。また、この方法発明を具現化する装
置を提供すべく、本発明は、光透過性の被測定物の背面
側に設置され、所定の規則性パターンを有する円筒状又
はベルト状の環状スクリーンと、前記環状スクリーンを
周方向に回転させるスクリーン駆動手段と、前記被測定
物の手前側に前記環状スクリーンと対向して配置され、
被測定物を透過した前記環状スクリーンの規則性パター
ンの像を撮影する撮像手段と、前記被測定物、撮像手段
及び環状スクリーンのうち少なくとも1つを移動させて
被測定物の検査位置を変更する検査位置移動手段と、前
記検査位置移動手段による前記検査位置の移動速度に同
調させて前記環状スクリーンを回転させるようにスクリ
ーン駆動手段を制御する制御手段と、前記撮像手段で撮
像した撮像データに基づいて被測定物の透過歪を評価す
る画像処理装置と、を備えたことを特徴としている。In the method invention, a method for evaluating and measuring the distortion of the measured object from the received light data may be appropriately selected. Further, in order to provide an apparatus embodying the method of the present invention, the present invention provides a cylindrical or belt-shaped annular screen having a predetermined regular pattern, which is installed on the back side of a light-transmitting DUT. Screen driving means for rotating the annular screen in the circumferential direction, disposed on the near side of the object to be measured and opposed to the annular screen,
An imaging unit that captures an image of the regular pattern of the annular screen that has passed through the object to be measured, and at least one of the object to be measured, the imaging unit, and the annular screen is moved to change an inspection position of the object to be measured. Inspection position moving means, control means for controlling a screen driving means so as to rotate the annular screen in synchronization with a moving speed of the inspection position by the inspection position moving means, and image data obtained by the imaging means. And an image processing device for evaluating the transmission distortion of the object under test.
【0007】本発明によれば、検査位置の移動とスクリ
ーンの回転とによって、2次元的に展開したスクリーン
画像(パターン)のデータを取り込むことができる。こ
れにより、平板状の大画面スクリーンと同等の機能を満
たしつつ、スクリーンの小型化を図ることができ、装置
の省スペース化を達成できる。また、スクリーンの回転
速度を調整することによって、パターンの形態を実質的
に変更することができ、実際には1つの規則性パターン
であるにもかかわらず、スクリーンの回転速度の増減に
よって検出感度を変更することができる。According to the present invention, two-dimensionally developed screen image (pattern) data can be captured by moving the inspection position and rotating the screen. This makes it possible to reduce the size of the screen while satisfying the same functions as those of a large flat screen screen, and to save the space of the apparatus. In addition, by adjusting the rotation speed of the screen, the form of the pattern can be substantially changed. Even though the pattern is actually one regular pattern, the detection sensitivity is increased or decreased by increasing or decreasing the rotation speed of the screen. Can be changed.
【0008】特に、撮像手段として1次元ラインセンサ
カメラを用い、該1次元ラインセンサカメラと環状スク
リーンを所定の位置に固定して配置するとともに、被測
定物を環状スクリーンの軸に直交する方向に搬送する構
成を採用することによって、装置の構成も簡易となる。
また、かかる構成を採用すれば、カメラの視野が1ライ
ン状になることから調整も容易で、スクリーンを照明す
る光源の均一性を保証すべき領域が線状になることか
ら、装置化が容易である。In particular, a one-dimensional line sensor camera is used as an imaging means, and the one-dimensional line sensor camera and the annular screen are fixedly arranged at a predetermined position, and the object to be measured is oriented in a direction perpendicular to the axis of the annular screen. By adopting the configuration for transport, the configuration of the apparatus is also simplified.
In addition, if this configuration is adopted, the field of view of the camera becomes one line, so that the adjustment is easy, and the area where the uniformity of the light source for illuminating the screen is to be guaranteed is linear, so that the device can be easily implemented. It is.
【0009】[0009]
【発明の実施の形態】以下添付図面に従って本発明に係
る透視歪の測定方法及び装置の好ましい実施の形態につ
いて詳説する。図1は、本発明の実施の形態に係る透視
歪の測定装置の構成を示す斜視図である。この測定装置
は、主として、円筒状のスクリーン10、被測定物12
たるガラス(本例では自動車のフロントガラス)を搬送
するコンベア装置14、ラインセンサカメラ16、及び
画像処理装置18等から構成される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method and an apparatus for measuring perspective distortion according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a configuration of a perspective distortion measuring device according to an embodiment of the present invention. This measuring device mainly includes a cylindrical screen 10 and a device under test 12.
It is composed of a conveyor device 14, a line sensor camera 16, an image processing device 18, and the like for transporting barrel glass (in this example, a windshield of an automobile).
【0010】スクリーン10の外周面には、規則的な明
暗コントラストパターン(例えば、チェッカーパター
ン)20が形成され、円筒部の内側には管状の光源ラン
プ22が配設されている。尚、規則的パターンは、チェ
ッカーパターンに限らず、格子模様やジグザグパターン
等でもよく、装置が採用する透視歪の測定手法に応じて
適宜選択される。A regular light / dark contrast pattern (for example, a checker pattern) 20 is formed on the outer peripheral surface of the screen 10, and a tubular light source lamp 22 is provided inside the cylindrical portion. Note that the regular pattern is not limited to the checker pattern, but may be a lattice pattern, a zigzag pattern, or the like, and is appropriately selected according to the method of measuring the perspective distortion employed by the apparatus.
【0011】前記円筒状のスクリーン10は、その長手
方向が被測定物12の搬送方向と直交する方向に配置さ
れ、コンベア装置14の上方において支持部材(図1中
不図示)を介して軸の回りに回転可能に支持されてい
る。また、図示されていないが、前記スクリーン10を
モータ駆動によって回転させるスクリーン駆動機構が設
けられている。スクリーン10を回転駆動するモータは
図示せぬ制御装置によって制御されており、スクリーン
10の回転速度を任意に調整できるようになっている。The cylindrical screen 10 is disposed so that its longitudinal direction is perpendicular to the direction of transport of the object 12 to be measured, and has a shaft above a conveyor device 14 via a support member (not shown in FIG. 1). It is supported so that it can rotate around. Although not shown, a screen driving mechanism for rotating the screen 10 by driving a motor is provided. A motor for rotating the screen 10 is controlled by a control device (not shown) so that the rotation speed of the screen 10 can be adjusted arbitrarily.
【0012】コンベア装置14は、被測定物12を水平
に支持する2列の搬送部14A、14Bを有し、各搬送
部14A、14Bに巻き掛けられた無端状ベルト24が
モータ(不図示)の駆動力によって回転するようになっ
ている。被測定物12は前記搬送部14A、14Bに載
せられ、モータ駆動によるベルト24、24の回転によ
って図中左方向に搬送される。The conveyor device 14 has two rows of transport sections 14A and 14B for horizontally supporting the DUT 12, and an endless belt 24 wound around each of the transport sections 14A and 14B is a motor (not shown). It is designed to rotate by the driving force of. The device under test 12 is placed on the transport units 14A and 14B, and is transported leftward in the drawing by rotation of the belts 24 and 24 driven by a motor.
【0013】コンベア装置14のモータは図示せぬ制御
装置によって制御されており、被測定物12の搬送速度
を任意に調整できるようになっている。ラインセンサカ
メラ16は、被測定物12の搬送方向と直交する方向に
複数の画素分のセンサを有しており、コンベア装置14
の下方の所定の位置に固定されている。そして、被測定
物12の幅方向の全域又は所定の対象領域を含む部分を
捕らえる画角を有している。The motor of the conveyor 14 is controlled by a control device (not shown) so that the transport speed of the object 12 can be arbitrarily adjusted. The line sensor camera 16 has sensors for a plurality of pixels in a direction orthogonal to the transport direction of the device under test 12,
Is fixed at a predetermined position below. Further, it has an angle of view that captures the entire area of the device under test 12 in the width direction or a portion including a predetermined target region.
【0014】画像処理装置18は、コンピュータ26、
モニタテレビ28、電源装置30、及びコンピュータ操
作入力手段たるマウス32から成り、ラインセンサカメ
ラ16が撮影した画像データに基づいて、公知の画像処
理手法によって被測定物12の透視歪を評価、測定す
る。図2には、図1に示した構成を採用した透視歪の測
定装置の外観例が示されている。円筒状のスクリーン1
0は門型のフレームの上部に回転自在に支持され、スク
リーン10の内側には管状の光源ランプ22が固設され
ている。The image processing device 18 includes a computer 26,
A monitor television 28, a power supply device 30, and a mouse 32, which is a computer operation input unit, are used to evaluate and measure the perspective distortion of the DUT 12 by a known image processing method based on image data captured by the line sensor camera 16. . FIG. 2 shows an example of the appearance of a perspective distortion measuring apparatus employing the configuration shown in FIG. Cylindrical screen 1
Numeral 0 is rotatably supported on the upper part of a gate-shaped frame, and a tubular light source lamp 22 is fixed inside the screen 10.
【0015】コンベア装置14は、略直方状のフレーム
34を有し、左右側部に搬送用のベルト24、24がそ
れぞれローラ36、36…を介して巻き掛けられ、装置
の上面の左右に2列の平行な搬送用ベルト列が形成され
る。このコンベア装置14の搬送方向と前記スクリーン
10の軸とが直交するように、コンベア装置14と前記
スクリーン10とは略T字型に配置される。The conveyor device 14 has a substantially rectangular frame 34. Conveying belts 24 are wound around right and left sides via rollers 36, 36, respectively. A parallel row of conveyor belts is formed. The conveyor device 14 and the screen 10 are arranged in a substantially T-shape such that the transport direction of the conveyor device 14 is orthogonal to the axis of the screen 10.
【0016】ラインセンサカメラ16はコンベア装置1
4の下方に図示せぬ支持部材を介して固定され、前記円
筒状のスクリーン10からの光が前方斜め上方からカメ
ラに入射するようにカメラの光軸が調整されている。こ
のように、被測定物12に対して検査光軸を傾斜させる
ことによって、透視歪が大きく表れ、歪を容易に観察す
ることができる。The line sensor camera 16 is a conveyor device 1
4 is fixed via a support member (not shown), and the optical axis of the camera is adjusted so that light from the cylindrical screen 10 enters the camera from obliquely forward and upward. In this manner, by inclining the inspection optical axis with respect to the DUT 12, a large perspective distortion appears, and the distortion can be easily observed.
【0017】次に、上記の特開平構成された透視歪の測
定装置の作用について説明する。被測定物12をコンベ
ア装置14で一定の速度で搬送するとともに、この搬送
速度に同調してスクリーン10を回転させる。このと
き、スクリーン10の回転速度はラインセンサカメラ1
6の走査周期を考慮し、スクリーン10の周面に描かれ
た規則性パターン20が均等に写るように制御する。Next, the operation of the above-described apparatus for measuring a perspective distortion configured as disclosed in Japanese Patent Laid-Open Publication No. HEI 10-208400 will be described. The device under test 12 is transported by the conveyor device 14 at a constant speed, and the screen 10 is rotated in synchronization with the transport speed. At this time, the rotation speed of the screen 10 is
In consideration of the scanning cycle of No. 6, control is performed so that the regular pattern 20 drawn on the peripheral surface of the screen 10 is evenly captured.
【0018】そして、コンベア装置14によって被測定
物12の検査位置を変更するとともに、該検査位置の移
動速度に同調させて前記スクリーン10を回転駆動しな
がら、被測定物12の透過光をラインセンサカメラ16
で受光する。コンベア装置14によって被測定物12が
移動することによってラインセンサカメラ16が捕らえ
る被測定物12の検査位置が変更されるとともに、この
動きに同調してスクリーン10が回転することで円筒状
のスクリーン10の周面に描かれたパターン20が2次
元に展開され、被測定物12の全域又は所定の検査領域
の画像データを順次取得することができる。The inspection position of the object 12 is changed by the conveyor device 14, and the transmitted light of the object 12 is transmitted to the line sensor while rotating the screen 10 in synchronization with the moving speed of the inspection position. Camera 16
To receive light. The inspection position of the DUT 12 captured by the line sensor camera 16 is changed by the movement of the DUT 12 by the conveyor device 14, and the screen 10 is rotated in synchronization with the movement, thereby rotating the cylindrical screen 10. Is developed two-dimensionally, and image data of the entire area of the DUT 12 or a predetermined inspection area can be sequentially acquired.
【0019】こうして、2次元に展開した透視画像とし
て取り込むことができ、その取得した画像データに基づ
いて、公知の画像処理手法を用いて被測定物の透過歪を
評価、測定する。このように、被測定物12の並進運動
に同調させて円筒状のスクリーン10を回転させること
によって、大画面スクリーンと同等の機能を満たすこと
ができ、スクリーンの小型化並びに装置の省スペース化
を図ることができる。また、被測定物12の搬送動作と
スクリーンの回転運動とを同調させることによって2次
元に展開した画像として取り込むようにしたので、原理
的には被測定物の搬送方向について無限長の物体の測定
を行うことができ、長尺状の物体の測定装置に応用する
ことが可能である。In this way, the image can be captured as a two-dimensionally developed perspective image, and based on the acquired image data, the transmission distortion of the object to be measured is evaluated and measured using a known image processing technique. As described above, by rotating the cylindrical screen 10 in synchronization with the translational movement of the device under test 12, it is possible to fulfill the same function as a large screen screen, and to reduce the size of the screen and save the space of the apparatus. Can be planned. In addition, since the transport operation of the DUT 12 and the rotation of the screen are synchronized, the image is taken in as a two-dimensionally developed image. And can be applied to a measuring device for a long object.
【0020】そして、スクリーン10の回転速度を調整
することによって、規則性パターン20の周方向の形態
(チェッカー模様の幅、格子間隔等)を見かけ上任意に
変更することができるという特徴を有している。即ち、
実際の装置としては、円筒状スクリーン10の周面には
1種類の規則性パターン20が描かれているが、スクリ
ーン10の回転速度の増減によってパターンの形態を変
えることができ、検出感度を変更することができる。By adjusting the rotation speed of the screen 10, the appearance of the regular pattern 20 in the circumferential direction (the width of the checker pattern, the lattice spacing, etc.) can be arbitrarily changed. ing. That is,
As an actual device, one type of regular pattern 20 is drawn on the peripheral surface of the cylindrical screen 10, but the pattern form can be changed by increasing or decreasing the rotation speed of the screen 10 to change the detection sensitivity. can do.
【0021】更に、かかる構成の透視歪の測定装置によ
れば、スクリーン10の照明用の光源ランプ22やライ
ンセンサカメラ16から成る検出光学系の調整は、スク
リーン上のカメラ視野にあたる直線的な部分に限定して
行えばよく、光源の均一性の保証も容易で、調整作業も
簡略化できるという利点がある。図3には、本発明の他
の実施の形態が示されている。同図に示した透視歪の測
定装置は、図1に示した円筒状のスクリーン10に代え
てベルト状のスクリーン40を用いたものであり、図3
中、図1に示した実施の形態と同一又は類似の部材には
同一の符号を付しその説明は省略する。Further, according to the perspective distortion measuring device having such a configuration, the adjustment of the detection optical system including the light source lamp 22 for illuminating the screen 10 and the line sensor camera 16 can be performed by adjusting the linear portion corresponding to the camera field of view on the screen. It is advantageous that the uniformity of the light source can be easily assured and the adjustment operation can be simplified. FIG. 3 shows another embodiment of the present invention. The apparatus for measuring the perspective distortion shown in FIG. 3 uses a belt-shaped screen 40 instead of the cylindrical screen 10 shown in FIG.
The same or similar members as those of the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
【0022】規則性パターン20が描かれたベルト状の
スクリーン40はローラ42、42間に巻き掛けられ、
2次元的な平面部40Aが形成される。また、図には示
されていないが、スクリーン40の内側には管状の光源
ランプが配設され、スクリーン40はスクリーン駆動機
構によって回転可能になっている。かかる構成によって
も、コンベア装置14による被測定物12の並進運動に
同調させてスクリーン40を回転させながら、被測定物
12の透過光をラインセンサカメラ16で受光すること
によって、2次元に展開した画像を取り込むことができ
る。A belt-like screen 40 on which the regular pattern 20 is drawn is wound around rollers 42, 42,
A two-dimensional plane portion 40A is formed. Although not shown, a tubular light source lamp is disposed inside the screen 40, and the screen 40 is rotatable by a screen driving mechanism. With this configuration, the line sensor camera 16 receives the transmitted light of the object 12 while rotating the screen 40 in synchronization with the translational movement of the object 12 by the conveyor device 14, so that the two-dimensional image is developed. Images can be captured.
【0023】上記各実施の形態では受光装置としてライ
ンセンサカメラ16を用いた場合を例に説明したが、こ
れに限らず、映像を構成する2次元の走査のうちの1つ
をコンベアの搬送と光源とで等価に実現できる場合、例
えば、横方向に移動する点状の受光素子と組み合わせて
2次元展開画像を取り込むようにしてもよい。また、縦
方向に画素を複数ライン有するセンサを用いて各ライン
の微小な信号差異による合成処理などを行うようにして
もよい。In each of the above embodiments, the case where the line sensor camera 16 is used as the light receiving device has been described as an example. However, the present invention is not limited to this. In the case where it can be equivalently realized with a light source, for example, a two-dimensional developed image may be captured in combination with a point-like light receiving element that moves in the horizontal direction. Alternatively, a sensor having a plurality of lines of pixels in the vertical direction may be used to perform a combining process based on a minute signal difference between the lines.
【0024】尚、図1に示した円筒状(ローラー状)の
スクリーン10や、図3に示したベルト状のスクリーン
40の表面の平坦度及び曲率については、スクリーンに
描かれた規則性パターン20を視野内で平面に射影した
像のゆがみが、検出対象たる歪み(欠陥)によって生じ
るゆがみよりも緩やかであるように定めることが必要で
ある。The flatness and curvature of the surface of the cylindrical (roller) screen 10 shown in FIG. 1 and the belt-like screen 40 shown in FIG. It is necessary to determine that the distortion of the image projected on the plane in the field of view is less than the distortion caused by the distortion (defect) to be detected.
【0025】また、上記実施の形態では、スクリーン1
0、40とラインセンサカメラ16を所定の位置に固定
し、被測定物12をコンベア装置14で搬送する場合を
説明したが、これに限らず、被測定物12、ラインセン
サカメラ(受光装置)16及びスクリーン10、40の
うちの少なくとも1つを移動させ、被測定物12に対し
て検出光学系を相対的に移動させることによって映像を
構成する2次元の走査のうちの1つを等価的に実現して
もよい。In the above embodiment, the screen 1
The case where the object 12 is conveyed by the conveyor device 14 while fixing the line sensor camera 16 at a predetermined position with 0 and 40 has been described. However, the present invention is not limited to this, and the object 12 and the line sensor camera (light receiving device) 16 and at least one of the screens 10 and 40 are moved, and one of two-dimensional scans forming an image by moving the detection optical system relative to the device under test 12 is equivalent to May be realized.
【0026】[0026]
【発明の効果】以上説明したように本発明に係る透視歪
の測定方法及び装置によれば、規則性パターンを有した
スクリーンを環状に形成し、被測定物と検査光学系とを
相対的に移動させて検査位置を変更する動きに同調させ
てスクリーンを回転駆動することで2次元に展開した画
像を取り込むようにしたので、平板状の大画面スクリー
ンと同等の機能を満たしつつ、スクリーンの小型化を図
ることができ、装置の省スペース化を達成できる。As described above, according to the method and apparatus for measuring perspective distortion according to the present invention, a screen having a regular pattern is formed in an annular shape, and the object to be measured and the inspection optical system are relatively positioned. By moving the screen in synchronization with the movement of moving and changing the inspection position, the screen is rotated to capture images that have been developed two-dimensionally. Therefore, space saving of the device can be achieved.
【0027】また、スクリーンの回転速度を調整するこ
とによって、パターンの形態を実質的に変更することが
でき、検出感度を変更することもできる。特に、撮像手
段として1次元ラインセンサカメラを用い、該1次元ラ
インセンサカメラと環状スクリーンは所定の位置に固定
しておき、被測定物を環状スクリーンの軸に直交する方
向に搬送する構成を採用すると、搬送装置の構成も簡易
であり、また、カメラの視野が1ライン上になることか
ら、調整も容易で、スクリーンを照明する光源の均一性
を保証すべき領域が線状になることから、装置化が容易
である。Further, by adjusting the rotation speed of the screen, the form of the pattern can be substantially changed, and the detection sensitivity can be changed. In particular, a configuration is adopted in which a one-dimensional line sensor camera is used as the imaging means, the one-dimensional line sensor camera and the annular screen are fixed at a predetermined position, and the object to be measured is transported in a direction perpendicular to the axis of the annular screen. Then, the configuration of the transport device is simple, and since the field of view of the camera is on one line, the adjustment is easy, and the uniformity of the light source for illuminating the screen has a linear area. It is easy to implement.
【図1】本発明の実施の形態に係る透視歪の測定装置の
構成を示す斜視図FIG. 1 is a perspective view showing a configuration of an apparatus for measuring perspective distortion according to an embodiment of the present invention.
【図2】透視歪の測定装置の一例を示す外観斜視図FIG. 2 is an external perspective view showing an example of an apparatus for measuring perspective distortion.
【図3】本発明の他の実施の形態に係る透視歪の測定装
置の構成を示す斜視図FIG. 3 is a perspective view showing a configuration of an apparatus for measuring perspective distortion according to another embodiment of the present invention.
【図4】従来の透視歪の測定装置の構成を示す斜視図FIG. 4 is a perspective view showing the configuration of a conventional perspective distortion measuring device.
10、40…スクリーン 12…被測定物 14…コンベア装置(検出位置移動手段に相当) 16…ラインセンサカメラ(受光装置、撮像装置に相
当) 18…画像処理装置 20…規則性パターン 22…光源ランプReference Signs List 10, 40: Screen 12: Object to be measured 14: Conveyor device (corresponding to detection position moving means) 16: Line sensor camera (corresponding to light receiving device, imaging device) 18: Image processing device 20: Regular pattern 22: Light source lamp
Claims (3)
ンを光透過性の被測定物の背後に設置する一方、被測定
物の手前側に受光装置を配置し、この受光装置によって
被測定物を透過した透過光を受光し、得られた受光デー
タに基づいて被測定物の透視歪を測定する方法におい
て、 前記スクリーンとして円筒状又はベルト状の環状スクリ
ーンを用い、 前記被測定物、撮像手段及びスクリーンのうち少なくと
も1つを移動させて被測定物の検査位置を変更するとと
もに、該検査位置の移動速度に同調させて前記環状スク
リーンを回転駆動し、被測定物の所定の測定範囲の受光
データを順次取得することを特徴とする透視歪の測定方
法。1. A screen having a predetermined regular pattern is installed behind a light-transmitting object to be measured, and a light receiving device is disposed in front of the object to be measured, and the object is transmitted by the light receiving device. Receiving the transmitted light, and measuring the perspective distortion of the object to be measured based on the obtained light reception data, wherein a cylindrical or belt-shaped annular screen is used as the screen, the object to be measured, the imaging means, and the screen. The inspection position of the object to be measured is changed by moving at least one of them, and the annular screen is rotationally driven in synchronization with the moving speed of the inspection position, and the received light data of a predetermined measurement range of the object to be measured is obtained. A method for measuring perspective distortion, which is obtained sequentially.
れ、所定の規則性パターンを有する円筒状又はベルト状
の環状スクリーンと、 前記環状スクリーンを周方向に回転させるスクリーン駆
動手段と、 前記被測定物の手前側に前記環状スクリーンと対向して
配置され、被測定物を透過した前記環状スクリーンの規
則性パターンの像を撮影する撮像手段と、 前記被測定物、撮像手段及び環状スクリーンのうち少な
くとも1つを移動させて被測定物の検査位置を変更する
検査位置移動手段と、 前記検査位置移動手段による前記検査位置の移動速度に
同調させて前記環状スクリーンを回転させるようにスク
リーン駆動手段を制御する制御手段と、 前記撮像手段で撮像した撮像データに基づいて被測定物
の透過歪を評価する画像処理装置と、 を備えたことを特徴とする透視歪の測定装置。2. A cylindrical or belt-shaped annular screen having a predetermined regular pattern, which is installed on the back side of a light-transmitting device to be measured, and a screen driving means for rotating the annular screen in a circumferential direction; An imaging unit arranged on the near side of the object to be measured in opposition to the annular screen and capturing an image of a regular pattern of the annular screen transmitted through the object to be measured; the object to be measured, the imaging unit, and the annular screen An inspection position moving means for changing at least one of the inspection positions of the object to be measured, and a screen drive for rotating the annular screen in synchronization with a moving speed of the inspection position by the inspection position moving means. Control means for controlling the means, and an image processing apparatus for evaluating the transmission distortion of the device under test based on the image data captured by the image capturing means. An apparatus for measuring perspective distortion, characterized in that:
カメラが用いられ、該1次元ラインセンサカメラと前記
環状スクリーンは所定の位置に固定され、検査位置移動
手段として被測定物を前記環状スクリーンの軸に直交す
る方向に搬送する搬送装置が用いられることを特徴とす
る請求項2の透視歪の測定装置。3. A one-dimensional line sensor camera is used as said imaging means, said one-dimensional line sensor camera and said annular screen are fixed at a predetermined position, and an object to be measured is moved along an axis of said annular screen as inspection position moving means. 3. The apparatus for measuring perspective distortion according to claim 2, wherein a transport device that transports in a direction perpendicular to the direction is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31086597A JP3736080B2 (en) | 1997-11-12 | 1997-11-12 | Method and apparatus for measuring perspective distortion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31086597A JP3736080B2 (en) | 1997-11-12 | 1997-11-12 | Method and apparatus for measuring perspective distortion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11142344A true JPH11142344A (en) | 1999-05-28 |
JP3736080B2 JP3736080B2 (en) | 2006-01-18 |
Family
ID=18010328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31086597A Expired - Fee Related JP3736080B2 (en) | 1997-11-12 | 1997-11-12 | Method and apparatus for measuring perspective distortion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3736080B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009042903A1 (en) * | 2007-09-28 | 2009-04-02 | Glasstech, Inc. | Method and apparatus for measuring transmitted optical distortion in glass sheets |
JP2009222557A (en) * | 2008-03-17 | 2009-10-01 | Nissan Motor Co Ltd | Homogeneity determination method of fluid, homogeneity determination device, homogeneity determination program used for homogeneity determination device, and information recording medium |
CN103370613A (en) * | 2011-02-11 | 2013-10-23 | 标致·雪铁龙汽车公司 | Method for detecting an optical defect in a windshield |
JP2015147680A (en) * | 2015-02-26 | 2015-08-20 | 日本電気株式会社 | outline detection system |
WO2018148391A1 (en) | 2017-02-09 | 2018-08-16 | Glasstech, Inc. | System and associated method for online detection of small defects on/in a glass sheet |
IT201800009463A1 (en) * | 2018-10-15 | 2020-04-15 | Daniele Iafrate | METHOD AND EQUIPMENT FOR THE CONTROL OF THE OPTICAL DISTORTION OF AUTOMOTIVE GLASSES IN PRODUCTION LINE IN CONFIGURATION IN CONFIGURATION IN COMPLIANCE WITH UN ECE R43 STANDARD. |
CN111366124A (en) * | 2020-05-11 | 2020-07-03 | 深圳市卓立勘测工程有限公司 | Underground pipeline deformation degree measuring system and measuring method |
EP3580156B1 (en) * | 2017-02-09 | 2025-04-23 | Glasstech, Inc. | System and associated method for online measurement of the optical characteristics of a glass sheet |
EP4579175A1 (en) | 2023-12-28 | 2025-07-02 | Agc Inc. | Method for evaluating flatness of cloth material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4231001A1 (en) * | 2022-02-16 | 2023-08-23 | Carl Zeiss Vision International GmbH | Testing device and testing method |
-
1997
- 1997-11-12 JP JP31086597A patent/JP3736080B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009042903A1 (en) * | 2007-09-28 | 2009-04-02 | Glasstech, Inc. | Method and apparatus for measuring transmitted optical distortion in glass sheets |
JP2009222557A (en) * | 2008-03-17 | 2009-10-01 | Nissan Motor Co Ltd | Homogeneity determination method of fluid, homogeneity determination device, homogeneity determination program used for homogeneity determination device, and information recording medium |
CN103370613A (en) * | 2011-02-11 | 2013-10-23 | 标致·雪铁龙汽车公司 | Method for detecting an optical defect in a windshield |
JP2015147680A (en) * | 2015-02-26 | 2015-08-20 | 日本電気株式会社 | outline detection system |
JP2020506392A (en) * | 2017-02-09 | 2020-02-27 | グラステク インコーポレイテッド | System and associated method for online detection of small defects on / in a glass sheet |
CN110268252A (en) * | 2017-02-09 | 2019-09-20 | 玻璃技术公司 | System and correlation technique for the small defect in on-line checking glass plate/glass plate |
WO2018148391A1 (en) | 2017-02-09 | 2018-08-16 | Glasstech, Inc. | System and associated method for online detection of small defects on/in a glass sheet |
EP3580551A4 (en) * | 2017-02-09 | 2020-12-16 | Glasstech, Inc. | System and associated method for online detection of small defects on/in a glass sheet |
EP3580156B1 (en) * | 2017-02-09 | 2025-04-23 | Glasstech, Inc. | System and associated method for online measurement of the optical characteristics of a glass sheet |
IT201800009463A1 (en) * | 2018-10-15 | 2020-04-15 | Daniele Iafrate | METHOD AND EQUIPMENT FOR THE CONTROL OF THE OPTICAL DISTORTION OF AUTOMOTIVE GLASSES IN PRODUCTION LINE IN CONFIGURATION IN CONFIGURATION IN COMPLIANCE WITH UN ECE R43 STANDARD. |
CN111366124A (en) * | 2020-05-11 | 2020-07-03 | 深圳市卓立勘测工程有限公司 | Underground pipeline deformation degree measuring system and measuring method |
CN111366124B (en) * | 2020-05-11 | 2021-08-13 | 深圳市卓立勘测工程有限公司 | Underground pipeline deformation degree measuring system and measuring method |
EP4579175A1 (en) | 2023-12-28 | 2025-07-02 | Agc Inc. | Method for evaluating flatness of cloth material |
Also Published As
Publication number | Publication date |
---|---|
JP3736080B2 (en) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5089958B2 (en) | Inspection device and inspection method for tape products | |
WO2020147713A1 (en) | Detection device, system and method | |
JP2009080088A (en) | Substrate appearance inspection apparatus | |
JP2010266284A (en) | Non-lighting inspection device | |
JP3736080B2 (en) | Method and apparatus for measuring perspective distortion | |
JP5824278B2 (en) | Image processing device | |
KR100629986B1 (en) | Surface image detection and surface inspection device of three-dimensional structure | |
KR101010497B1 (en) | Substrate Processing System, Inspection Device and Inspection Method | |
JPH11201742A (en) | Appearance inspecting device and its method for columnar object | |
JP4429683B2 (en) | Image input device | |
JPH1065940A (en) | Image pickup device | |
JP2005061955A (en) | Inspection system | |
JP2005024431A (en) | Visual inspection apparatus | |
JP2000275183A (en) | Image-capturing apparatus | |
JP4055284B2 (en) | Surface defect inspection equipment | |
JP2005274325A (en) | Optical defect inspection method for metal strip | |
JPH081368B2 (en) | Imaging Method in Shiitake Automatic Sorting System | |
JP2004117150A5 (en) | ||
JP5358743B2 (en) | Surface inspection device | |
JP2006242714A (en) | Device and method for inspecting transparent substrate | |
JP2005061956A (en) | Inspection system and adjusting member | |
JP2004132801A (en) | Surface defect inspection equipment for band | |
JP2005010038A (en) | Visual examination device | |
JPH09326031A (en) | Image input method and device | |
JP2004132800A (en) | Surface defect inspection equipment for band |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20051017 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20081104 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20091104 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20101104 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |